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0 Reminder: Determinants

(0.1) Signs. For n ∈ N0 let Sn be the symmetric group on the set {1, . . . , n},
and the sign map sgn: Sn → {±1} : π 7→

∏
1≤i<j≤n

π(j)−π(i)
j−i = (−1)l(π), where

l(π) := |{{i, j}; i < j, π(i) > π(j)}| ∈ N0 is its inversion number. If ρ ∈ Sn
is a k-cycle, for some k ∈ N, then we have sgn(π) = (−1)k−1; in particular
sgn(id) = 1, and for a transposition σ ∈ Sn we have sgn(σ) = −1.

For π, ρ ∈ Sn we have multiplicativity sgn(πρ) = sgn(π) · sgn(ρ), and we have
sgn(π−1) = sgn(π). The elements of An := {π ∈ Sn; sgn(π) = 1} and Sn \An =
{π ∈ Sn; sgn(π) = −1} are called even and odd permutations, respectively;
then An ≤ Sn is a subgroup, being called the associated alternating group.

(0.2) Determinants. a) Let K be a field. Then the determinant of a
square matrix A := [aij ]ij ∈ Kn×n, where n ∈ N0, is defined as det(A) :=∑
π∈Sn sgn(π) ·

∏n
j=1 aπ(j),j ∈ K.

For example, for an upper triangular matrix A ∈ Kn×n, that is aij = 0 for
all i > j ∈ {1, . . . , n}, we get det(A) =

∏n
j=1 ajj ∈ K; in particular, for the

identity matrix En ∈ Kn×n we get det(En) = 1.

For n = 0 we have det([]) = 1; for n = 1 we have det([a]) = a; for n = 2 we have

det

[
a11 a12

a21 a22

]
= a11a22 − a12a21; for n = 3 we have det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

(a11a22a33 +a12a23a31 +a13a21a32)− (a13a22a31 +a12a21a33 +a11a23a32), called
the Sarrus rule.

b) The map det : (Kn×1)n → K : [v1, . . . , vn] 7→ det([v1, . . . , vn]), where by
[v1, . . . , vn] ∈ Kn×n we denote the matrix having columns v1, . . . , vn, has the
following properties: It is K-multilinear, that is K-linear in each argument,
and it is alternating, that is det(. . . , v, . . . , v, . . .) = 0 for all v ∈ Kn×1.

Hence we have det(. . . , v, . . . , w, . . .) = −det(. . . , w, . . . , v . . .) for all v, w ∈
Kn×1, and det(. . . , v, . . . , w, . . .) = det(. . . , v + aw, . . . , w . . .) for all a ∈ K.

Moreover, we have det(Atr) = det(A). Hence det is row multilinear and row
alternating as well, and the above properties also hold row-wise. Hence this
allows to compute the determinant of A by applying the Gauß algorithm, keep-
ing track of the row operations made, and to read off the determinant of its
Gaussian normal form which is an upper triangular matrix.

(0.3) Theorem: Multiplicativity. a) For A,B ∈ Kn×n we have det(AB) =
det(A) · det(B). Hence if A ∈ GLn(K) then we have det(A−1) = det(A)−1 6= 0.

Hence SLn(K) := {A ∈ GLn(K); det(A) = 1} ≤ GLn(K) is a subgroup, being
called the special linear group of degree n over K.

b) If V is a finitely generated K-vector space, and B ⊆ V a K-basis, then the
determinant of ϕ ∈ EndK(V ) is defined as det(ϕ) := det(MB

B (ϕ)), which by
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base change indeed is independent of the K-basis chosen.

(0.4) Theorem: Laplace expansion. Let A = [aij ]ij ∈ Kn×n where n ∈ N,
and for i, j ∈ {1, . . . , n} let

Aij :=



a11 . . . a1,j−1 a1,j+1 . . . a1n

...
...

...
...

ai−1,1 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n

ai+1,1 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n

...
...

...
...

an1 . . . an,j−1 an,j+1 . . . ann


∈ K(n−1)×(n−1)

be the matrix obtained from A by deleting row i and column j, where det(Aij) ∈
K is called the (i, j)-th (n− 1)-minor of A.

a) Then we have column expansion det(A) =
∑n
i=1(−1)i+j · aij · det(Aij),

for all j ∈ {1, . . . , n}, as well as row expansion det(A) =
∑n
j=1(−1)i+j · aij ·

det(Aij), for all i ∈ {1, . . . , n}.
b) Let adj(A) := [(−1)i+j · det(Aji)]ij ∈ Kn×n be the adjoint matrix of A.
Then we have A · adj(A) = adj(A) ·A = det(A) · En ∈ Kn×n.

Hence we have A ∈ GLn(K) if and only if det(A) 6= 0, and in this case we have
A−1 = det(A)−1 · adj(A) ∈ GLn(K);

c) For A ∈ GLn(K) and w ∈ Kn×1, the unique solution v = [x1, . . . , xn]tr ∈
Kn×1 of the system of linear equations Av = w is by Cramer’s rule given as
xi := det(A)−1 · det(Ai(w)) ∈ K, for all i ∈ {1, . . . , n}, where Ai(w) ∈ Kn×n is
the matrix obtained from A by replacing column i by w.

(0.5) Example: Direct current networks. We consider the Wheatstone
bridge as depicted in Table 1: We have electrical connections between the
vertices (A,B), (A,C), (B,C), (B,D), (C,D), and (D,A), whose internal
resistances are given as r := [r1, . . . , r6] ∈ R6, respectively, where rj > 0.
Voltage v ∈ R is fed into (D,A), and the task is to determine the currents
c := [c1, . . . , c6]tr ∈ R6×1 in the connections. In particular, we wonder whether
it is possible to adjust the internal resistances such that the current c3 through
the bridge (B,C) vanishes.

By Kirchhoff’s laws, incoming and outgoing currents cancel out at each of
the vertices A, B, C, D, leading to the first four of the following equations.
Moreover the voltage between two vertices is given as the product of the internal
resistance and the current, and the voltages cancel out along all closed circuits in
the network without source or sink; using the circuits (A,B,C) and (B,C,D)
this leads to the next two of the following equations, while using the circuit
(A,B,D) the last one is due to the voltage v fed into the network. Hence we
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Table 1: The Wheatstone bridge.

1 4

6

52

3
A

B

C

D

have the ‘overdetermined’ system A′Xtr = w′, where

[A′|w′] :=



−1 −1 . . . 1 .
1 . −1 −1 . . .
. 1 1 . −1 . .
. . . 1 1 −1 .
r1 −r2 r3 . . . .
. . r3 −r4 r5 . .
r1 . . r4 . r6 v


∈ R7×(6+1).

Since the currents are accounted for with opposite signs at their respective end
vertices, the column sums of the equations coming from the balance of currents
all vanish. Thus summing up the first four rows of A′ yields a zero row, and we
may leave out row 4 and look at the system AXtr = w, where

[A|w] :=


−1 −1 . . . 1 .

1 . −1 −1 . . .
. 1 1 . −1 . .
r1 −r2 r3 . . . .
. . r3 −r4 r5 . .
r1 . . r4 . r6 v

 ∈ R6×(6+1).

If Kirchhoff’s laws describe direct current networks completely, the above system
should have a unique solution. Thus we check that A ∈ R6×6 is invertible:

Adding column 6 to columns 1 and 2, and using row expansion with respect to
row 1 we get

det(A) = −det


1 . −1 −1 .
. 1 1 . −1
r1 −r2 r3 . .
. . r3 −r4 r5

r1 + r6 r6 . r4 .

 .
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Adding the r5-fold of row 2 to row 4, and using column expansion with respect
to column 5; and adding column 1 to columns 3 and 4, and using row expansion
with respect to row 1, the right hand side equals

−det


1 . −1 −1
r1 −r2 r3 .
. r5 r3 + r5 −r4

r1 + r6 r6 . r4

 = −det

−r2 r1 + r3 r1

r5 r3 + r5 −r4

r6 r1 + r6 r1 + r4 + r6

 .
The Sarrus rule implies det(A) = r2(r3 + r5)(r1 + r4 + r6) + (r1 + r3)r4r6 −
r1r5(r1 + r6)+ r1(r3 + r5)r6 +(r1 + r3)r5(r1 + r4 + r6)+ r2r4(r1 + r6) = r1r2r3 +
r1r2r4 + r1r2r5 + r1r3r5 + r1r3r6 + r1r4r5 + r1r4r6 + r1r5r6 + r2r3r4 + r2r3r6 +
r2r4r5 +r2r4r6 +r2r5r6 +r3r4r5 +r3r4r6 +r3r5r6 > 0, where the only summand
with negative sign cancels out.

Hence we have A ∈ GL6(R), and the system AXtr = w has a unique solution
c = [c1, . . . , c6]tr ∈ R6×1. By Cramer’s rule we have

c3 · det(A) = det


−1 −1 . . . 1
1 . . −1 . .
. 1 . . −1 .
r1 −r2 . . . .
. . . −r4 r5 .
r1 . v r4 . r6

 .

Using column expansion with respect to column 3, and column expansion with
respect to column 5, the right hand side equals

−v · det


−1 −1 . . 1
1 . −1 . .
. 1 . −1 .
r1 −r2 . . .
. . −r4 r5 .

 = −v · det


1 . −1 .
. 1 . −1
r1 −r2 . .
. . −r4 r5

 .
Adding column 1 to column 3, adding column 2 to column 4, and using row
expansion with respect to rows 1 and 2, this in turn equals

−v · det


1 . . .
. 1 . .
r1 −r2 r1 −r2

. . −r4 r5

 = −v · det

[
r1 −r2

−r4 r5

]
.

Hence we have c3 · det(A) = v · (r2r4 − r1r5). Thus for v 6= 0 the current c3
vanishes if and only if the internal resistances fufill r2r4 = r1r5, in other words
if and only if we have r1

r2
= r4

r5
. ]

The physical interpretation is as follows: The voltage v applied to vertex A
is distributed to vertices B and C according to the quotient r1

r2
, similarly the

voltage −v applied to vertex D is distributed to vertices B and C according to
the quotient r4

r5
. There is no current through through the bridge (B,C) if and

only if B and C are on the same potential, thus if and only if r1
r2

= r4
r5

.
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(0.6) Motivating example. We conclude with a motivating example, indi-
cating the aim of the considerations to come next:

We consider V := R2×1 with standard R-basis B, and R-basis C given by

MC
B (id) =

[
1 −1
1 1

]
∈ GL2(R); hence MB

C (id) = (MC
B (id))−1 = 1

2 ·
[

1 1
−1 1

]
.

i) For the reflection σ ∈ EndR(V ) at the hyperplane perpendicular to [−1, 1]tr

we get MB
B (σ) =

[
. 1
1 .

]
∈ R2×2, and MC

C (σ) = MB
C (id) ·MB

B (σ) ·MC
B (id) =[

1 .
. −1

]
∈ R2×2. The R-basis C seems to be better adjusted to σ, inasmuch

MC
C (σ) is a diagonal matrix, in other words any vector in C is mapped by σ to

a multiple of itself.

ii) To the contrary, for the rotation ρ ∈ EndR(V ) with respect to the angle ω ∈

R we get MB
B (ρ) =

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

]
∈ R2×2. For ω 6∈ πZ it is geometrically

clear that there is no non-zero vector being mapped by ρ to a multiple of itself.

Hence the question arises, under which circumstances such nicely adjusted bases
exist, and if so how to find them.

1 Rings and polynomials

(1.1) Monoids. A set M together with a multiplication · : M ×M →M ful-
filling the following conditions is called a monoid: There is a neutral element
1 ∈ M such that 1 · a = a = a · 1 for all a ∈ M , and we have associativity
(ab)c = a(bc) for all a, b, c ∈ M . If additionally ab = ba holds for all a, b ∈ M ,
then M is called commutative or abelian.

An element a ∈M is called invertible or a unit, if there is an inverse a−1 ∈M
such that aa−1 = 1 = a−1a. In this case, if a′ ∈ M also is an inverse, we have
a′ = 1 · a′ = a−1aa′ = a−1 · 1 = a−1, hence the inverse is uniquely determined.

Let M∗ ⊆ M be the set of units. Then we have 1 ∈ M∗, where 1−1 = 1; for
all a, b ∈ M∗ we from ab(b−1a−1) = 1 = (b−1a−1)ab conclude ab ∈ M∗, where
(ab)−1 = b−1a−1; and we have (a−1)−1 = a, thus a−1 ∈M∗.
A monoid M such that M∗ = M is called a group. In particular, for any
monoid M the subset M∗ is a group, called the group of units of M .

For example, N0 is a commutative additive monoid with neutral element 0,
and N is a commutative multiplicative monoid with neutral element 1, while
Z is a commutative additive group with neutral element 0, and a commutative
multiplicative monoid with neutral element 1.

(1.2) Rings. a) A set R together with an addition +: R×R→ R and a mul-
tiplication · : R×R→ R fulfilling the following conditions is called a ring: The
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set R is a commutative additive group with neutral element 0, and a multiplica-
tive monoid with neutral element 1, such that distributivity a(b+c) = ab+ac
and (b + c)a = ba + ca holds, for all a, b, c ∈ R. If additionally ab = ba holds,
for all a, b ∈ R, then R is called commutative.

Here are few immediate consequences: We have 0 · a = 0 = a · 0, and (−1) · a =
−a = a · (−1), and (−a)b = −(ab) = a(−b), for all a, b ∈ R:

From 0+0 = 0 we get 0 ·a = (0+0) ·a = 0 ·a+0 ·a and hence 0 = 0 ·a−(0 ·a) =
(0 · a + 0 · a) − (0 · a) = 0 · a; for a · 0 = 0 we argue similarly. We have
(−1) · a+ a = (−1) · a+ 1 · a = (−1 + 1) · a = 0 · a = 0, hence (−1) · a = −a; for
a · (−1) = −a we argue similarly. Finally, we have −(ab) = (−1) · ab = (−a)b
and −(ab) = ab · (−1) = a(−b). ]

For example, Z is a commutative ring, but N0 is not a ring. Kn×n is a ring, for
any field K and n ∈ N, which is commutative if and only if n = 1. Moreover,
letting R := {0} with addition 0 + 0 = 0 and multiplication 0 · 0 = 0 and 1 := 0,
then R is a commutative ring, being called the zero ring; conversely, if a ring
R fulfills 1 = 0, then we have a = a · 1 = a · 0 = 0, for all a ∈ R, hence R = {0}.
b) The subset R∗ ⊆ R is again called its group of units. If R 6= {0} then we
have 0 6∈ R∗: Assume to the contrary that 0 ∈ R∗, then there is 0−1 ∈ R such
that 1 = 0 · 0−1 = 0, a contradiction.

A commutative ring R 6= {0} such that R∗ = R \ {0} is called a field. For
example, we have Z∗ = {±1}, and Q ⊆ R ⊆ C are fields.

Let R 6= {0} be commutative. An element 0 6= a ∈ R such that ab = 0 for some
0 6= b ∈ R is called a zero-divisor. If there are no zero-divisors, that is for all
0 6= a, b ∈ R we have ab 6= 0, then R is called an integral domain.

Any a ∈ R∗ is not a zero-divisor: For b ∈ R such that ab = 0 we have b = 1 · b =
a−1ab = a−1 · 0 = 0. In particular, any field is an integral domain; but Z is an
integral domain but not a field.

c) Let R and S be rings. A map ϕ : R→ S is called a ring homomorphism,
if ϕ(1R) = 1S and ϕ(a+ b) = ϕ(a)+ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b), for all a, b ∈ R.

In particular, ϕ is a homomorphism between the additive groups of R and S,
and hence ϕ(0R) = 0S and ϕ(−a) = −ϕ(a), for all a ∈ R.

(1.3) Factorial domains. a) Let R be an integral domain. Then a ∈ R is
called a divisor of b ∈ R, and b is called a multiple of a, if there is c ∈ R such
that ac = b; we write a | b. Elements a, b ∈ R are called associate if a | b and
b | a; we write a ∼ b, where in particular ∼ is an equivalence relation on R.

We have a ∼ b if and only if there is u ∈ R∗ such that b = au ∈ R:

If b = au then we also have a = bu−1, thus a | b and b | a. Conversely, if a | b
and b | a, then there are u, v ∈ R such that b = au and a = bv, thus a = auv,
implying a(1−uv) = 0, hence a = 0 or uv = 1, where in the first case a = b = 0,
and in the second case u, v ∈ R∗. ]
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b) Let ∅ 6= M ⊆ R be a subset. Then d ∈ R such that d | a for all a ∈ M is
called a common divisor of M ; any u ∈ R∗ is a common divisor of M . If for
all common divisors c ∈ R of M we have c | d, then d ∈ R is called a greatest
common divisor of M . Let gcd(M) ⊆ R be the set of all greatest common
divisors of M . Elements a, b ∈ R such that gcd(a, b) = R∗ are called coprime.

In general greatest common divisors do not exist; but if gcd(M) 6= ∅ then, since
for d, d′ ∈ gcd(M) we have d | d′ and d′ | d, it consists of a single associate
class. For a ∈ R we have a ∈ gcd(a) = gcd(0, a).

Similarly, we get the notion of least common multiples lcm(M) ⊆ R; again,
if lcm(M) 6= ∅ then it consists of a single associate class.

c) Let 0 6= c ∈ R \ R∗. Then c is called irreducible or indecomposable, if
c = ab implies a ∈ R∗ or b ∈ R∗ for all a, b ∈ R; otherwise c is called reducible
or decomposable; hence if c is irreducible then all its associates also are. Let
P ⊆ R be a set of representatives of the associate classes of irreducible elements
of R; these exist by the Axiom of Choice.

