Lernziele Analysis II WS 2017/18

Kapitel 3 – Differenzierbare Abbildungen

3.1 Differenzierbare Abbildungen

- Sie verstehen für Abbildungen $\mathbb{R}^n \to \mathbb{R}^k$ den Begriff der Differenzierbarkeit und die zugehörigen Konzepte (Differential, Ableitung, Jacobi-Matrix, Richtungsableitungen) und können damit umgehen.
- Sie kennen die Rechenregeln für differenzierbare Abbildungen (algebraische Regeln, Kettenregeln) und können diese anwenden. Insbesondere können Sie die Jacobi-Matrix einer Komposition mit Hilfe der Matrizenmultiplikation bestimmen.

3.2 Der Schrankensatz

- Sie kennen den Schrankensatz für Abbildungen.
- Differenzierbare Abbildungen mit verschwindendem Differential sind lokal konstant.

3.3 Diffeomorphismen

- Sie wissen, was man unter einem Diffeomorphismus versteht.
- Stetig differenzierbare Homöomorphismen mit überall bijektivem Differential sind Diffeomorphismen (Satz 3.2).

3.4 Der Umkehrsatz

- Sie kennen den Fixpunktsatz und wissen, wie man ihn anwendet.
- Sie kennen den Umkehrsatz und wissen, wie man ihn anwendet.

3.5 Auflösen von Gleichungen -

Der Satz über implizite Funktionen

- Sie wissen, wie man Gleichungssysteme unter Verwendung des Satzes über implizite Funktionen lokal auflösen kann.
- Für ein Gleichungssystem $f = (f_1, ..., f_m) : \mathbb{R}^n \to \mathbb{R}^m$ mit m < n müssen dazu die Variablen des \mathbb{R}^n in k := (n m) unabhängige Variablen $x_1, ..., x_k$ und m abhängige Variablen $y_1, ..., y_m$ unterteilt werden. Gesucht ist dann eine Abbildung $g : \mathbb{R}^k \to \mathbb{R}^m$ mit

$$f(x,g(x))=0.$$

3.6 Extrema unter Nebenbedingungen

- Sie können die Multiplikatorregel von Lagrange verwenden, um Extrema unter Nebenbedingungen zu bestimmen.
- Sie wissen, wie man eine Niveaufläche einer C^1 -Abbildung unter Verwendung des Satzes über implizite Funktionen parametrisiert.