R is called factorial or a Gaussian domain, if any element 0 6= a ∈ R
can be written uniquely, up to reordering and taking associates, in the form
a = u ·

∏n
i=1 pi ∈ R, where the pi ∈ R are irreducible, n ∈ N0 and u ∈ R∗.

In this case any 0 6= a ∈ R has a unique factorisation a = ua ·
∏
p∈P p

νp(a),
where ua ∈ R∗ and νp(a) ∈ N0 is called the associated multiplicity; we have
νp(a) = 0 for almost all p ∈ P, and

∑
p∈P νp(a) ∈ N0 is called the length of

the factorisation, and a is called squarefree if νp(a) ≤ 1 for all p ∈ P.

For any subset ∅ 6= M ⊆ R \ {0} we have
∏
p∈P p

min{νp(a);a∈M} ∈ gcd(M), and

similarly
∏
p∈P p

max{νp(a);a∈M} ∈ lcm(M); but note that in order to use this in
practice, the relevant elements of R have to be factorized completely first.

By the Fundamental Theorem of Arithmetic the integers Z are a factorial
domain: Any 0 6= z ∈ Z can be written uniquely as z = sgn(z) ·

∏
p∈P p

νp(z),
where the sign sgn(z) ∈ {±1} = Z∗ is defined by z · sgn(z) > 0, and νp(z) ∈ N0,
and P ⊆ N is the set of positive ‘primes’, being a set of representatives of the
associate classes of irreducible elements. Actually, this is a consequence of the
following much stronger property of Z:

(1.4) Euclidean domains. a) An integral domain R is called Euclidean, if
R has a degree map δ : R \ {0} → N0 having the following property: For all
a, b ∈ R such that b 6= 0 there are q, r ∈ R, called quotient and remainder,
respectively, such that a = qb + r where r = 0 or δ(r) < δ(b); and whenever
a | b we have monotonicity δ(a) ≤ δ(b).
In particular, have δ(a) = δ(b) whenever a ∼ b 6= 0. Kind of conversely, if
a | b 6= 0 such that δ(a) = δ(b), then we have a ∼ b: There are q, r ∈ R
such that a = qb + r, where r = 0 or δ(r) < δ(b); but assuming r 6= 0 from
a | a− qb = r we get δ(a) ≤ δ(r) < δ(b), a contradiction; hence we infer r = 0,
that is b | a as well.
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Table 2: Extended Euclidean algorithm in Z.

i qi ri si ti

0 126 1 0
1 3 35 0 1
2 1 21 1 −3
3 1 14 −1 4
4 2 7 2 −7
5 0 −5 18

For example, any field K is Euclidean with respect to δ : K∗ → N0 : x 7→ 0, and
Z is Euclidean with respect to δ : Z \ {0} → N0 : z 7→ |z|.
b) The major feature of Euclidean domains is that greatest common divisors
always exist, and that they can be computed without factorizing:

Given a, b ∈ R, a greatest common divisor r ∈ R and Bézout coefficients s, t ∈ R
such that r = sa + tb ∈ R can be computed by the extended Euclidean
algorithm; leaving out the steps indicated by ◦, needed to compute the si, ti ∈
R, just yields a greatest common divisor:

• r0 ← a, r1 ← b, i← 1
◦ s0 ← 1, t0 ← 0, s1 ← 0, t1 ← 1
• while ri 6= 0 do
• [qi, ri+1]← QuotRem(ri−1, ri) # quotient and remainder
◦ si+1 ← si−1 − qisi, ti+1 ← ti−1 − qiti
• i← i+ 1

• return [r; s, t]← [ri−1; si−1, ti−1]

Since δ(ri) > δ(ri+1) ≥ 0 for i ∈ N, there is l ∈ N0 such that rl 6= 0 and rl+1 = 0,
hence the algorithm terminates. We have ri = sia+ tib for all i ∈ {0, . . . , l+ 1},
hence r = rl = sa + tb. From ri+1 = ri−1 − qiri, for all i ∈ {1, . . . , l}, we get
r = rl ∈ gcd(rl, 0) = gcd(rl, rl+1) = gcd(ri, ri+1) = gcd(r0, r1) = gcd(a, b). ]

Example. For R := Z let a := 2 · 32 · 7 = 126 and b := 5 · 7 = 35, then Table 2
shows that d := 7 = 2a− 7b ∈ gcd(a, b). ]

(1.5) Theorem: Euclid implies Gauß. Any Euclidean domain is factorial.

Proof. Let R be an Euclidean domain with (monotonous) degree map δ. We
first show that any 0 6= a ∈ R\R∗ is a product of irreducible elements: Assuming
the contrary, let a be chosen of minimal degree not having this property. Then
a is reducible, hence there are b, c ∈ R \ R∗ such that a = bc. Thus we have
δ(b) < δ(a) and δ(c) < δ(a), implying that both b and c are irreducible, hence
a is a product of irreducible elements, a contradiction.
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In order to show uniqueness of factorizations, we next show that any irreducible
element 0 6= a ∈ R \ R∗ has the following property: Given b, c ∈ R such that
a - b and a | bc, then we have 1 ∈ gcd(a, b), hence there are Bézout coefficients
s, t ∈ R such that 1 = sa+ tb, implying that a | sac+ tbc = c.

Now let a = u ·
∏n
i=1 pi ∈ R, where the pi are irreducible, n ∈ N0 and u ∈ R∗.

We proceed by induction on n ∈ N0, where we have n = 0 if and only if a ∈ R∗.
Hence let n ≥ 1, and let a =

∏m
j=1 qj ∈ R, where the qj are irreducible and

m ∈ N. Since pn is irreducible, by the property proven above, we may assume
that pn | qm, hence since qm is irreducible, too, we infer pn ∼ qm. Thus we have

u′ ·
∏n−1
i=1 pi =

∏m−1
j=1 qj ∈ R, for some u′ ∈ R∗, and we are done by induction. ]

(1.6) Polynomial rings. a) Let X be a symbol or indeterminate. Then
the set X∗ := {Xi; i ∈ N0} of words in X becomes a commutative monoid with
respect to concatenation given by Xi · Xj := Xi+j , for all i, j ∈ N0, having
neutral element 1 := X0. Thus we may identify the additive monoid N0 with
X∗ via N0 → X∗ : i 7→ Xi.

Let K[X] := {[a0, a1, . . .] ∈ Maps(X∗,K); ai = 0 for almost all i ∈ N0}, where
K is a field. The map f : X∗ → K : Xi 7→ ai is (essentially uniquely) written as
a formal sum f =

∑
i≥0 aiX

i, and is called a polynomial in X, where ai ∈ K
is called its i-th coefficient.

If f 6= 0 then deg(f) := max{i ∈ N0; ai 6= 0} ∈ N0 is called its degree, where
polynomials of degree 0, . . . , 3 are called constant, linear, quadratic, and
cubic, respectively, and lc(f) := adeg(f) ∈ K is called its leading coefficient;
if lc(f) = 1 then f is called monic.

b) We define addition on K[X] componentwise by letting (
∑
i≥0 aiX

i) +

(
∑
j≥0 bjX

j) :=
∑
k≥0(ak + bk)Xk. Similarly, we define scalar multiplication

K ×K[X]→ K[X] componentwise by letting a · (
∑
i≥0 aiX

i) :=
∑
i≥0 aaiX

i.

Thus K[X] becomes a K-vector space, having K-basis {1·Xi; i ∈ N0}, which we
may identify with X∗. Hence the formal sum notation just expresses elements
of K[X] as K-linear combinations of the K-basis X∗.

We define convolutional multiplication on K[X] by letting (1 ·Xi) · (1 ·Xj) :=
(1 · Xi+j), and extending K-linearly in both arguments. In other words, we

have (
∑
i≥0 aiX

i) · (
∑
j≥0 bjX

j) =
∑
i,j≥0 aibjX

i+j =
∑
k≥0(

∑k
l=0 albk−l)X

k.

Since X∗ is a commutative monoid, and multiplication on K fulfills associa-
tivity and commutativity, K[X] becomes a commutative multiplicative monoid
with neutral element 1 := 1 · X0. Since arithmetic in K fulfills distributivity,
this also holds for K[X]. Thus K[X] is a commutative ring, being called the
(univariate) polynomial ring in X over K.

K[X] is an integral domain, such that f | g implies deg(f) ≤ deg(g): For 0 6=
f, g ∈ K[X] we have lc(f) 6= 0 6= lc(g), hence from K being an integral domain
we infer that fg 6= 0, where deg(fg) = deg(f) + deg(g) and lc(fg) = lc(f)lc(g).
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Table 3: Extended Euclidean algorithm in Q[X].

i qi ri si ti

0 X5 −X3 + 2X2 − 2 1 0
1 X2 − 2X + 1 X3 + 2X2 + 2X + 1 0 1
2 1

3
(X + 2) 3X2 − 3 1 −X2 + 2X − 1

3 X − 1 3X + 3 −1
3
(X + 2) 1

3
(X3 − 3X + 5)

4 0 1
3
(X2 +X + 1) −1

3
(X4 −X3 + 2X − 2)

We may consider K as a subset of K[X] via K → K[X] : a 7→ a · 1. Then we
have K[X]∗ = K∗; in particular K[X] is not a field: We have K∗ = K \ {0} =
{a ·X0; 0 6= a ∈ K} ⊆ K[X]∗, and the additivity of degrees implies that for any
0 6= f ∈ K[X] such that deg(f) ≥ 1 we have f 6∈ K[X]∗.

(1.7) Theorem: Polynomial division. Let f, g ∈ K[X] such that g 6= 0.
Then there are (uniquely determined) q, r ∈ K[X], called quotient and re-
mainder, respectively, such that f = qg + r where r = 0 or deg(r) < deg(g).

Proof. Let qg + r = f = q′g + r′ where q, q′, r, r′ ∈ R[X] such that r = 0 or
deg(r) < deg(g), and r′ = 0 or deg(r′) < deg(g). Then we have (q − q′)g =
r′ − r, where r′ − r = 0 or deg(r′ − r) < deg(g), and where (q − q′)g = 0 or
deg((q − q′)g) = deg(g) + deg(q − q′) ≥ deg(g). Hence we have r′ = r and
(q − q′)g = 0, implying q = q′, showing uniqueness.

To show existence, we may assume that f 6= 0 and m := deg(f) ≥ deg(g) := n.
We proceed by induction on m ∈ N0: Letting f ′ := f − lc(f)lc(g)−1gXm−n ∈
K[X], the m-th coefficient of f ′ shows that f ′ = 0 or deg(f ′) < m. By induction
there are q′, r′ ∈ K[X] such that f ′ = q′g+r′, where r′ = 0 or deg(r′) < deg(g),
hence f = (q′g + r′) + lc(f)lc(g)−1gXm−n = (q′ + lc(f)lc(g)−1Xm−n)g + r′. ]

(1.8) Corollary: Polynomial implies Euclid. K[X] is an Euclidean domain
with respect to the degree map deg.

Thus any 0 6= f ∈ K[X] can be written uniquely as f = lc(f) ·
∏
p∈P p

νp(f),
where νp(f) ∈ N0 and P ⊆ K[X] is the set of monic irreducible polynomials,
being a set of representatives of the associate classes of irreducible polynomials;
we have deg(f) =

∑
p∈P νp(f) deg(p) ∈ N0.

Example. For f := (X3 + 2)(X + 1)(X − 1) = X5−X3 + 2X2− 2 ∈ Q[X] and
g := (X2 + X + 1)(X + 1) = X3 + 2X2 + 2X + 1 ∈ Q[X] we get f = qg + r,
where q := X2 − 2X + 1 ∈ Q[X] and r := 3X2 − 3 ∈ Q[X]. Table 3 shows that
d := X + 1 ∈ gcd(f, g), where d = −1

9 (X + 2) · f + −1
9 (X4 −X3 + 2X − 2) · g. ]
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(1.9) Evaluation. a) Let ϕ : K → S be a ring homomorphism into a ring S,
such that ϕ(a)z = zϕ(a), for all a ∈ K and z ∈ S. Then for z ∈ S we have the as-
sociated evaluation map ϕz : K[X] → S : f =

∑
i≥0 aiX

i 7→
∑
i≥0 ϕ(ai)z

i =:

fϕ(z); in particular, for ϕ = idK we just write f(z) =
∑
i≥0 aiz

i.

Then ϕz is a ring homomorphism: We have ϕz(1) = ϕ(1) = 1, additivity ϕz(f+
g) = ϕz(

∑
i≥0(ai+bi)X

i) =
∑
i≥0 ϕ(ai+bi)z

i =
∑
i≥0 ϕ(ai)z

i+
∑
i≥0 ϕ(bi)z

i =

ϕz(f) + ϕz(g), and multiplicativity ϕz(fg) = ϕz(
∑
i≥0(

∑i
j=0 ajbi−j)X

i) =∑
i≥0(

∑i
j=0 ϕ(aj)ϕ(bi−j))z

i = (
∑
i≥0 ϕ(ai)z

i) · (
∑
i≥0 ϕ(bi)z

i) = ϕz(f)ϕz(g).

b) For f ∈ K[X] we get the associated polynomial map f̂ϕ : S → S : z 7→
fϕ(z); in particular, for ϕ = idK we just write f̂ : K → K : z 7→ f(z).

Since S is a ring, the set Maps(S, S) also becomes a ring with pointwise
addition F + G : S → S : z 7→ F (z) + G(z) and multiplication F · G : S →
S : z 7→ F (z)G(z), neutral elements being the constant maps S → S : z 7→ 0
and S → S : z 7→ 1, respectively.

Hence, since the evaluation map ϕz : K[X]→ S is a ring homomorphism for all

z ∈ S, we infer that ϕ̂ : K[X]→ Maps(S, S) : f 7→ f̂ϕ is a ring homomorphism.

c) If fϕ(z) = 0 then z ∈ S is called a root or zero of f in S.

For ϕ = idK , an element a ∈ K is a root of f ∈ K[X], if and only if (X−a) | f :
Writing f = q · (X − a) + r, where r = 0 or deg(r) < deg(X − a) = 1, that is
r ∈ K, we get r = f(a)− q(a) · (a− a) = f(a).

Then a ∈ K is called a root of f 6= 0 of multiplicity νa(f) := νX−a(f) ∈ N0;
note that (X−a) ∈ P. From

∑
a∈K νa(f) ≤ deg(f) we conclude that f 6= 0 has

at most deg(f) ∈ N0 roots in K, counted with multiplicity.

The field K is called algebraically closed if any polynomial in K[X] \K has
a root in K, or equivalently if P = {X − a ∈ K[X]; a ∈ K}. By the Funda-
mental Theorem of Algebra [Gauß, 1801] the field of complex numbers C
is algebraically closed.

The map ϕ̂ : K[X]→ Maps(K,K) is injective if and only if K is infinite; in this
case we may identify polynomials and polynomial maps:

If K is finite, then for f :=
∏
a∈K(X − a) ∈ K[X] we get f(z) = 0 ∈ K for

all z ∈ K, thus f̂ = 0̂ ∈ Maps(K,K). If K is infinite, then for f, g ∈ K[X]

such that f̂ = ĝ ∈ Maps(K,K) we conclude that f − g has all infinitely many
elements of K as roots, implying that f − g = 0 ∈ K[X]. ]

2 Eigenvalues

(2.1) Similarity. a) Let K be a field. Matrices A,D ∈ Kn×n, where n ∈ N0,
are called similar, if there is P ∈ GLn(K) such that D = P−1AP . Similarity is
an equivalence relation, the equivalence classes are called similarity classes.
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The matrix A is called diagonalisable, if it is similar to a diagonal matrix. The
matrix A is called triangularisable, if it is similar to a (lower) triangular
matrix, that is a matrix M := [bij ]ij ∈ Kn×n such that bij = 0 for all j > i ∈
{1, . . . , n}; in particular a diagonalisable matrix is triangularisable.

Triangularisability is equivalent to requiring that A is similar to an upper
triangular matrix, that is a matrix N := [cij ]ij ∈ Kn×n such that cij = 0 for
all i > j ∈ {1, . . . , n}: Letting P := [aij ]ij ∈ Kn×n, where aij := 1 if and only if
i+ j = n+ 1, and aij := 0 elsewise, for any lower triangular matrix M ∈ Kn×n

the matrix P−1NP ∈ Kn×n is an upper triangular.

b) Let V be a K-vector space such that dimK(V ) = n. Then ϕ,ψ ∈ EndK(V )
are called similar, if there are K-bases B and C of V such that MB

B (ϕ) =
MC
C (ψ) ∈ Kn×n. Since P := MC

B (id) ∈ GLn(K) and MC
C (ψ) = P−1 ·MB

B (ψ) ·P
this is equivalent to saying that MB

B (ϕ) and MB
B (ψ) are similar.

Moreover, ϕ is called diagonalisable or triangularisable, if MB
B (ϕ) is diago-

nalisable or triangularisable, respectively, for some, hence any K-basis B ⊆ V .

(2.2) Eigenvalues. a) Let K be a field, let V be a K-vector space, and let
ϕ ∈ EndK(V ). Then a ∈ K is called an eigenvalue of ϕ, if there is an
eigenvector 0 6= v ∈ V such that ϕ(v) = av.

Given a ∈ K, we have ϕ − a · id ∈ EndK(V ) as well, hence we have Ta(ϕ) :=
ker(ϕ−a·id) = {v ∈ V ;ϕ(v) = av} ≤ V , being called the associated eigenspace
of ϕ. Hence Ta(ϕ) \ {0} is the associated set of eigenvectors of ϕ.

Letting γa(ϕ) := dimK(Ta(ϕ)) ∈ N0

.
∪ {∞} be the associated geometric mul-

tiplicity, a is an eigenvalue of ϕ if and only if γa(ϕ) ≥ 1. In particular, from
ker(ϕ) = T0(ϕ) we infer that ϕ is injective if and only if 0 is not an eigenvalue.

b) Let I be a set, and let [ai ∈ K; i ∈ I] be pairwise different eigenvalues of ϕ.
Then any sequence [vi ∈ Tai(ϕ) \ {0}; i ∈ I] is K-linearly independent:

Let J ⊆ I be finite, where we may assume that J = {1, . . . , n} for some n ∈ N0.
We proceed by induction, the case n = 0 being trivial: Let b1, . . . , bn ∈ K such
that

∑n
i=1 bivi = 0. Hence we have 0 = ϕ(

∑n
i=1 bivi) =

∑n
i=1 aibivi, and thus

0 = an ·
∑n
i=1 bivi −

∑n
i=1 aibivi =

∑n−1
i=1 (an − ai)bivi. By induction we get

(an − ai)bi = 0, and an − ai 6= 0 implies bi = 0, for all i ∈ {1, . . . , n− 1}. Thus
finally vn 6= 0 implies bn = 0. ]

Example. Let C∞(R) := {f : R → R; f smooth} ≤ Maps(R,R), and let ∂
∂x ∈

EndR(C∞(R)), a differential operator. Then for εa : R → R : x 7→ exp(ax),
where a ∈ R, we have ∂

∂x (εa) = aεa. Hence a is an eigenvalue of ∂
∂x , having

εa ∈ C∞(R) as an eigenvector, and [εa ∈ C∞(R); a ∈ R] is R-linearly inde-
pendent. But note that, since all non-trivial (finite) R-linear combinations of
[εa ∈ C∞(R); a ∈ R] are unbounded maps, this is not an R-basis of C∞(R). ]

c) The above behaviour of eigenvectors can be rephrased in terms of the follow-
ing general notion: Let I be a set, and let Ui ≤ V for all i ∈ I. Then the sum
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U :=
∑
i∈I Ui ≤ V is called direct, if any sequence [vi ∈ Ui \ {0}; i ∈ I, Ui 6=

{0}] is K-linearly independent; we write U =
⊕

i∈I Ui.

Thus we have U =
⊕

i∈I Ui if and only if any v ∈ U can be written essentially
uniquely as a K-linear combination v =

∑
j∈J ajvj , where J ⊆ I is finite, and

vj ∈ Uj for all j ∈ J . In other words, we have U =
⊕

i∈I Ui if and only if
Ui ∩ (

∑
j 6=i Uj) = {0}, for all i ∈ I.

Moreover, if I is finite and the Ui are finitely generated K-vector spaces,
then iterating the dimension formula for subspaces, saying that dimK(Ui) +
dimK(Uj) = dimK(Ui + Uj) + dimK(Ui ∩ Uj) for all i, j ∈ I, implies that
U =

⊕
i∈I Ui if and only if dimK(U) =

∑
i∈I dimK(Ui).

For example, if [vi ∈ V ; i ∈ I] is a K-basis of V , then we have V =
⊕

i∈I〈vi〉K .
And coming back to eigenspaces, letting U :=

∑
a∈K Ta(ϕ) ≤ V , we have

U =
⊕

a∈K Ta(ϕ) =
⊕

a∈K,γa(ϕ)≥1 Ta(ϕ).

(2.3) Eigenvalues of matrices. If dimK(V ) = n ∈ N0, then choosing a K-
basis B ⊆ V and identifying V → Kn×1 : v 7→ MB(v) translates notions for
ϕ ∈ EndK(V ) into those of MB

B (ϕ) ∈ Kn×n:

The eigenvalues and eigenvectors of a matrix A ∈ Kn×n are defined to be those
of ϕA : Kn×1 → Kn×1 : v 7→ Av. Hence a ∈ K is an eigenvalue of A if and only
if Ta(A) := ker(A − aEn) 6= {0}. For the associated geometric multiplicity we
have γa(A) := dimK(Ta(A)) = dimK(ker(A−aEn)) = n−rk(A−aEn). Since for
P ∈ GLn(K) we have rk(P−1AP −aEn) = rk(P−1(A−aEn)P ) = rk(A−aEn),
we conclude that geometric multiplicities only depend on similarity classes.

The matrix A is diagonalisable if and only if there is a K-basis {v1, . . . , vn} ⊆
Kn×1 consisting of eigenvectors of A. In this case, for P := [v1, . . . , vn] ∈
GLn(K) we have P−1AP = D := diag[a1, . . . , an] ∈ Kn×n. Since γa(A) =
dimK(Ta(D)) = |{i ∈ {1, . . . , n}; ai = a}|, for all a ∈ K, we conclude that the
(not necessarily pairwise different) diagonal entries {a1, . . . , an} are precisely
the eigenvalues of A, each occurring with multiplicity γa(A). The eigenvalues
together with their geometric multiplicities are called the spectrum of A.

Since the various eigenspaces of A form a direct sum, we conclude that A has
at most n pairwise different eigenvalues. In this case, picking associated eigen-
vectors, we infer that Kn×1 has a K-basis consisting of eigenvectors of A, that
is A is diagonalisable, and we have γa(A) ≤ 1 for all a ∈ K.

Example. We reconsider the reflection given in (0.6): In terms of matrices,

let A :=

[
. 1
1 .

]
∈ R2×2. Then for the vectors v1 := [1, 1]tr ∈ R2×1 and

v2 := [−1, 1]tr ∈ R2×1 we have A · v1 = v1 and A · v2 = −v2, that is they are are
eigenvectors of A with respect to the eigenvalues 1 and −1, respectively. Letting

P :=

[
1 −1
1 1

]
∈ GL2(R) we have P−1 := 1

2 ·
[

1 1
−1 1

]
, and indeed P−1AP =
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1
2 ·
[

1 1
−1 1

]
·
[
. 1
1 .

]
·
[
1 −1
1 1

]
=

[
1 .
. −1

]
=: D. Thus A is diagonalisable, where

{±1} are the eigenvalues of A, both occurring with geometric multiplicity 1. ]

(2.4) Characteristic polynomials. Let K be a field and let A ∈ Kn×n ⊆
K[X]n×n, where n ∈ N0. Then XEn − A ∈ K[X]n×n is called the character-
istic matrix associated with A, and χA := det(XEn−A) ∈ K[X] is called the
characteristic polynomial of A.

Note that we have defined determinants only for matrices over fields. But the
definition given in (0.2) makes perfect sense in the more general setting of ma-
trices over a commutative ring. Moreover, it can be checked that the basic
properties, such as the arithmetical rules given in (0.2), multiplicativity in The-
orem (0.3), and Laplace expansion in Theorem (0.4) continue to hold.

Then χA 6= 0 is monic of degree deg(χA) = n, and we have χA(0) = det(−A) =
(−1)n · det(A) ∈ K. For example, for D := diag[a1, . . . , an] ∈ Kn×n we have
χD = det(XEn −D) =

∏n
i=1(X − ai) ∈ K[X].

Moreover, since for P ∈ GLn(K) we have χP−1AP = det(XEn − P−1AP ) =
det(P−1(XEn − A)P ) = det(XEn − A) = χA ∈ K[X], we conclude that χA ∈
K[X] only depends on the similarity class of A.

If V is a finitely generated K-vector space and ϕ ∈ EndK(V ), choosing a K-basis
B ⊆ V yields the characteristic polynomial χϕ := χMB

B (ϕ) ∈ K[X].

b) Given a ∈ K, the multiplicity νa(A) := νa(χA) = νX−a(χA) ∈ N0 is called
the associated algebraic multiplicity. Hence we have

∑
a∈K νa(A) ≤ n, and

algebraic multiplicities only depend on the similarity class of A.

Hence a is an eigenvalue of A, that is Ta(A) = ker(A − aEn) 6= {0}, in other
words γa(A) ≥ 1, if and only if det(aEn − A) = (−1)n · det(A − aEn) = 0, or
equivalently χA(a) = 0, that is a is a root of χA, in other words νa(A) ≥ 1.

In particular, this again shows that A has at most n pairwise different eigen-
values, in which case we have νa(A) ≤ 1 for all a ∈ K. Moreover, if K is
algebraically closed and n ≥ 1 then A has an eigenvalue.

c) For any a ∈ K we have νa(A) ≥ γa(A):

Let P := [v1, . . . , vn] ∈ GLn(K) be a K-basis of Kn×1 such that [v1, . . . , vm] is
a K-basis of Ta(A) ≤ Kn×1, where m := γa(A) ∈ {0, . . . , n}. Then P−1AP =[
D ∗
0 A′

]
, where D = diag[a, . . . , a] ∈ Km×m and A′ ∈ K(n−m)×(n−m), yields

χA = det

[
XEm −D ∗

0 XEn−m −A′
]

= det(XEm−D) ·det(XEn−m−A′) =

χD · χA′ = (X − a)m · χA′ ∈ K[X], hence we infer νa(A) ≥ m. ]

In particular, since γa(A) = 0 if and only if νa(A) = 0, we infer that νa(A) = 1
entails γa(A) = 1.
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(2.5) Diagonalisability. Let K be a field and let A ∈ Kn×n, where n ∈ N0.
Then A is diagonalisable if and only if χA ∈ K[X] splits into linear factors and
for all a ∈ K we have νa(A) = γa(A):

If A = diag[a1, . . . , an] ∈ Kn×n, then we have χA =
∏n
i=1(X − ai) ∈ K[X],

where νa(A) = |{i ∈ {1, . . . , n}; ai = a}| = γa(A), for all a ∈ K.

Conversely, if χA =
∏s
i=1(X − ai)νai (A) ∈ K[X], where {a1, . . . , as} ⊆ K are

the eigenvalues of A with multipliticities νai(A) = γai(A) ∈ N, for some s ∈ N0,
then

∑s
i=1 dimK(Tai(A)) =

∑s
i=1 γai(A) =

∑s
i=1 νai(A) = deg(χA) = n, hence⊕s

i=1 Tai(A) being a direct sum, we infer
⊕s

i=1 Tai(A) = Kn×1, implying that
there is a K-basis consisting of eigenvectors of A, that is A is diagonalisable. ]

Note that the condition on the equality of algebraic and geometric multiplicities
is non-trivial only for the eigenvalues of A. Moreover, if A has n pairwise differ-
ent eigenvalues, then χA splits into linear factors, and we have νa(A) = γa(A) =
1 for all eigenvalues a of A, hence we recover the fact that A is diagonalisable.

Example. i) Let A :=

[
. 1
1 .

]
∈ R2×2, that is we reconsider the reflection

given in (0.6). Then we have XEn − A =

[
X −1
−1 X

]
∈ R[X]2×2, thus χA =

X2−1 = (X−1)(X+1) ∈ R[X]. Hence A has the eigenvalues {±1} ⊆ R, where
ν±1(A) = γ±1(A) = 1. We have ker(A − E2) = 〈[1, 1]tr〉R and ker(A + E2) =
〈[−1, 1]tr〉R. Hence picking the vectors indicated we indeed recover the C-basis
consisting of eigenvectors chosen above.

ii) Let A :=

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

]
∈ R2×2, that is we reconsider the rotation

with respect to the angle ω ∈ R given in (0.6); in particular, the rotation

with respect to the angle π
2 is given by

[
. −1
1 .

]
. Then we have XEn − A =[

X − cos(ω) sin(ω)
− sin(ω) X − cos(ω)

]
∈ R[X]2×2 ⊆ C[X]2×2, from which we get χA =

X2 − 2 cos(ω)X + 1 ∈ R[X] ⊆ C[X], having roots a± := cos(ω) ± i · sin(ω) =
exp(±iω) ∈ C. Hence we have a± ∈ R if and only if ω = kπ, where k ∈ Z;
in this case we have A = (−1)k · E2, which already is a diagonal matrix, and
χA = (X − (−1)k)2, thus ν(−1)k(A) = γ(−1)k(A) = 2.

If ω 6∈ πZ then a± ∈ C\R. Thus χA ∈ R[X] is irreducible, and A does not have
any eigenvalues in R, in particular A is not diagonalisable. Note that this is the
algebraic counterpart of the geometric observation that for these rotations there
cannot possibly exist non-zero vectors being mapped to multiples of themselves.

Still assuming ω 6∈ πZ, from χA = (X−a+)(X−a−) ∈ C[X] where a+ 6= a−, we
infer that A has the eigenvalues {a±} ⊆ C, where νa±(A) = γa±(A) = 1, hence A
is diagonalisable over C, being similar to diag[a+, a−] ∈ C2×2. More precisely,

we have ker(A − a+E2) = ker

([
−i sin(ω) − sin(ω)

sin(ω) −i sin(ω)

])
= ker

([
i 1
i 1

])
=
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Table 4: Fibonacci numbers.

n Fn digits

1 1
2 1
4 3 1
8 21 2
16 987 3
32 2178309 7
64 10610209857723 14
128 251728825683549488150424261 27
256 141693817714056513234709965875411919657707794958199867 54

〈[i, 1]tr〉C and ker(A − a−E2) = ker

([
i sin(ω) − sin(ω)
sin(ω) i sin(ω)

])
= ker

([
1 i
1 i

])
=

〈[1, i]tr〉C; thus picking the vectors indicated we get the C-basis given by P :=[
i 1
1 i

]
∈ GL2(C) and P−1AP = diag[a+, a−] ∈ C2×2. Note that the latter

statement also holds for ω ∈ πZ.

iii) Let A :=

[
1 .
1 1

]
∈ C2×2. Then we have XEn − A =

[
X − 1 .
−1 X − 1

]
∈

C[X]2×2, thus χA = (X − 1)2 ∈ C[X]. Hence A has only the eigenvalue 1 ∈ C,
where ν1(A) = 2. But we have ker(A − E2) = 〈[0, 1]tr〉C, thus γ1(A) = 1,
implying that A is not diagonalisable, not even over C. ]

(2.6) Example: Fibonacci numbers. The following problem was posed in
the medieval book ‘Liber abbaci’ [Leonardo da Pisa ‘Fibonacci’, 1202]:
Any female rabbit gives birth to a couple of rabbits monthly, from its second
month of life on. If there is a single couple in the first month, how many are
there in month n ∈ N?

Hence let [Fn ∈ N0;n ∈ N0] be the linear recurrent sequence of degree 2
given by F0 := 0 and F1 := 1, and Fn+2 := Fn + Fn+1 for n ∈ N0. Thus we
obtain the sequence of Fibonacci numbers, see also Table 4:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

To find a closed formula for the Fibonacci numbers, and to determine their

growth behavior, we proceed as follows: Letting A :=

[
. 1
1 1

]
∈ R2×2 we have
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A · [Fn, Fn+1]tr = [Fn+1, Fn+2]tr, thus [Fn, Fn+1]tr = An · [F0, F1]tr, for n ∈ N0.
Hence we aim at determining An using our algebraic techniques:

We have XEn − A =

[
X −1
−1 X − 1

]
∈ R[X]2×2, thus χA = det(XE2 − A) =

X2−X−1 = (X−ρ+)(X−ρ−) ∈ R[X], where ρ± := 1
2 (1±

√
5) ∈ R. Hence A has

the eigenvalues {ρ±} ⊆ R, where νρ±(A) = γρ±(A) = 1. From ker(A−ρ±E2) =

〈[1, ρ±]tr〉R, letting P :=

[
1 1
ρ+ ρ−

]
∈ GL2(R), we get P−1AP = diag[ρ+, ρ−].

Thus we have P−1AnP = (P−1AP )n = (diag[ρ+, ρ−])n = diag[ρn+, ρ
n
−], hence

using P−1 := 1
ρ−−ρ+ ·

[
ρ− −1
−ρ+ 1

]
we get

An = P · diag[ρn+, ρ
n
−] · P−1 =

1

ρ− − ρ+
·
[

ρn+ρ− − ρ+ρ
n
− ρn− − ρn+

ρn+1
+ ρ− − ρ+ρ

n+1
− ρn+1

− − ρn+1
+

]
.

This yields Fn =
ρn−−ρ

n
+

ρ−−ρ+ = 1√
5
(ρn+ − ρn−), which since |ρ+| > 1 > |ρ−| entails

Fn = b ρ
n
+√
5
e and limn→∞

Fn·
√

5
ρn+

= 1, in particular Fn grows exponentially. ]

The number ρ+ := 1
2 (1 +

√
5) ∈ R is called the golden ratio, featuring in the

following classical problem: How has a line segment to be cut into two pieces,
such that length ratio between the full segment and the longer piece coincides
with the length ratio between the longer and the shorter piece? Assume that
the line segment has length 1, and letting 1

2 < x < 1 be the length of the longer
piece, we thus have 1

x = x
1−x , or equivalently x2 + x − 1 = 0, which yields

x = 1
2 (−1 +

√
5) ∈ R as the unique positive solution. Thus the above ratio

indeed equals x
1−x = 1

x = 2
−1+

√
5

= 1
2 (1 +

√
5) = ρ+.

3 Jordan normal form

(3.1) Generalised eigenspaces. a) Let K be a field and A ∈ Kn×n, where
n ∈ N0. For the ring homomorphism σ : K → Kn×n : a 7→ aEn we have aEn ·
A = A · aEn, hence there is an evaluation map σA : K[X] → Kn×n : f =∑
i≥0 aiX

i 7→ fσ(A) =
∑
i≥0 aiA

i, where for the latter we just write f(A).

For f ∈ K[X] let Tf (A) := ker(f(A)) = {v ∈ Kn×1; f(A)v = 0} ≤ Kn×1 be the
generalised eigenspace of A with respect to f ; note that Ta(A) = TX−a(A).

For v ∈ Tf (A) we have f(A)Av = Af(A)v = 0, thus Tf (A) is A-invariant,
that is we have A · Tf (A) ≤ Tf (A). Moreover, if f = gh ∈ K[X], then for
v ∈ Tg(A) we have f(A)v = h(A)g(A)v = 0, thus Tg(A) ≤ Tf (A); in particular
if f ∼ g ∈ K[X] then we have Tf (A) = Tg(A).

For P ∈ GLn(K) and v ∈ Tf (A) we have f(P−1AP ) · P−1v = P−1f(A)P ·
P−1v = P−1f(A)v = 0, thus P−1Tf (A) ≤ Tf (P−1AP ), hence replacing A by
P−1AP yields PTf (P−1AP ) ≤ Tf (A), thus we infer P−1Tf (A) = Tf (P−1AP ).
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In particular, this implies dimK(Tf (A)) = dimK(Tf (P−1AP )), saying that
dimK(Tf (A)) ∈ N0 only depends on the similarity class of A.

b) Similarly, given a K-vector space V and ϕ ∈ EndK(V ), since for the ring
homomorphism σ : K → EndK(V ) : a 7→ a · id we have (a · id) · ϕ = ϕ · (a ·
id), there is an evaluation map σϕ : K[X] → EndK(V ) : f 7→ f(ϕ) := fσ(ϕ).
Hence we analogously get generalised eigenspaces Tf (ϕ) := ker(f(ϕ)) =
{v ∈ V ; f(ϕ)(v) = 0} ≤ V , which are ϕ-invariant, that is ϕ(Tf (ϕ)) ≤ Tf (ϕ),
and fulfill Tg(ϕ) ≤ Tf (ϕ), for all g | f ∈ K[X].

(3.2) Minimum polynomials. Let K be a field and A ∈ Kn×n, where n ∈
N0. Observing that the evaluation map σA : K[X] → Kn×n is K-linear, let
IA := ker(σA) = {f ∈ K[X]; f(A) = 0 ∈ Kn×n} = {f ∈ K[X];Tf (A) =
Kn×1} = {f ∈ K[X]; dimK(Tf (A)) = n} ≤ K[X] be the order ideal of A.

Apart from being a K-subspace, IA ⊆ K[X] has the following (name-giving)
closure property: For f ∈ IA and g ∈ K[X] we have Kn×1 ≤ Tf (A) ≤ Tfg(A) ≤
Kn×1, hence fg ∈ IA as well.

Since for any P ∈ GLn(K) and any f ∈ K[X] we have dimK(Tf (A)) =
dimK(Tf (P−1AP )), we infer that IA = IP−1AP ≤ K[X], in other words IA ≤
K[X] only depends on the similarity class of A.

We have IA 6= {0}:
Since dimK(Kn×n) = n2, let k ∈ {0, . . . , n2} be minimal such that [Ai ∈
Kn×n; i ∈ {0, . . . , k}] is K-linearly dependent. Hence there are c0, . . . , ck−1 ∈ K
such that Ak +

∑k−1
i=0 ciA

i = 0 ∈ Kn×n, thus we have 0 6= µ := Xk +∑k−1
i=0 ciX

i ∈ IA ≤ K[X]. Moreover, since [Ai ∈ Kn×n; i ∈ {0, . . . , k − 1}]
is K-linearly independent, this also shows that IA does not contain any non-
zero polynomial of degree < k, thus µ ∈ IA is of minimal degree. ]

Hence let now 0 6= f ∈ IA be arbitrary of minimal degree. Then for any g ∈ IA
quotient and remainder yields g = qf + r, where q, r ∈ K[X] such that r = 0 or
deg(r) < deg(f). Thus we have r(A) = g(A) − q(A)f(A) = 0 ∈ Kn×n, that is
r ∈ IA as well, and minimality implies r = 0. Hence we infer that f | g for all
g ∈ IA; in particular, f is uniquely determined up to associates.

Thus the unique monic polynomial 0 6= µA := µ ∈ IA of minimal degree is called
the minimum polynomial of A. Hence we have IA = µA ·K[X] := {µA · f ∈
K[X]; f ∈ K[X]}, in other words µA ∈ gcd(IA); recall that deg(µA) ≤ n2.

Since IA ≤ K[X] only depends on the similarity class of A, so does µA ∈ K[X].
We have deg(µA) = 0 if and only if n = 0, in which case we have µA = 1 ∈ K[X].
For example, for n ≥ 1 and a ∈ K we have µaEn = X − a ∈ K[X].

If V is a finitely generated K-vector space and ϕ ∈ EndK(V ), choosing a K-
basis B ⊆ V yields the order ideal Iϕ := IMB

B (ϕ) ≤ K[X] and the minimum

polynomial µϕ := µMB
B (ϕ) ∈ K[X] of ϕ.
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(3.3) Theorem: Cayley-Hamilton. Let K be a field and let A ∈ Kn×n,
where n ∈ N0. Then we have χA ∈ IA, that is we have µA | χA ∈ K[X]; in
particular we have degµA ≤ n.

Proof. For n = 0 we have µA = χA = 1 ∈ K[X], hence we may assume n ≥ 1.
The entries of the adjoint matrix adj(XEn −A) ∈ K[X]n×n consist of (n− 1)-
minors of the characteristic matrix XEn − A ∈ K[X]n×n, hence are 0 or have
degree at most n−1. Thus, essentially viewing a matrix with polynomial entries
as a polynomial with matrix coefficients, there are A0, . . . , An−1 ∈ Kn×n such
that adj(XEn −A) =

∑n−1
i=0 X

iAi ∈ K[X]n×n.

Letting χA = det(XEn − A) =
∑n
i=0 biX

i ∈ K[X] we get
∑n
i=0 biX

iEn =

det(XEn −A) ·En = (XEn −A) · adj(XEn −A) = (XEn −A) ·
∑n−1
i=0 X

iAi =

XnAn−1 − AA0 +
∑n−1
i=1 X

i(Ai−1 − AAi) ∈ K[X]n×n. Thus, again viewing
a matrix with polynomial entries as a polynomial with matrix coefficients, a
comparison of coefficients yields bnEn = An−1 and b0En = −AA0, as well as
biEn = Ai−1 −AAi for i ∈ {1, . . . , n− 1}.
Hence we obtain χA(A) =

∑n
i=0 biA

i =
∑n
i=0A

i(biEn) = AnAn−1 − AA0 +∑n−1
i=1 (AiAi−1 −Ai+1Ai) = AnAn−1 −AA0 + (AA0 −AnAn−1) = 0 ∈ Kn×n. ]

(3.4) Principal invariant subspaces. a) Let K be a field and let A ∈ Kn×n,
where n ∈ N0. Let 0 6= f = gh ∈ K[X], where g and h are coprime, such that
µA | f , that is f(A) = 0. Then we have V := Kn×1 = Tg(A) ⊕ Th(A), where
moreover Tg(A) = im(h(A)) and Th(A) = im(g(A)):

Since 1 ∈ gcd(g, h) ⊆ K[X], there are g′, h′ ∈ K[X] such that 1 = gg′ + hh′ ∈
K[X]. For v = g(A)w ∈ im(g(A)), where w ∈ V , we get h(A)v = h(A)g(A)w =
f(A)w = 0, implying im(g(A)) ≤ Th(A), similarly im(h(A)) ≤ Tg(A). For
v ∈ Tg(A) we have v = Env = Env − g′(A)g(A)v = h(A)h′(A)v ∈ im(h(A)),
implying Tg(A) ≤ im(h(A)), and similarly Th(A) ≤ im(g(A)). Hence we have
Tg(A) = im(h(A)) and Th(A) = im(g(A)).

For v ∈ V we have v = Env = g(A)g′(A)v + h(A)h′(A)v, hence we have V =
im(g(A)) + im(h(A)) = Tg(A) + Th(A). Finally, let v ∈ Tg(A) ∩ Th(A), then
v = Env = g′(A)g(A)v+ h′(A)h(A)v = 0, thus we have Tg(A)∩Th(A) = {0}. ]
b) Since Tg(A) ≤ V and Th(A) ≤ V are A-invariant, choosing K-bases B ⊆
Tg(A) and C ⊆ Th(A) we get matrices Ag := MB

B (ϕA|Tg(A)) ∈ Kl×l and

Ah := MC
C (ϕA|Th(A)) ∈ Km×m, where l := dimK(Tg(A)) ∈ N0 and m :=

dimK(Th(A)) ∈ N0. Hence P := [B,C] ∈ GLn(K) is a K-basis of V , and A is
similar to the block diagonal matrix P−1AP = Ag ⊕Ah ∈ Kn×n.

We have µAg | g ∈ K[X] and µAh | h ∈ K[X], as well as µA ∈ lcm(µAg , µAh) ⊆
K[X], hence since µAg and µAh are coprime we infer that µA = µAgµAh . In
particular, since µAg | gcd(g, µA), we infer that if g and µA are coprime then
we have µAg = 1, in other words Tg(A) = {0}. Moreover, if µA ∼ f then
we have µAg ∼ g and µAh ∼ h, entailing deg(g) = deg(µAg ) ≤ deg(χAg ) =
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dimK(Tg(A)), and similarly deg(h) ≤ dimK(Th(A)); in particular, if g is non-
constant then we have Tg(A) 6= {0}.
Hence, if µA =

∏
p∈P p

νp ∈ K[X], where νp ∈ N0 and P ⊆ K[X] is the
set of monic irreducible polynomials, by induction we obtain the direct sum
decomposition V =

⊕
p∈P Tpνp (A) into principal A-invariant subspaces

Tpνp (A) ≤ V , where the K-endomorphism of Tpνp (A) induced by A has mini-
mum polynomial pνp ∈ K[X]; in particular Tpνp (A) = {0} if and only if νp = 0.

Example. Let A :=

 . . 1
1 . .
. 1 .

 ∈ Q3×3. Thus χA = det(XE3 − A) =

det

X . −1
−1 X .
. −1 X

 = X3 − 1 = (X − 1)(X2 +X + 1) ∈ Q[X], where both

factors given are irreducible, and hence are coprime. We have A2 =

 . 1 .
. . 1
1 . .


and A3 = E3, hence {E3, A,A

2} is Q-linearly independent, but {E3, A,A
2, A3}

is Q-linearly dependent, where A3 = E3 shows that µA = X3− 1 = χA ∈ Q[X].

We have A−E3 =

−1 . 1
1 −1 .
. 1 −1

 and A2 +A+ 1 =

1 1 1
1 1 1
1 1 1

, which yields

TX−1(A) = ker(A − E3) = 〈[1, 1, 1]tr〉Q = im(A2 + A + 1) and TX2+X+1(A) =
ker(A2 +A+E3) = 〈[1,−1, 0]tr, [0, 1,−1]tr〉Q = im(A−E3). Hence letting P :=1 1 0

1 −1 1
1 0 −1

 ∈ GL3(Q) we get P−1AP =

 1 . .
. . −1
. 1 −1

, where µAX−1
=

X − 1 ∈ Q[X] and µAX2+X+1
= X2 +X + 1 ∈ Q[X]. ]

(3.5) Diagonalisability again. Let K be a field and let A ∈ Kn×n, where
n ∈ N0. Then A is diagonalisable if and only if µA splits into pairwise non-
associate linear factors; in this case the principal A-invariant subspaces coincide
with the eigenspaces of A:

If A is diagonal, then we have χA =
∏s
i=1(X − ai)

νai (A) ∈ K[X], for some
s ∈ N0, where {a1, . . . , as} ⊆ K are the eigenvalues of A, each occurring with
multiplicity νai(A) = γai(A) ∈ N. Then letting f :=

∏s
i=1(X − ai), we have

f(A) =
∏s
i=1(A − aiEn) = 0, hence µA | f . Moreover, the maximal proper

divisors of f being fj :=
∏
i6=j(X − ai) ∈ K[X], where j ∈ {1, . . . , s}, we from

rk(fj(A)) = νaj (A) ≥ 1 infer that µA 6 | fj . Hence we have µA =
∏s
i=1(X−ai) ∈

K[X].

Conversely, let µA =
∏s
i=1(X−ai) ∈ K[X], where s ∈ N0 and {a1, . . . , as} ⊆ K

are pairwise different. Then Kn×1 =
⊕s

i=1 TX−ai(A) is the direct sum of the
eigenspaces of A with respect to the ai, thus A is diagonalisable. ]



21

(3.6) Jordan normal form. a) Let K be a field, and let A ∈ Kn×n, where
n ∈ N; there is no point in considering the case n = 0. Let p := X − a ∈ K[X],
and let µA = pl for some l ∈ {1, . . . , n}. For i ∈ N0 we let Vi := Tpi(A) =
ker((A − aEn)i) ≤ Kn×1 =: V . Thus we have {0} = V0 ≤ V1 ≤ · · · ≤ Vl−1 <
Vl = Vl+1 = · · · = V . Letting ni := dimK(Vi)− dimK(Vi−1) ∈ N0 for i ∈ N, we

have nl > 0, and ni = 0 for i > l, where
∑l
i=1 ni = n.

Then there is a K-basis [vl1, . . . , vlnl ; vl−1,1, . . . , vl−1,nl−1
; . . . ; v11, . . . , v1n1 ] ⊆

V , such that [vi1, . . . , vini ; . . . ; v11, . . . , v1n1
] ⊆ Vi is a K-basis, for all i ∈

{1, . . . , l}, and vi−1,j = p(A)vij = (A−aEn)vij = Avij−avij for all i ∈ {2, . . . , l}
and j ∈ {1, . . . , ni}; thus in particular we have n1 ≥ n2 ≥ · · · ≥ nl > 0:

We proceed by induction on l ∈ N; the case l = 1 being trivial, let l ≥ 2:
Let [v1, . . . , vk; v′k+1, . . . , v

′
k+k′ ; v

′′
k+k′+1, . . . , v

′′
n] ⊆ V be a K-basis, such that

[v′k+1, . . . , v
′
k+k′ ; v

′′
k+k′+1, . . . , v

′′
n] ⊆ Vl−1 and [v′′k+k′+1, . . . , v

′′
n] ⊆ Vl−2 are K-

bases as well, where k := nl and k′ := nl−1. Letting wj := p(A)vj for j ∈
{1, . . . , k}, we have pl−1(A)wj = pl(A)vj = 0, that is wj ∈ Vl−1.

Then [w1, . . . , wk; v′′k+k′+1, . . . , v
′′
n] is K-linearly independent: Let

∑k
j=1 ajwj +∑n−k−k′

j=1 bjv
′′
k+k′+j = 0, where a1, . . . , ak, b1, . . . , bn−k−k′ ∈ K, then we get

p(A)l−1(
∑k
j=1 ajvj) = p(A)l−2(

∑k
j=1 ajwj) = −p(A)l−2(

∑n−k−k′
j=1 bjv

′′
k+k′+j) =

0, thus
∑k
j=1 ajvj ∈ Vl−1. Since [v1, . . . , vk] extends a K-basis of Vl−1 to one of

V , we infer aj = 0 for j ∈ {1, . . . , k}, and thus by the K-linear independence of
[v′′k+k′+1, . . . , v

′′
n] we get bj = 0 for j ∈ {1, . . . , n− k− k′} as well. Thus we may

assume that v′k+j = wj , for j ∈ {1, . . . , k}, and we are done by induction. ]

Reordering the above K-basis we obtain the Jordan K-basis

P = [Pl1, . . . , Plnl ;Pl−1,nl+1, . . . , Pl−1,nl−1
; . . . ;P1,n2+1, . . . , P1,n1

] ∈ GLn(K),

where Pij := [vij , vi−1,j , . . . , v1j ] ∈ Kn×i, for i ∈ {1, . . . , l} and j ∈ {ni+1 +
1, . . . , ni}. In particular, there are precisely mi := ni − ni+1 ∈ N0 subsets Pij
of cardinality i ∈ N; note that mi = 0 for i > l.

Then Avij = p(A)vij + avij = vi−1,j + avij implies that the column space
im(Pij) ≤ V is A-invariant. Hence A is similar to the block diagonal matrix

P−1AP =
⊕l

i=1

⊕mi
j=1 Ji(a) =

⊕n
i=1

⊕mi
j=1 Ji(a), with Jordan matrices

Ji(a) :=



a . . . . . . .
1 a . . . . . .
. 1 a . . . . .
...

. . .
. . .

. . .
. . .

...
. . . . . 1 a .
. . . . . . 1 a


∈ Ki×i.

b) The multiplicities m1, . . . ,mn ∈ N0 are uniquely determined by A:

For a Jordan matrix J := Jl(a) ∈ Kl×l we have χJ = det(XEl−J) = pl ∈ K[X],
that is νa(J) = l. Moreover, we have rk(pi(J)) = rk((J − aEl)i) = l− i, that is
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dimK(Tpi(J)) = i for i ∈ {0, . . . , l}; hence dimK(Tpi(J)) = l is constant for i ≥
l. Thus we have µJ = pl = χJ ∈ K[X], and dimK(Tpi(J))−dimK(Tpi−1(J)) = 1
for i ∈ {1, . . . , l}; in particular γa(J) = dimK(Ta(J)) = dimK(Tp(J)) = 1.

Hence for any matrix A =
⊕n

i=1

⊕mi
j=1 Ji(a) ∈ Kn×n, where m1, . . . ,mn ∈ N0

such that
∑n
i=1 imi = n, we have ni := dimK(Tpi(A)) − dimK(Tpi−1(A)) =∑n

j=imj , for all i ∈ {1, . . . , n}, implying that mi = ni−ni+1. Hence the mi are
determined by A alone, independent of a particular choice of a Jordan form. ]

c) In practice Jordan normal forms can be computed combinatorially, with-
out specifying a Jordan K-basis, if the K-dimensions of the K-subspaces Vi =
Tpi(A) ≤ V are known, for all i ∈ N0. This is best explained by an example:

Example. Let n = 13 and [dimK(Vi) ∈ N0; i ∈ N0] = [0, 5, 8, 10, 12, 13, 13, . . .],
hence we have l = 5 and the numbers ni = dimK(Vi) − dimK(Vi−1) ∈ N0, for
i ∈ N, are given as [ni ∈ N0; i ∈ N] = [5, 3, 2, 2, 1, 0, . . .]. We depict the ni ∈ N,
for i ∈ {1, . . . , l}, as the rows of the following diagram, from bottom to top:

v51

v41 v42

v31 v32

v21 v22 v23

v11 v12 v13 v14 v15

Then the multiplicity mi = ni − ni+1 ∈ N0 can be read off from the diagram,
as the number of columns of height i ∈ N; of course it suffices to consider i ∈
{1, . . . , l}. Here we obtain the column heights [5, 4, 2, 1, 1, 0, . . .], and therefrom
[mi ∈ N0; i ∈ N] = [2, 1, 0, 1, 1, 0, . . .], thus the Jordan normal form of the matrix
A in question is J5(a)⊕ J4(a)⊕ J2(a)⊕ J1(a)⊕ J1(a) ∈ K13×13.

Moreover, the vectors vij constituting the Jordan K-basis P ⊆ V can be filled
into the diagram as indicated above. Then the subset Pij ⊆ P coincides with the
vectors in column i, in other words the K-subspaces generated by tbe vectors
in either column are A-invariant. The construction of P can be described as
follows, again by way of the above example; the vectors we are free to choose
are depicted in bold face in the above diagram:

We choose v51 ∈ V5, being placed on top of column 1, extending any K-basis
of V4 to a K-basis of V5; then successively working down column 1 we get
v5−i,1 = pi(A)(v51) ∈ V5−i \ V4−i for i ∈ {1, . . . , 4}. Then we chosse v42 ∈ V4,
being placed on top of column 2, so that {v41, v42} extends any K-basis of V3

to a K-basis of V4; then successively working down column 2 we get v4−i,2 =
pi(A)(v42) ∈ V4−i \ V3−i for i ∈ {1, . . . , 3}. Next we observe that {v31, v32}
already extends any K-basis of V2 to a K-basis of V3, so we are done for V3.
Proceeding further, we chosse v23 ∈ V2, being placed on top of column 3, so
that {v21, v22, v23} extends any K-basis of V1 to a K-basis of V2; then working
down column 3 we get v13 = p(A)(v23). Finally, we chosse v14, v15 ∈ V1, being
placed in columns 4 and 5, extending {v11, v12, v13} to a K-basis of V2; recall
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that we have V0 = {0} which has an empty K-basis. ]

Example. More explicitly, let A :=

1 −1 1
3 5 −3
2 2 0

 ∈ Q3×3, thus χA = X3 −

6X2 +12X−8 = (X−2)3 ∈ Q[X]. We have A−2E3 =

−1 −1 1
3 3 −3
2 2 −2

, hence

we get V1 := ker(A− 2E3) = 〈[1,−1, 0]tr, [0, 1, 1]tr〉Q, thus n1 = 2. This already
implies that V2 := ker((A−2E3)2) = V = Q3×1, hence n2 = 1 and l = 2, that is
µA = (X−2)2 ∈ Q[X]. Thus we havem2 = m1 = 2, and the Jordan normal form

of A is J2(2)⊕ J1(2) =

 2 . .
1 2 .
. . 2

. Letting v21 := [1, 0, 0]tr ∈ V \ V1, we get

v11 := Av21 − 2v21 = [−1, 3, 2]tr ∈ V1, and extending by v12 := [1,−1, 0]tr ∈ V1

to the Q-basis {v11, v12} ⊆ V1, we get the Q-basis P := [v21, v11; v12] ∈ GL3(Q)
such that P−1AP = J2(2)⊕ J1(2). ]

(3.7) Triangularisability. a) Let K be a field, and let A ∈ Kn×n, where
n ∈ N0. Then A is triangularisable if and only if χA ∈ K[X] splits into linear
factors, or equivalently if and only if µA ∈ K[X] splits into linear factors; in
particular, if K is algebraically closed then A is triangularisable:

If A is triangular, then χA =
∏s
i=1(X−ai)νai (A) ∈ K[X], for some s ∈ N0, where

{a1, . . . , as} ⊆ K are the diagonal entries of A, each occurring with multiplicity
νai(A) ∈ N. Hence χA ∈ K[X] splits into linear factors. Since µA | χA, this
implies that µA ∈ K[X] splits into linear factors as well.

Hence let now µA ∈ K[X] split into linear factors, that is we have µA =∏s
i=1(X − ai)li ∈ K[X], for some s ∈ N0, where {a1, . . . , as} ⊆ K are pair-

wise different and li ∈ N. Letting fi = (X − ai)li ∈ K[X], we have Kn×1 =⊕s
i=1 Tfi(A); let di := dimK(Tfi(A)) ∈ N. Hence choosing a K-basis of

Kn×1 respecting this direct sum decomposition, we infer that A is similar to
a block diagonal matrix

⊕s
i=1Afi , where for the matrix Afi ∈ Kdi×di we

have µAfi = fi ∈ K[X], for i ∈ {1, . . . , s}. Thus choosing Jordan K-bases
Pi ⊆ Tfi(A), for all i ∈ {1, . . . , s}, and letting P := [P1, . . . , Ps] ∈ GLn(K), then
A is similar to the block diagonal matrix P−1AP =

⊕s
i=1 P

−1
i AfiPi ∈ Kn×n,

where each P−1
i AfiPi ∈ Kdi×di again is a block diagonal matrix, consisting of

Jordan matrices with respect to the eigenvalue ai. ]

b) Since µA | χA ∈ K[X], the irreducible divisors of µA are amongst those
of χA. Indeed, the linear factors of µA and of χA coincide: (Actually, all the
irreducible divisors of µA and of χA coincide, not only the linear ones, but we
are not able to prove this here.)

Assume to the contrary that X − a | χA, but X − a - µA; then we have
χA(a) = 0, saying that a ∈ K is an eigenvalue of A, that is TX−a(A) 6= {0}; but
since X − a and µA are coprime we have TX−a(A) = {0}, a contradiction. ]
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If µA =
∏s
i=1(X − ai)li ∈ K[X] splits into linear factors, then by the above we

have χA =
∏s
i=1(X − ai)di , that is the algebraic multiplicity of the eigenvalue

ai is given as νai(A) = di = dimK(T(X−ai)li (A)), for i ∈ {1, . . . , s}.
Example. We proceed to show that

A :=


1 −2 −1 2
0 −1 −1 2
2 −2 −1 4
1 −1 0 1

 ∼ J2(1)⊕ J2(−1) =


1 . . .
1 1 . .
. . −1 .
. . 1 −1

 ∈ Q4×4 :

We have χA = X4−2X2 +1 = (X−1)2(X+1)2 ∈ Q[X]. This entails the direct
sum decomposition V := Q4×1 = T(X−1)2(A)⊕T(X+1)2(A), where the principal
subspaces have dimension dimQ(T(X−1)2(A)) = 2 = dimQ(T(X+1)2(A)). More-
over, since it turns out that dimQ(TX−1(A)) = 1 = dimQ(TX+1(A)), we infer
that the Jordan normal form of A indeed is J2(1)⊕ J2(−1).

To obtain P ∈ GL4(Q) such that P−1AP = J2(1) ⊕ J2(−1) we proceed as
follows: We have

A− E4 =


0 −2 −1 2
0 −2 −1 2
2 −2 −2 4
1 −1 0 0

 and (A− E4)2 =


0 4 4 −8
0 4 4 −8
0 0 4 −8
0 0 0 0

 ,

A+ E4 =


2 −2 −1 2
0 0 −1 2
2 −2 0 4
1 −1 0 2

 and (A− E4)2 =


4 −4 0 0
0 0 0 0
8 −8 0 8
4 −4 0 4

 ,
from which we get ker(A − E4) = 〈[0, 0, 2, 1]tr〉Q as well as ker((A − E4)2) =
〈[0, 0, 2, 1]tr, [1, 0, 0, 0]tr〉Q, and similarly ker(A+E4) = 〈[1, 1, 0, 0]tr〉Q as well as
ker((A + E4)2) = 〈[1, 1, 0, 0]tr, [0, 0, 1, 0]tr〉Q. Hence letting v1,2 := [1, 0, 0, 0]tr

and v1,1 := (A − E4)v1,2 = [0, 0, 2, 1]tr, and v−1,2 := [0, 0, 1, 0]tr and v−1,1 :=
(A+ E4)v−1,2 = [−1,−1, 0, 0]tr yields P := [v1,2, v1,1; v−1,2, v−1,1] ∈ GL4(Q). ]

(3.8) Example: Damped harmonic oscillator. Let again C∞(R) := {R→
R : t 7→ x(t) smooth}, where now we denote variables and maps by the letters
‘t’ and ‘x’, respectively, being reminiscent of their forthcoming physical inter-
pretation as time and place, respectively. We again use the differential operator
D := ∂

∂t ∈ EndR(C∞(R)), where we abbreviate ẋ := D(x) = ∂
∂t (x).

We consider a (single) body of (inert) mass m > 0, being fixed to a spring.
Pulling the body away from the point of equilibrium, and releasing it, it will
start to oscillate. Letting x = x(t) ∈ R denote the place of the body at
time t ∈ R, its velocity and acceleration are given as ẋ = ẋ(t) ∈ R and
ẍ = ẍ(t) ∈ R, respectively. By Newton’s Law of Motion the acceleration of
the body is proportional to the force exerted to it, the proportionality factor
just being its mass m. In turn, the pulling-back force exerted to the body by
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the spring is proportional to the distance of the place of the body to the point of
equilibrium, the proportionality factor being the square of the spring constant
k > 0. Assuming that the point of equilibrium is x = 0, we thus obtain the
differential equation mẍ = −k2x of the (free) harmonic oscillator.

We additionally allow for friction, which exerts a decelerating force to the body.
The latter is proportional to its velocity, the proportionality factor being the
friction constant r ≥ 0; for r = 0 we recover the free harmonic oscillator.
Hence the differential equation of the damped harmonic oscillator, describing
the motion of the body in this physical system, is given as mẍ = −rẋ− k2x,
a linear differential equation of degree 2 with constant coefficients.

Hence we are looking for the R-subspace L = Lρ,ω ≤ C∞(R) of solutions of
the R-endomorphism D2 + 2ρD + ω2 of C∞(R), where ρ := r

2m ≥ 0 and ω :=
k√
m
> 0. A consideration of Taylor series shows that dimR(L) = 2. More

precisely, the motion of the body is uniquely described by imposing arbitrary
initial values x(0) ∈ R and ẋ(0) ∈ R for the place and the velocity of the
body at time t = 0. In particular, pulling the body away from the point of
equilibrium and releasing it, amounts to letting x(0) := 1, say, and ẋ(0) := 0.

Since D2 = −2ρD − ω2 on L, we conclude that L is D-invariant, and that the
action of D on L has minimum polynomial µD | p = pρ,ω := X2 + 2ρX + ω2 =
(X + ρ)2 − (ρ2 − ω2) ∈ R[X]. We distinguish three cases with respect to the
discriminant ρ2 − ω2 ∈ R of p being positive, zero or negative, respectively:

i) Let ρ > ω > 0; physically this is the ‘large friction’ case. Then we have

p = (X − a)(X − b) ∈ R[X], where {a, b} = {−ρ ±
√
ρ2 − ω2}, in particular

a 6= b and both a, b < 0. We have µD ∈ {X − a,X − b, p}, and depending on
the case for µD we have χD ∈ {(X − a)2, (X − b)2, p}. Anyway, µD splits into
pairwise non-associate linear factors, that is D acts diagonalisably on L.

The map εc : R→ R : t 7→ exp(ct) fulfills ε̇c = cεc, that is εc is an eigenvector of
D on C∞(R), with respect to the eigenvalue c ∈ R, see (2.2). Moreover, a con-
sideration of Taylor series shows that the corresponding eigenspace of D actually
equals 〈εc〉R. Hence we conclude that TX−a(D) = 〈εa〉R and TX−b(D) = 〈εb〉R,
thus we have the principal subspace decomposition L = TX−a(D)⊕TX−b(D) =
〈εa〉R ⊕ 〈εb〉R; in particular, we have µD = p = χD.

Hence any solution is of the form x(t) = α exp(at) + β exp(bt), for all t ∈ R,
where α, β ∈ R, entailing ẋ(t) = αa exp(at) + βb exp(bt). Since both a, b < 0
we have limt→∞ x(t) = 0, saying that the body ultimately tends to the point of
equilibrium. Since for any non-zero solution we may assume that β 6= 0, we have
ẋ(t) = 0 if and only if exp((b − a)t) = −αβ ·

a
b ; hence this happens for at most

one t ∈ R, saying that the body changes direction at most once. In particular,
letting x(0) := 1 and ẋ(0) := 0, we get α+β = x(0) = 1 and αa+βb = ẋ(0) = 0,
yielding α = b

b−a and β = a
a−b , that is x(t) = 1

b−a · (b exp(at)− a exp(bt)).

ii) Let ρ = ω > 0. Then we have p = (X+ρ)2 ∈ R[X]. We have µD ∈ {X+ρ, p},
thus µD splits into linear factors anyway, that is D acts triangularisably on
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L, and we have χD = p. Moreover, we have TX+ρ(D) = 〈ε−ρ〉R, implying
µD = p = χD, that is L = Tp(D) consists of a single Jordan block. Letting

ε̂c : R→ R : t 7→ t exp(ct), where c ∈ R, we have ˙̂εc(t) = exp(ct) + ct exp(ct), for

all t ∈ R, hence ˙̂εc = εc + cε̂c. Thus we have (D + ρ)(ε̂−ρ) = ε−ρ, implying that
{ε̂−ρ, ε−ρ} indeed is a Jordan R-basis of L.

Hence any solution is of the form x(t) = (α+ βt) exp(−ρt), for all t ∈ R, where
α, β ∈ R, entailing ẋ(t) = (αa + β + βat) exp(−ρt). Since ρ > 0 we have
limt→∞ x(t) = 0, saying that the body ultimately tends to the point of equilib-
rium. If x is a non-zero solution, then if β = 0 we have ẋ(t) = −αρ exp(−ρt) 6= 0
for all t ∈ R, while if β 6= 0 we have ẋ(t) = 0 if and only if t = −αβ + 1

ρ ; hence
this happens for at most one t ∈ R, saying that the body changes direction at
most once. In particular, letting x(0) := 1 and ẋ(0) := 0, we get α = x(0) = 1
and −αρ+ β = ẋ(0) = 0, yielding β = ρ, that is x(t) = (1 + ρt) exp(−ρt).
iii) Let ω > ρ ≥ 0; physically this is the ‘small friction’ case. Then p ∈
R[X] is irreducible. Hence we have µD = p = χD; in particular, does not act
triangularisably on L. To describe L we use complexification:

We have p = (X − a)(X − a) ∈ C[X], where {a, a} = {−ρ ± iϕ} ⊆ C \ R and

ϕ :=
√
ω2 − ρ2 > 0, and where : C → C : x + iy 7→ x − iy, for x, y ∈ R,

denotes complex conjugation. We consider the C-vector space C∞(R,C) :=
{R → C : t 7→ z(t) = x(t) + iy(t); x, y ∈ C∞(R)}, and we are looking for the
C-subspace LC ≤ C∞(R,C) of solutions of the C-endomorphism D2 +2ρD+ω2

of C∞(R,C). Again a consideration of Taylor series shows that dimC(LC) = 2.

Similarly, for any c ∈ C the corresponding eigenspace of D on C∞(R,C) is
seen to be equal to 〈εc〉C, where εc : C → C : t 7→ exp(ct). This yields the
principal subspace decomposition LC = TX−a(D)⊕TX−a(D) = 〈εa〉C⊕〈εa〉C; in
particular, D acts diagonalisably on LC. Letting a = −ρ+ iϕ, we have εa(t) =
exp(at) = exp(−ρt) ·

(
cos(ϕt) + i sin(ϕt)

)
and εa(t) = exp(−ρt) ·

(
cos(ϕt) −

i sin(ϕt)
)

= εa(t), for all t ∈ R. Hence with respect to the C-basis {εa, εa} ⊆ LC

the map D is represented by diag[−ρ+ i ·
√
ω2 − ρ2,−ρ− i ·

√
ω2 − ρ2] ∈ C2×2.

We are looking for solutions in L ⊆ LC: Letting τa := 1
2 (εa + εa) and σa :=

1
2i (εa − εa) we have τa(t) = exp(−ρt) cos(ϕt) and σa(t) = exp(−ρt) sin(ϕt),
for all t ∈ R, hence τa, σa ∈ L ⊆ LC. Since εa, εa ∈ 〈τa, σa〉C we conclude
that 〈τa, σa〉C = LC, hence {τa, σa} is C-linearly independent, in particular
is R-linearly independent, and thus is an R-basis of L; alternatively, evaluat-
ing at t = 0 and t = π

2 shows directly that {τa, σa} is R-linearly indepen-
dent. We have τ̇a(t) = −ρ exp(−ρt) cos(ϕt) − ϕ exp(−ρt) sin(ϕt) and σ̇a(t) =
−ρ exp(−ρt) sin(ϕt) +ϕ exp(−ρt) cos(ϕt), for all t ∈ R, that is τ̇a = −ρτa−ϕσa
and σ̇a = ϕτa− ρσa, hence with respect to the R-basis {τa, σa} ⊆ L the map D

is represented by

[
−ρ ϕ
−ϕ −ρ

]
=

[
−ρ

√
ω2 − ρ2

−
√
ω2 − ρ2 −ρ

]
∈ R2×2.

Hence any solution is of the form x(t) = exp(−ρt)·
(
α cos(ϕt)+β sin(ϕt)

)
, for all

t ∈ R, where α, β ∈ R, entailing ẋ(t) = exp(−ρt) ·
(
(−αρ+βϕ) cos(ϕt)+(−αϕ−
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βρ) sin(ϕt)
)
. Thus, if x is a non-zero solution, then we have ẋ(t) = 0 whenever

t = 2kπ
ϕ ∈ R for some k ∈ Z, saying that the body changes direction infinitely

often. If ρ > 0 we have limt→∞ x(t) = 0, saying that the body ultimately tends
to the point of equilibrium, in other words the body oscillates with decreasing
amplitude; in contrast, if ρ = 0 the limit limt→∞ x(t) does not exist, and the
body oscillates with constant amplitude.

In particular, letting x(0) := 1 and ẋ(0) := 0, we get α = x(0) = 1 and −αρ+
βϕ = ẋ(0) = 0, yielding β = ρ

ϕ , that is x(t) = exp(−ρt) ·
(

cos(ϕt) + ρ
ϕ sin(ϕt)

)
,

where ϕ =
√
ω2 − ρ2; for ρ = 0 we get ϕ = ω and x(t) = cos(ωt), saying that

ω
2π > 0 is the frequency of the free harmonic oscillator.

4 Bilinear forms

(4.1) Adjoint matrices. a) Let K be a field, and let α : K → K : aα be a field
automorphism, that is a bijective ring homomorphism, such that α2 = idK .
The most important examples are K = R together with idR : R→ R, and K = C
together with complex conjugation : C→ C : x+ iy 7→ x− iy, for x, y ∈ R.

Given K-vector spaces V and W , then a map ϕ : V →W is called α-semilinear
if ϕ(v + v′) = ϕ(v) + ϕ(v′) and ϕ(av) = aα · ϕ(v), for all v, v′ ∈ V and a ∈ K.
Note that if α = idK then the α-semilinear maps are just the K-linear maps.

For m,n ∈ N0 we have an α-semilinear map Km×n → Km×n : A = [aij ]ij 7→
[aαij ]ij =: Aα, called the (α-)conjugate matrix of A. We have (Aα)α = A,

and for B ∈ Kn×l, where l ∈ N0, we have (AB)α = AαBα ∈ Km×l. For
A ∈ Kn×n we have det(Aα) = det(A)α ∈ K, and adj(Aα) = adj(A)α ∈ Kn×n

if n ≥ 1, hence we have rk(Aα) = rk(A), in particular for A ∈ GLn(K) we have
Aα ∈ GLn(K) as well, where (Aα)−1 = (A−1)α =: A−α.

We have an α-semilinear map Km×n → Kn×m : A 7→ (Aα)tr = (Atr)α =:
Aαtr = A∗, called the (α-)adjoint matrix of A. We have (A∗)∗ = A, and
for B ∈ Kn×l we have (AB)∗ = B∗A∗ ∈ Km×l. For A ∈ Kn×n we have
det(A∗) = det(A)α ∈ K, and adj(A∗) = adj(A)∗ ∈ Kn×n if n ≥ 1, hence we
have rk(A∗) = rk(A), in particular for A ∈ GLn(K) we have A∗ ∈ GLn(K) as
well, where (A∗)−1 = (A−1)∗ =: A−∗ = A−αtr.

b) Then A ∈ Kn×n is called normal if AA∗ = A∗A. In particular, A is called
hermitian or self-adjoint if A∗ = A, it is called skew-hermitian if A∗ = −A,
and A ∈ GLn(K) is called unitary if A∗ = A−1; note that each of the latter
conditions implies normality. Moreover, if α = idK then the latter conditions
become Atr = A and Atr = −A and Atr = A−1, respectively, and A is called
symmetric and symplectic and orthogonal, respectively.

Example. We consider the matrices in (2.5) again: For the reflection A :=[
. 1
1 .

]
∈ GL2(R) we have A2 = E2, hence we get A−1 = A = Atr, that is A is

both symmetric and orthogonal.
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For the rotation Aω :=

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

]
∈ GL2(R), with respect to the angle

ω ∈ R, we have A−1
ω = A−ω = Atr

ω =

[
cos(ω) sin(ω)
− sin(ω) cos(ω)

]
, that is Aω is an

orthogonal matrix. Moreover, for Bω := diag[exp(iω), exp(−iω)] ∈ GL2(C),
where ω ∈ R, we have B−1

ω = B−ω = Bω = B∗ω = diag[exp(−iω), exp(iω)], that
is Bω is an orthogonal matrix; recall that Aω, Bω ∈ C2×2 are similar. ]

(4.2) Sesquilinear forms. a) Let K be a field, and let α : K → K be a
field automorphism such that α2 = idK . Given a K-vector space V , a map
Φ = 〈·, ·〉 : V ×V → K : [v, w] 7→ 〈v, w〉 being K-linear in the second component,
that is 〈v, w + w′〉 = 〈v, w〉+ 〈v, w′〉 and 〈v, aw〉 = a〈v, w〉, and α-semilinear in
the first component, that is 〈v+v′, w〉 = 〈v, w〉+〈v′, w〉 and 〈av, w〉 = aα ·〈v, w〉,
for all v, v′, w, w′ ∈ V and a ∈ K, is called an α-sesquilinear form on V . In
particular, if α = idK then Φ is K-linear in the first component as well, and
thus is also called a K-bilinear form.

An α-sesquilinear form Φ is called hermitian if 〈w, v〉 = 〈v, w〉α holds, and
called skew-hermitian if 〈w, v〉 = −〈v, w〉α holds, for all v, w ∈ V . If α = idK
the latter conditions become 〈w, v〉 = 〈v, w〉 and 〈w, v〉 = −〈v, w〉, respectively,
and Φ is called symmetric and symplectic, respectively.

b) Given w ∈ V , a vector v ∈ V is called right and left orthogonal to w if
〈w, v〉 = 0 and 〈v, w〉 = 0, respectively; we write w ⊥ v and v ⊥ w, respectively.
If Φ is (skew-)hermitian then we have w ⊥ v if and only if v ⊥ w, for all v, w ∈ V .
Moreover, a vector v ∈ V is called normed if 〈v, v〉 = 1.

Given S ⊆ V , then S⊥ := {v ∈ V ; 〈w, v〉 = 0 for all w ∈ S} ≤ V and
⊥S := {v ∈ V ; 〈v, w〉 = 0 for all w ∈ S} ≤ V are called the right and left
orthogonal spaces of S, respectively; note that due to K-linearity and α-
semilinearity, respectively, the latter indeed are K-subspaces of V .

Hence ∅⊥ = ⊥∅ = V , and due to α-semilinearity and K-linearity, respectively,
we have S⊥ = 〈S〉⊥K and ⊥S = ⊥〈S〉K . If Φ is (skew-)hermitian then we have
S⊥ = ⊥S. In particular, V ⊥ and ⊥V are called the right and left radical of
Φ, respectively, and Φ is called non-degenerate if V ⊥ = {0} = ⊥V .

c) If 0 6= v ∈ V such that v ⊥ v, that is 〈v, v〉 = 0, or in other words v ∈
〈v〉⊥K ∩ ⊥〈v〉K , then v is called isotropic; if there are no isotropic vectors then
Φ is called anisotropic. Note that any anisotropic form fulfills V ⊥ = V ∩V ⊥ =
{0} = V ∩ ⊥V = ⊥V , hence is non-degenerate.

We show that for any hermitian α-sesquilinear form Φ 6= 0 there indeed is a
non-isotropic vector, unless 2 = 0 ∈ K and α = idK ; we will show below by way
of an example that the exception is indeed necessary:

Assume that Φ is totally isotropic, that is 〈v, v〉 = 0 for all v ∈ V . Since
V ⊥ < V , there are v, w ∈ V such that 〈v, w〉 = 1. Hence for all a ∈ K we have
0 = 〈v + aw, v + aw〉 = 〈v, v〉 + a〈v, w〉 + aα〈w, v〉 + aaα〈w,w〉 = a + aα, and
thus α = −idK , from which 1 = 1α = −1 ∈ K shows 2 = 0 ∈ K and α = idK . ]
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Example. We present a few examples:

i) The standard α-sesquilinear form Γ: Kn×1 × Kn×1 → K is defined as
〈[a1, . . . , an]tr, [b1, . . . , bn]tr〉 := [a1, . . . , an]α · [b1, . . . , bn]tr =

∑n
i=1 a

α
i bi, for

n ∈ N0. Then 〈[b1, . . . , bn]tr, [a1, . . . , an]tr〉 =
∑n
i=1 b

α
i ai =

∑n
i=1 b

α
i a

α2

i =
(
∑n
i=1 a

α
i bi)

α = 〈[a1, . . . , an]tr, [b1, . . . , bn]tr〉α shows that Γ is hermitian. Since
for [a1, . . . , an]tr ∈ ⊥Kn×1 we get 0 = 〈ei, [a1, . . . , an]tr〉 = ai, where ei ∈ Kn×1

denotes the i-th unit vector, for i ∈ {1, . . . , n}, we infer that Γ is non-
degenerate. We have 〈ei, ej〉 = 0 for i 6= j, that is the standard K-basis
{e1, . . . , en} ⊆ Kn×1 is an orthogonal K-basis, and since 〈ei, ei〉 = 1 for
i ∈ {1, . . . , n} it is even an orthonormal K-basis.

Moreover, in the particular case of K = R and α = idR, for any [a1, . . . , an]tr 6= 0
we get 〈[a1, . . . , an]tr, [a1, . . . , an]tr〉 =

∑n
i=1 a

2
i 6= 0, hence Γ is anisotropic.

ii) Let Γ(n−1,1) be the Minkowski α-sesquilinear form on Kn×1, for n ∈ N,

defined by 〈[a0, a1, . . . , an−1]tr, [b0, b1, . . . , bn−1]tr〉 := −aα0 b0 +
∑n−1
i=1 a

α
i bi. Then

we have 〈[a0, . . . , an−1]tr, [b0, . . . , bn−1]tr〉 = 〈[b0, . . . , bn−1]tr, [a0, . . . , an−1]tr〉α,
hence Γ(n−1,1) is hermitian, and from [a0, . . . , an−1]tr ∈ ⊥Rn×1 we get 0 =
〈ei, [a0, . . . , an−1]tr〉 = ai, for i ∈ {1, . . . , n− 1}, and 0 = 〈e0, [a0, . . . , an−1]tr〉 =
−a0, hence Γ(n−1,1) is non-degenerate. We have 〈ei, ej〉 = 0 for i 6= j, hence
the standard K-basis {e0, . . . , en−1} ⊆ Kn×1 is an orthogonal K-basis, where
〈ei, ei〉 = 1 for i ∈ {1, . . . , n}, but 〈e0, e0〉 = −1. Thus for n ≥ 2 there are
isotropic vectors; for example 〈[1, 0, . . . , 0, 1]tr, [1, 0, . . . , 0, 1]tr〉 = −1 + 1 = 0.

iii) The set F2 := {0, 1} becomes a field with respect to the following addition
and multiplication, where 1 + 1 := 0 is the only non-trivial entry:

+ 0 1

0 0 1
1 1 0

and

· 0 1

0 0 0
1 0 1

We consider the symmetric hyperbolic F2-bilinear form H on F2×1
2 given by

〈[a, b]tr, [c, d]tr〉 := ad + bc, for all a, b, c, d ∈ F2. Then for [a, b]tr ∈ ⊥F2×1
2 from

0 = 〈[a, b]tr, [0, 1]tr〉 = a and 0 = 〈[a, b]tr, [1, 0]tr〉 = b we conclude that H is
non-degenerate, but from 〈[a, b]tr, [a, b]tr〉 = ab + ba = 0, for all a, b ∈ F2, we
infer that H is totally isotropic. ]

(4.3) Gram matrices. a) Let K be a field, let α : K → K be a field au-
tomorphism such that α2 = idK . Moreover, let V be a finitely generated
K-vector space with K-bases B := [v1, . . . , vn] and C := [w1, . . . , wn], where
n := dimK(V ) ∈ N0, and let Φ = 〈·, ·〉 be an α-sesquilinear form on V .

Then for v =
∑n
i=1 aivi ∈ V and w =

∑n
j=1 bjwj , where ai, bj ∈ K, we have

〈v, w〉 = 〈
∑n
i=1 aivi,

∑n
j=1 bjwj〉 =

∑n
i=1

∑n
j=1 a

α
i bj〈vi, wj〉 ∈ K. Thus letting

GCB(Φ) := [〈vi, wj〉]ij ∈ Kn×n be the Gram matrix of Φ with respect to the K-
bases B and C, using the coordinate tuples MB(v) = [a1, . . . , an]tr ∈ Kn×1 and
MC(w) = [b1, . . . , bn]tr ∈ Kn×1 we get 〈v, w〉 = MB(v)∗ ·GCB(Φ) ·MC(w) ∈ K.



30

Hence Φ is uniquely determined by GCB(Φ). Conversely, for any G ∈ Kn×n

letting 〈v, w〉G := MB(v)∗ · G ·MC(w) ∈ K, for all v, w ∈ V , defines an α-
sesquilinear form on V , with Gram matrix G with respect to the K-bases B
and C. Thus the set of all α-sesquilinear forms on V , being a K-vector space
with respect to pointwise addition and scalar multiplication, is isomorphic to
the K-vector space Kn×n via Φ 7→ GCB(Φ).

In particular, Φ is hermitian if and only if GBB(Φ) = [〈vi, vj〉]ij = [〈vj , vi〉α]ij =
[〈vi, vj〉]αji = GBB(Φ)∗ ∈ Kn×n, that is GBB(Φ) is hermitian; similarly, Φ is skew-

hermitian if and only if GBB(Φ) is skew-hermitian, and Φ is (skew-)symmetric if
and only if GBB(Φ) is (skew-)symmetric. Here are a few hermitian examples:

Example. i) For the standard α-sesquilinear form Γ on Kn×1 with respect
to the standard K-basis B ⊆ Kn×1, which is orthonormal, we get GBB(Γ) =
diag[1, . . . , 1] = En ∈ Kn×n.

ii) For the Minkowski α-sesquilinear form Γ(n−1,1) on Kn×1 with respect to the
standard K-basis B ⊆ Kn×1, which is orthogonal but not orthonormal, we get
GBB(Γ(n−1,1)) = diag[−1, 1, . . . , 1] ∈ Kn×n.

iii) For the hyperbolic bilinear form H on F2×1
2 , which is totally isotropic, with

respect to the standard F2-basis B ⊆ F2×1
2 we get GBB(H) =

[
. 1
1 .

]
∈ F2×2

2 .

b) We examine how the Gram matrix of Φ changes if the K-bases of V are
changed: If B′ := [v′1, . . . , v

′
n] and C ′ := [w′1, . . . , w

′
n] are also K-bases of V , then

for i, j ∈ {1, . . . , n} we have 〈v′i, w′j〉 = MB(v′i)
∗ · GCB(Φ) ·MC(w′j) ∈ K, where

MC(w′j) ∈ Kn×1 is column j of the base change matrix MC′

C (id) ∈ GLn(K),

and MB(v′i) ∈ Kn×1 is column i of the base change matrix MB′

B (id) ∈ GLn(K),

thus GC
′

B′(Φ) := [〈v′i, w′j〉]ij = MB′

B (id)∗ ·GCB(Φ) ·MC′

C (id) ∈ Kn×n.

In particular, for Gram matrices with respect to pairs of coinciding K-bases we
have the base change formula GCC(Φ) = MC

B (id)∗ ·GBB(Φ) ·MC
B (id) ∈ Kn×n.

Hence, if B is an orthonormal K-basis with respect to Φ, that is GBB(Φ) = En,
then C is an orthonormal K-basis with respect to Φ if and only if for P :=
MC
B (id) ∈ GLn(K) we have En = GCC(Φ) = P ∗ ·GBB(Φ) ·P = P ∗P , which holds

if and only if P ∗ = P−1, that is P is unitary. Note that it is not yet clear under
which circumstances orthonormal bases exist at all.

Moreover, this leads to the following notion: If Φ′ also is an α-sesquilinear form
on V , then Φ and Φ′ are called equivalent, if there is a K-basis B′ ⊆ V such
that GB

′

B′(Φ
′) = GBB(Φ), in other words if and only if there is P ∈ GLn(K) such

that GBB(Φ′) = P ∗ ·GBB(Φ)·P ; note that this is an equivalence relation on Kn×n.

(4.4) Orthogonal spaces. a) Let K be a field, let α : K → K be a field
automorphism such that α2 = idK . Moreover, let V be a K-vector space such
that n := dimK(V ) ∈ N0, and let Φ = 〈·, ·〉 be an α-sesquilinear form on V .
We proceed to consider left and right orthogonal spaces of K-subspaces of V ,
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in particular the left and right radical of Φ:

To this end, by the above identifications, we may assume that V = Kn×1, and
that Φ has Gram matrix G := GBB(Φ) ∈ Kn×n with respect to the standard
K-basis B ⊆ V ; hence we have 〈v, w〉 = v∗Gw ∈ K, for all v, w ∈ V . Now let
the K-subspace U ≤ V be given as the column space of the matrix P ∈ Kn×m,
where m := dimK(U) ∈ N0, and let U⊥ ≤ V and ⊥U ≤ V be given as the
column spaces of Q′ ∈ Kn×m′ and Q′′ ∈ Kn×m′′ , respectively, where m′ :=
dimK(U⊥) ∈ N0 and m′′ := dimK(⊥U) ∈ N0.

Then we have U⊥ = ker(P ∗G) ≤ V , thus the columns of Q′ consist of a K-
basis of the (column) kernel of P ∗G ∈ Km×n. Similarly we have (⊥U)α =
ker((GP )tr) ≤ V , equivalently ⊥U = ker((GP )tr)α = ker((GP )∗) = ker(P ∗G∗),
thus the columns of Q′′ consist of a K-basis of the (column) kernel of P ∗G∗ ∈
Km×n; recall that ker((GP )tr)tr ≤ Kn is the row kernel of GP ∈ Kn×m.

In particular, we have V ⊥ = ker(G) and ⊥V = ker(G∗), thus from rk(G) =
rk(G∗) we infer that dimK(V ⊥) = dimK(ker(G)) = n − rk(G) = n − rk(G∗) =
ker(G∗) = dimK(⊥V ) ∈ N0. Hence Φ is non-degenerate if and only if V ⊥ = {0},
if and only if ⊥V = {0}, which holds if and only if G ∈ GLn(K).

b) Considering the associated maps ϕG ∈ EndK(V ) and ϕG∗ ∈ EndK(V ), we
have ker(GP ) = ker(ϕG|U ) = U ∩ V ⊥ and ker(G∗P ) = ker(ϕG∗ |U ) = U ∩ ⊥V .

This yields m′ = dimK(ker(P ∗G)) = n − rk(P ∗G) = n − rk((P ∗G)∗) = n −
rk(G∗P ) = n−(m−dimK(ker(G∗P ))) = n−m+dimK(U∩⊥V ), or equivalently
dimK(U) + dimK(U⊥) = dimK(V ) + dimK(U ∩ ⊥V ).

Similarly, m′′ = dimK(ker(P ∗G∗)) = n − rk(P ∗G∗) = n − rk((P ∗G∗)∗) =
n−rk(GP ) = n−(m−dimK(ker(GP ))) = n−m+dimK(U∩V ⊥), or equivalently
dimK(U) + dimK(⊥U) = dimK(V ) + dimK(U ∩ V ⊥).

In particular, if Φ is non-degenerate, then we get m + m′ = n = m + m′′,
thus m′ = n − m = m′′, and from m = dimK(⊥(U⊥)) = dimK((⊥U)⊥) and
U ≤ ⊥(U⊥) ∩ (⊥U)⊥ we infer U = ⊥(U⊥) = (⊥U)⊥, that is U is saturated.

Moreover, if Φ is even anisotropic, hence in particular non-degenerate, then we
additionally have U ∩U⊥ = {0} = U ∩ ⊥U . Hence from m+m′ = n = m+m′′

we infer that we have the direct sum decompositions V = U ⊕ U⊥ = U ⊕ ⊥U ,
that is U has both a right orthogonal and a left orthogonal complement.

Example. We consider V := R2×1 equipped with the standard R-bilinear form
Γ, which is symmetric and anisotropic. With respect to the standard R-basis
B ⊆ V the associated Gram matrix is given as G := GBB(Γ) = E2 ∈ R2×2,
reflecting the orthonormality of B; moreover, from G = Gtr and rk(G) = 2 we
recover the facts that Γ is symmetric and non-degenerate.

Let v := [1, 1]tr ∈ V and U := 〈v〉R. Then from V = U⊕U⊥ we get dimR(U⊥) =
1 and U∩U⊥ = {0}. Indeed, letting P := [v] ∈ R2×1 we have U⊥ = ker(P ∗G) =
ker(P trG) = ker([[1, 1]] · E2) = ker([[1, 1]]) = 〈w〉R, where w := [−1, 1]tr ∈ V .
Thus we infer that C := [v, w] ⊆ V is an orthogonal R-basis.
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Letting Q := MC
B (id) = [v, w] ∈ R2×2 be the associated base change matrix, we

get GCC(Γ) = Q∗GQ = QtrGQ = QtrQ =

[
1 1
−1 1

]
·
[
1 −1
1 1

]
=

[
2 .
. 2

]
∈ R2×2,

where the diagonality of the latter matrix reflects the orthogonality of C, and
the diagonal entries say that 〈v, v〉 = 2 = 〈w,w〉.
Going over to normed vectors v′ := 1√

2
· v ∈ V and w′ := 1√

2
· w ∈ V yields

the orthonormal R-basis C ′ := [v′, w′] ⊆ V , with associated base change matrix
Q′ := MC′

B (id) = [v′, w′] = 1√
2
· Q ∈ R2×2. From this we get GC

′

C′(Γ) =

Q′trGQ′ = Q′trQ′ = 1
2 ·Q

trQ = E2 ∈ R2×2, saying again that C ′ is orthonormal,
and that Q′ indeed is an orthogonal matrix; note that in order to go over to
normed vectors we have to extract square roots. ]

(4.5) Orthogonalisation. Let K be a field, let α : K → K be a field auto-
morphism such that α2 = idK , let V be finitely generated K-vector space, and
let Φ be a hermitian α-sesquilinear form on V , where if α = idK we additionally
assume that 2 6= 0 ∈ K. Then V actually has an orthogonal K-basis; note that
orthogonal K-bases possibly exist only if Φ is hermitian:

We proceed by induction on n := dimK(V ) ∈ N0, where the case n = 0 is
trivial; hence we assume that n ≥ 1. We may also assume that Φ 6= 0, since
otherwise we are done anyway. By our general assumption there is a non-
isotropic vector v ∈ V , that is we have 〈v, v〉 6= 0. Letting U := 〈v〉K ≤ V , then
v 6∈ U⊥ shows U ∩ U⊥ = {0}, thus we have U ∩ V ⊥ = {0} as well, implying
dimK(U⊥) = n − dimK(U) = n − 1, and hence V = U ⊕ U⊥ = 〈v〉K ⊕ U⊥.
Thus U⊥ by induction has an orthogonal K-basis, which joined with v yields
an orthogonal K-basis of V . ]

Hence, if 0 6= v ∈ V is non-isotropic, a K-basis reflecting the direct sum decom-
position V = 〈v〉K ⊕ U⊥ is found as follows: Let B := [v, v1, . . . , vn−1] ⊆ V be

any K-basis containing v, and for i ∈ {1, . . . , n− 1} let wi := vi− 〈v,vi〉〈v,v〉 · v ∈ V .

Then C := [v, w1, . . . , wn−1] ⊆ V is a K-basis as well, where 〈v, wi〉 = 〈v, vi〉 −
〈v,vi〉
〈v,v〉 · 〈v, v〉 = 0 shows that C ′ := [w1, . . . , wn−1] is a K-basis of U⊥.

In other words, letting P := MC
B (id) = En −

∑n−1
i=1

〈v,vi〉
〈v,v〉 · E1i ∈ Kn×n we

have GCC(Φ) = P ∗ · GBB(Φ) · P = [〈v, v〉] ⊕ GC′C′(Φ|U⊥) ∈ Kn×n. Thus GCC(Φ)

is found from GBB(Φ) by subtracting the 〈v,vi〉〈v,v〉 -fold of column 1 from column i,

and subtracting the 〈v,vi〉〈v,v〉 -fold of row 1 from row i, for all i ∈ {1, . . . , n− 1}.

Before addressing the question when we have orthonormal K-bases, we present
an example, which in particular exhibits obstructions to their existence even in
the geometric case, where the extraction of square roots is always possible:

Example. Let K := R and α = id, and let Φ be given with respect to some

R-basis B ⊆ R3×1 by G = GBB(Φ) :=

 0 −2 4
−2 1 −1
4 −1 0

 ∈ R3×3. Hence we may
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choose the second basis vector as a non-isotropic vector to begin with, and letting

P1 :=

 . 1 .
1 . .
. . 1

 ∈ GL3(R) we get G1 = P tr
1 GP1 =

 1 −2 −1
−2 0 4
−1 4 0

. Then,

letting P2 :=

1 2 1
. 1 .
. . 1

 ∈ GL3(R) yields G2 = P tr
2 G1P2 =

1 . .
. −4 2
. 2 −1

.

Next, letting P3 :=

1 . .
. 1 1

2
. . 1

 ∈ GL3(R) we get G3 = P tr
3 G2P3 =

1 . .
. −4 .
. . .

.

Finally, rescaling with P4 :=

1 . .
. 1

2 .
. . 1

 ∈ GL3(R) yields G′ = P tr
4 G3P4 =1 . .

. −1 .

. . .

. Hence we have GCC(Φ) = G′ = P trGP ∈ R3×3, where the R-basis

C ⊆ V is given as MC
B (id) = P := P1P2P3P4 =

0 1
2

1
2

1 1 2
0 0 1

 ∈ GL3(R). ]

(4.6) Signature. a) Let [K,α] ∈ {[R, idR], [C, ]}, and let Φ = 〈·, ·〉 be a
hermitian α-sesquilinear form on a K-vector space V such that n := dimK(V ) ∈
N0. Then we have Sylvester’s Theorem of Inertia, saying that there is an
orthogonal K-basis B ⊆ V such that GBB(Φ) = Ek⊕ (−El)⊕ (0 ·En−k−l), where
k, l ∈ N0 are independent of the particular choice of B:

The existence of B follows by replacing the non-isotropic elements v of an or-
thogonal K-basis, which exists by (4.5), by v′ := 1√

|〈v,v〉|
· v; then we have

〈v′, v′〉 = 1
|〈v,v〉| 〈v, v〉 ∈ {±1}, depending on whether 〈v, v〉 > 0 or 〈v, v〉 < 0.

To show uniqueness, for ε ∈ {0,±1} let Bε := {v ∈ B, 〈v, v〉 = ε} and Vε :=
〈Bε〉K ≤ V , thus we have V = V1 ⊕ V−1 ⊕ V0 with pairwise orthogonal di-
rect summands, where k = dimK(V1) and l = dimK(V−1). We have V ⊥ =
ker(GBB(Φ)) = V0, thus m := n−k− l = dimK(V0) ∈ N0 is uniquely determined
by Φ. Moreover, for w =

∑
v∈Bε avv ∈ Vε we have 〈w,w〉 = ε ·

∑
v∈Bε |av|

2, thus
〈w,w〉 > 0 for 0 6= w ∈ V1, and 〈w,w〉 < 0 for 0 6= w ∈ V−1.

Let now C ⊆ V be a K-basis such that GCC(Φ) = Ek′ ⊕ (−El′) ⊕ (0 · Em),
where k′, l′ ∈ N0, with associated K-subspaces V ′±1, but V ′0 = V0. Then we have
V1∩(V ′−1⊕V ′0) = {0}, implying k+l′+m = dimK(V1+V ′−1+V ′0) ≤ n = k′+l′+m,
thus k ≤ k′; similarly, interchanging the roles of B and C we get k′ ≤ k. ]

The pair [k, l] is called the signature of Φ. Hence the equivalence classes of
hermitian α-sesquilinear forms on V are described by the signatures [k, l], where
k, l ≥ 0 such that k+ l ≤ n = dimK(V ). In particular, (−Φ) has signature [l, k].

In particular, Φ has signature [n, 0], in other words V has an orthonormal K-
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basis, if and only if Φ is equivalent to the standard α-sesquilinear form Γ; this
is the genuinely geometric case discussed in some more detail below. Moreover,
Φ has signature [n − 1, 1] if and only if Φ is equivalent to the Minkowski α-
sesquilinear form Γ(n−1,1); in this case V is called a Minkowski space.

b) Let q : V → K : v 7→ 〈v, v〉 be the quadratic form associated with Φ; note
that 〈v, v〉 = 〈v, v〉 ∈ K implies that q has values in R. For a ∈ K and v ∈ V
we have q(av) = aa〈v, v〉 = |a|2q(v) ∈ R, where q(0) = 0.

If q(v) > 0 for all 0 6= v ∈ V , then q is called positive definite; if q(v) ≥ 0 for
all v ∈ V , then q is called positive semi-definite; if q(v) < 0 for all 0 6= v ∈ V ,
then q is called negative definite; if q(v) ≤ 0 for all v ∈ V , then q is called
negative semi-definite; otherwise q is called indefinite. In particular, if q is
positive or negative definite then Φ is anisotropic.

These notions are related to the signature [k, l] of Φ as follows: If B ⊆ V is
an orthogonal K-basis as in Sylvester’s Theorem, then we have q(x1, . . . , xn) =

[x1, . . . , xn] ·GBB(Φ) · [x1, . . . , xn]tr = (
∑k
i=1 |xi|2)− (

∑l
j=1 |xk+j |2) ∈ R, where

[x1, . . . , xn]tr ∈ Kn×1 is the coordinate tuple with respect to B. Hence q is
positive definite if and only if k = n; and q is positive semi-definite if and only
if l = 0; while q is negative definite if and only if l = n; and q is negative semi-
definite if and only if k = 0; thus q is indefinite in all the cases {k, l} 6= {0, n}.
If q is positive definite, then Φ is called a scalar product, where V is called
Euclidean if K = R, and unitary if K = C. In particular, for the standard
α-sesquilinear form Γ on Kn×1, where n ∈ N0, we have q([a1, . . . , an]tr) =
〈[a1, . . . , an]tr, [a1, . . . , an]tr〉 =

∑n
i=1 |ai|2 > 0, for all 0 6= [a1, . . . , an]tr ∈ Kn×1,

thus Γ is also called the standard scalar product on Kn×1.

(4.7) Hurwitz-Sylvester criterion. a) Let [K,α] ∈ {[R, idR], [C, ]}, and let
Φ = 〈·, ·〉 be a hermitian α-sesquilinear form on a finitely generated K-vector
space V . We give a characterisation of the associated quadratic form q being
positive or negative definite in terms of the leading principal minors of the
Gram matrix of Φ:

To this end, letB = [v1, . . . , vn] ⊆ V be anyK-basis, where n := dimK(V ) ∈ N0,
and let G := GBB(Φ) ∈ Kn×n. Moreover, for k ∈ {0, . . . , n} let Bk := [v1, . . . , vk]

and Vk := 〈Bk〉K ≤ V and Gk := GBkBk(Φ|Vk) ∈ Kk×k; hence we have Gn = G.

Let q be positive or negative definite, and let ε := 1 and ε := −1, respectively.
Then letting C ⊆ V be an orthogonal K-basis as in Sylvester’s Theorem, and
P := MC

B (id) ∈ GLn(K), we have P ∗GP = GCC(Φ) = εEn ∈ Kn×n, implying
that |det(P )|2 · det(G) = det(GCC(Φ)) = εn, hence εn · det(G) > 0. Moreover,
since definiteness is inherited to K-subspaces, we infer that εk ·det(Gk) > 0, for
all k ∈ {0, . . . , n}; note that det(Gk) is the k-th leading principal minor of G,
and that since G is hermitian we have det(Gk) ∈ R indeed.

Conversely, let ε ∈ {±1}, and assume that εk ·det(Gk) > 0 for all k ∈ {0, . . . , n}.
We proceed by induction on k ∈ N0, where for k ≥ 1 we may assume that
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Φ|Vk−1
is positive or negative definite, respectively; the case k = 0 being trivial:

Let [w1, . . . , wk−1] ⊆ Vk−1 be a K-basis as in Sylvester’s Theorem, that is

〈wj , wj〉 = ε for j ∈ {1, . . . , k− 1}. Then letting w := vk− ε ·
∑k−1
j=1 〈wj , vk〉wj ∈

Vk, we have 〈wi, w〉 = 〈wi, vk〉 − 〈wi, vk〉 = 0, for i ∈ {1, . . . , k − 1}, hence
w ∈ Vk∩V ⊥k−1. Thus C := [w1, . . . , wk−1, w] ⊆ Vk is an orthogonal K-basis such

that GCC(Φ|Vk) = εEk−1 ⊕ [〈w,w〉]; note that Vk−1 ∩ V ⊥k−1 = {0}. Hence from

ε〈w,w〉 = εk · det(GCC(Φ|Vk)) = |det(MC
Bk

(id))|2 · εk · det(Gk) > 0 we infer that
〈w,w〉 = ε, that is Φ|Vk is positive or negative definite, respectively. ]

b) We now give a characterisation of the quadratic form q associated with Φ
being positive or negative semi-definite in terms of all principal minors of the
Gram matrix of Φ: To this end, for S ⊆ {1, . . . , n} let GS ∈ K |S|×|S| be the
submatrix of G = GBB(Φ) consisting of the columns and rows in S; hence we
have G{1,...,k} = Gk, for k ∈ {0, . . . , n}.
Let q be positive or negative semi-definite, and let ε := 1 and ε := −1, respec-
tively. Then letting C ⊆ V be an orthogonal K-basis as in Sylvester’s Theorem,
and P := MC

B (id) ∈ GLn(K), we have P ∗GP = GCC(Φ) = εEr ⊕ (0 · En−r) ∈
Kn×n, for some r ∈ {0, . . . , n}, implying that |det(P )|2 ·det(G) = det(GCC(Φ)) ∈
{εn, 0}, hence εn · det(G) ≥ 0. Moreover, since semi-definiteness is inherited to
K-subspaces, we infer ε|S|·det(GS) ≥ 0, for all S ⊆ {1, . . . , n}; note that det(GS)
is a principal minor of G, and that since G is hermitian we have det(GS) ∈ R.

Conversely, let ε ∈ {±1}, and assume that ε|S| · det(GS) ≥ 0, for all S ⊆
{1, . . . , n}. We consider the hermitian α-sesquilinear form Φ + εξΓ, where ξ > 0
and Γ denotes the standard α-sesquilinear form with respect to the K-basis
B ⊆ V , whose Gram matrix is given as GBB(Φ + εξΓ) = G + εξEn ∈ Kn×n,
and whose associated quadratic form is given as qξ(v) = q(v) + εξΓ(v, v), for
all v ∈ V : For k ∈ {0, . . . , n} the characteristic polynomial of Gk equals

χGk = det(XEk−Gk) = Xk+
∑k
j=1(−1)j ·

(∑
S⊆{1,...,k}, |S|=j det(GS)

)
·Xk−j ∈

R[X]. This yields det(Gk + XEk) = (−1)k · det((−X)Ek − Gk) = Xk +∑k
j=1

(∑
S⊆{1,...,k}, |S|=j det(GS)

)
·Xk−j . Hence we get εk · det(Gk + εξEk) =

ξk +
∑k
j=1 ε

j ·
(∑

S⊆{1,...,k}, |S|=j det(GS)
)
· ξk−j > 0. Thus qξ is positive or

negative definite, respectively, and hence εq(v) = limξ→0+(εqξ(v)) ≥ 0, for all
0 6= v ∈ V , showing that q is positive or negative semi-definite, respectively. ]

Note that the straightforward generalisation of the definite case, namely that
εk · det(Gk) ≥ 0, for all k ⊆ {0, . . . , n}, already entails semi-definiteness, does

not hold, as the example G :=

[
. .
. −1

]
, for ε = 1, shows.

(4.8) Orthonormalisation. a) Let [K,α] ∈ {[R, idR], [C, ]}, let Φ = 〈·, ·〉 be
a scalar product on a K-vector space V , and let B = [v1, . . . , vn] ⊆ V be a
K-basis, where n := dimK(V ) ∈ N0. Then V has a unique orthonormal K-basis
C such that MC

B (id) ∈ GLn(K) is an upper triangular matrix having positive
diagonal entries, called the Gram-Schmidt K-basis associated with B; recall
that orthonormal K-bases possibly exist only if Φ is a scalar product:
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The existence of C follows from the orthogonalisation procedure in (4.5), us-
ing that Φ is anisotropic. To show uniqueness, let C = [w1, . . . , wn] ⊆ V
be a K-basis having the desired properties, implying Vk := 〈v1, . . . , vk〉K =
〈w1, . . . , wk〉K = 〈w1, . . . , wk−1, vk〉K ≤ V , for k ∈ {0, . . . , n}. Now we proceed
by induction on k ∈ N0, the case k = 0 being trivial, we assume k ≥ 1. We
have wk = avk +

∑k−1
j=1 ajwj ∈ Vk ∩ V ⊥k−1, for a, a1, . . . , ak−1 ∈ K, where a

equals the k-th diagonal entry of MC
B (id). From 0 = 〈wi, wk〉 = a〈wi, vk〉 +∑k−1

j=1 aj〈wi, wj〉 = a〈wi, vk〉 + ai, for all i ∈ {1, . . . , k − 1}, we get wk = aw′k,

where w′k := vk −
∑k−1
j=1 〈wj , vk〉wj ∈ Vk, which by induction is determined

uniquely. Finally, from 1 = 〈wk, wk〉 = |a|2〈w′k, w′k〉 we get |a| = 1√
〈w′k,w

′
k〉
∈ K,

where by assumption we have a = |a|. ]

In particular any orthonormal subset of V can be extended to an orthonormal
K-basis of V ; recall that orthogonal sets consisting of non-isotropic vectors are
K-linearly independent anyway.

b) If we are given a Gram matrix G = GBB(Φ) of some hermitian α-sesquilinear
form Φ with respect to some K-basis B ⊆ V , the question arises how we may
decide whether Φ is a scalar product. This can be done in various ways:

i) The associated quadratic form is given as q(x1, . . . , xn) = [x1, . . . , xn] · G ·
[x1, . . . , xn]tr, where [x1, . . . , xn]tr ∈ Rn×1 is the coordinate tuple with respect
to B, and we may try and decide whether q is positive definite. ii) We may
apply the Hurwitz-Sylvester criterion. iii) We may run the orthogonalisation
procedure, regardless of whether or not Φ is a scalar product, which yields an
orthonormal K-basis if Φ is a scalar product, and otherwise at a certain stage
necessarily produces a vector 0 6= v ∈ V such that Φ(v, v) ≤ 0. iv) Yet another
criterion will be given in (5.6).

Example. Let Γ be the standard scalar product on V := R2×1, let A ⊆ V be
the standard R-basis, and let the R-basis B ⊆ V be given as Q = MB

A (id) :=[
1 − 1

2

0
√

3
2

]
∈ GL2(R), hence we get G := GBB(Γ) = QtrQ =

[
1 − 1

2
− 1

2 1

]
∈ R2×2.

By construction G is the Gram matrix of a scalar product. But if we are just
given the matrix G then this information is lost. Still, the associated quadratic
form is given as q(x, y) = [x, y]·G·[x, y]tr = x2−xy+y2 = (x− 1

2y)2+ 3
4y

2, hence
q(x, y) > 0 for all 0 6= [x, y] ∈ R2; alternatively, we have det([1]) = 1 > 0 and
det(G) = 3

4 > 0, hence the Hurwitz-Sylvester criterion implies that G describes
a scalar product. We aim to find an orthonormal R-basis of V from G:

Letting P1 :=

[
1 1

2
0 1

]
yields P tr

1 GP1 = diag[1, 3
4 ], thus letting P2 := diag[1, 2√

3
]

and P := P1P2 =

[
1 1√

3

0 2√
3

]
∈ GL2(R) yields P trGP = E2, hence we get

the orthonormal R-basis C ⊆ V defined by MC
B (id) := P ; indeed we have

MC
A (id) = MB

A (id) ·MC
B (id) = QP = E2, thus C is just the standard R-basis. ]
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(4.9) Euclidean and unitary geometry. a) Let [K,α] ∈ {[R, idR], [C, ]},
and let Φ = 〈·, ·〉 be a scalar product on a finitely generated K-vector space V ,
with associated quadratic form q. Let ||v|| :=

√
q(v) =

√
〈v, v〉 ∈ R≥0 be the

length or norm of v ∈ V .

Then we have ||av|| = |a| · ||v||, for a ∈ K, that is linearity with respect to
absolute values, and ||v|| = 0 if and only if and only if v = 0, that is definiteness.
For any vector 0 6= v ∈ V there is an associated normed vector 1

||v|| · v ∈ V .

For v, w ∈ V we have the Cauchy-Schwarz inequality |〈v, w〉| ≤ ||v|| · ||w||,
where equality holds if and only if [v, w] is K-linearly dependent:

We may assume that v 6= 0. For any u := av + bw ∈ V , where a, b ∈ K,
we have 〈u, u〉 = |a|2〈v, v〉 + ab〈v, w〉 + ab〈w, v〉 + |b|2〈w,w〉. Hence letting
a := −〈v, w〉 and b := 〈v, v〉 we get 〈u, u〉 = |〈v, w〉|2〈v, v〉 − 〈v, w〉〈v, v〉〈v, w〉 −
〈v, w〉〈v, v〉〈w, v〉+|〈v, v〉|2〈w,w〉 = 〈v, v〉

(
〈v, v〉〈w,w〉−|〈v, w〉|2

)
. Since we have

〈u, u〉 ≥ 0 and 〈v, v〉 > 0 we conclude that |〈v, w〉|2 ≤ 〈v, v〉 · 〈w,w〉.
Moreover, if equality holds then 〈u, u〉 = 0, that is u = 0, thus b = 〈v, v〉 6= 0
implies that [v, w] is K-linearly dependent. Conversely, if [v, w] is K-linearly
dependent, then there is a ∈ K such that w = av, and hence |〈v, w〉|2 =
|〈v, av〉|2 = |a|2|〈v, v〉|2 = 〈v, v〉〈av, av〉 = 〈v, v〉〈w,w〉. ]

This yields the Minkowski or triangle inequality ||v + w|| ≤ ||v||+ ||w||:

We have ||v + w||2 = 〈v, v〉 + 〈v, w〉 + 〈v, w〉 + 〈w,w〉 = 〈v, v〉 + 2Re(〈v, w〉) +

〈w,w〉 ≤ 〈v, v〉+ 2|〈v, w〉|+ 〈w,w〉 ≤ ||v||2 + 2||v||||w||+ ||w||2 = (||v||+ ||w||)2. ]

Thus V together with the norm ||·||, where the latter fulfills linearity, definiteness
and the triangle inequality, becomes a normed vector space; since the norm
is induced by a scalar product, V even is a (pre-)Hilbert space.

Moreover, for K = R we have the following geometric interpretation: For 0 6=
v, w ∈ V we have −1 ≤ 〈v,w〉

||v||·||w|| ≤ 1. Thus there is a unique 0 ≤ ω ≤ π such

that cos(ω) = 〈v,w〉
||v||·||w|| , called the angle between the normed vectors 1

||v|| · v and
1
||w|| · w; the latter are perpendicular, that is we have ω = π

2 , if and only if

cos(ω) = 0, which holds if and only if 〈v, w〉 = 0, that is v ⊥ w.

b) Let {v1, . . . , vn} ⊆ V be an orthonormal K-basis, that is 〈vi, vj〉 = 0 and
〈vi, vi〉 = 1, for all i 6= j ∈ {1, . . . , n}, where n := dimK(V ) ∈ N0.

Then for any v ∈ V we have the Fourier expansion v =
∑n
i=1〈vi, v〉vi: Letting

v′ :=
∑n
i=1〈vi, v〉vi ∈ V , we have 〈vj , v′〉 =

∑n
i=1〈vi, v〉〈vj , vi〉 = 〈vj , v〉, thus

〈vj , v − v′〉 = 0, for all j ∈ {1, . . . , n}, implying v − v′ ∈ V ⊥ = {0}.

Moreover, Fourier expansion yields Pythagoras’s Theorem ||v||2 = 〈v, v〉 =∑n
i=1

∑n
j=1〈vi, v〉〈vj , v〉〈vi, vj〉 =

∑n
i=1 |〈vi, v〉|2.

c) Let U ≤ V be a K-subspace with orthonormal K-basis {u1, . . . , um} ⊆ U ,

where m := dimK(U). Then for a1, . . . , am ∈ K we have ||v −
∑m
i=1 aiui||

2
=

〈v, v〉 −
∑m
i=1(ai〈ui, v〉 + ai〈ui, v〉) +

∑m
i=1 |ai|2 = 〈v, v〉 −

∑m
i=1 |〈ui, v〉|2 +
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∑m
i=1(ai − 〈ui, v〉)(ai − 〈ui, v〉) = 〈v, v〉 −

∑m
i=1 |〈ui, v〉|2 +

∑m
i=1 |ai − 〈ui, v〉|2,

thus the Bessel inequality min{||v − u||2;u ∈ U} = ||v||2 −
∑m
i=1 |〈ui, v〉|2 ≥ 0.

Indeed, the minimum is attained precisely for the best approximation u0 :=∑m
i=1〈ui, v〉ui ∈ U . We have 〈v − u0, uj〉 = 〈v, uj〉 −

∑m
i=1〈ui, v〉〈ui, uj〉 =

〈v, uj〉− 〈uj , v〉 = 0, for all j ∈ {1, . . . ,m}, hence v−u0 ∈ U⊥, saying that u0 is
the U -component of v with respect to the direct sum decomposition V = U⊕U⊥,
in other words we have U ∩ (v + U⊥) = {u0}.

5 Adjoint maps

(5.1) Adjoint maps. a) Let K be a field, let α : K → K be a field automor-
phism such that α2 = idK , and let V be finitely generated K-vector space with
a non-degenerate α-sesquilinear form Φ. For any ϕ ∈ EndK(V ) there is a unique
adjoint map ϕ∗ ∈ EndK(V ) such that 〈v, ϕ(w)〉 = 〈ϕ∗(v), w〉 for all v, w ∈ V :

Let B := [v1, . . . , vn] ⊆ V be a K-basis, where n := dimK(V ) ∈ N0, and let
G := GBB(Φ) ∈ GLn(K) and A = [aij ]ij := MB

B (ϕ) ∈ Kn×n. Then for the
α-sesquilinear form Ψ: V × V → K : [v, w] 7→ 〈v, ϕ(w)〉 we have Ψ(vi, vj) =
〈vi, ϕ(vj)〉 =

∑n
k=1 akj〈vi, vk〉 = (GA)ij , for i, j ∈ {1, . . . , n}, implying that

GBB(Ψ) = GA. Similarly, for the α-sesquilinear form Ψ′ : V × V → K : [v, w] 7→
〈ϕ(v), w〉 we have Ψ′(vi, vj) = 〈ϕ(vi), vj〉 =

∑n
k=1 a

α
ki〈vk, vj〉 = (A∗G)ij , for

i, j ∈ {1, . . . , n}, implying that GBB(Ψ′) = A∗G.

Hence letting A′ := (GAG−1)∗ ∈ Kn×n, we let ϕ∗ ∈ EndK(V ) be defined by
MB
B (ϕ∗) = A′. Then we have GA = A′∗G, implying that 〈v, ϕ(w)〉 = 〈ϕ∗(v), w〉,

for all v, w ∈ V . If ϕ′ ∈ EndK(V ) such that 〈ϕ′(v), w〉 = 〈ϕ∗(v), w〉, for all
v, w ∈ V , then we have (ϕ′ − ϕ∗)(v) ∈ ⊥V = {0}, that is ϕ′ = ϕ∗. ]

In particular, if B is orthonormal then we have MB
B (ϕ∗) = A∗ = MB

B (ϕ)∗.

b) We collect a few properties: From (G · aA · G−1)∗ = aα(GAG−1)∗, for all
a ∈ K, we conclude that the additive map ∗ : EndK(V ) → EndK(V ) : ϕ 7→ ϕ∗

is α-semilinear. Moreover, for ϕ′ ∈ EndK(V ), letting A′ := MB
B (ϕ′) ∈ Kn×n,

we get (GA′AG−1)∗ = (GAG−1)∗(GA′G−1)∗, thus (ϕ′ϕ)∗ = ϕ∗ϕ′∗.

We have id∗ = id, as well as det(ϕ∗) = det((GAG−1)∗) = det(A)α = det(ϕ)α,
and rk(ϕ∗) = rk((GAG−1)∗) = rk(A) = rk(ϕ). In particular, we have ϕ ∈
GL(V ) if and only if ϕ∗ ∈ GL(V ), and in this case from ((GAG−1)∗)−1 =
(GA−1G−1)∗ we get (ϕ∗)−1 = (ϕ−1)∗.

Since ⊥V = {0}, for v ∈ V we have v ∈ ker(ϕ∗) if and only if 0 = 〈ϕ∗(v), w〉 =
〈v, ϕ(w)〉 for all w ∈ V , implying that ker(ϕ∗) = ⊥im(ϕ). Similarly, since V ⊥ =
{0}, for w ∈ V we have w ∈ ker(ϕ) if and only if 0 = 〈v, ϕ(w)〉 = 〈ϕ∗(v), w〉 for
all v ∈ V , implying that ker(ϕ) = im(ϕ∗)⊥.

If U ≤ V is ϕ-invariant, then from 〈ϕ∗(v), w〉 = 〈v, ϕ(w)〉 = 0 for all v ∈ ⊥U
and w ∈ U we infer that ⊥U is ϕ∗-invariant. Similarly, if U ≤ V is ϕ∗-invariant
then from 〈v, ϕ(w)〉 = 〈ϕ∗(v), w〉 = 0 for all v ∈ U and w ∈ U⊥ we infer that
U⊥ is ϕ-invariant.
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If Φ is hermitian then 〈v, ϕ∗(w)〉 = 〈ϕ∗(w), v〉α = 〈w,ϕ(v)〉α = 〈ϕ(v), w〉, for
all v, w ∈ V , hence we get ϕ∗∗ = ϕ. We argue similarly if Φ is skew-hermitian.

(5.2) Normal maps. a) Let K be a field, let α : K → K be a field automor-
phism such that α2 = idK , and let V be finitely generated K-vector space with
a non-degenerate hermitian form Φ.

A map ϕ ∈ EndK(V ) is called normal if ϕϕ∗ = ϕ∗ϕ. In particular, if ϕ∗ = ϕ
then ϕ is called hermitian or self-adjoint; if ϕ ∈ GL(V ) such that ϕ∗ = ϕ−1

then ϕ is called unitary or an isometry; if α = idK then in the above cases ϕ
is also called symmetric and orthogonal, respectively. Hence if B ⊆ V is an
orthonormal K-basis, then these properties are translated into the respective
properties of the matrix MB

B (ϕ).

We proceed to characterise normal maps: The map ϕ is normal if and only if
〈ϕ(v), ϕ(w)〉 = 〈ϕ∗(v), ϕ∗(w)〉, for all v, w ∈ V :

If ϕ is normal, then we have 〈ϕ(v), ϕ(w)〉 = 〈ϕ∗ϕ(v), w〉 = 〈ϕϕ∗(v), w〉 =
〈ϕ∗(v), ϕ∗(w)〉, for all v, w ∈ V . Conversely, 〈ϕ∗ϕ(v), w〉 = 〈ϕ(v), ϕ(w)〉 =
〈ϕ∗(v), ϕ∗(w)〉 = 〈ϕϕ∗(v), w〉, for all w ∈ V , shows (ϕ∗ϕ−ϕϕ∗)(v) ∈ V ⊥ = {0}
for all v ∈ V , hence we have ϕ∗ϕ = ϕϕ∗. ]

b) Let Φ be a scalar product. Then the map ϕ is normal if and only if ||ϕ(v)|| =
||ϕ∗(v)||, for all v ∈ V :

If ϕ is normal, then ||ϕ(v)||2 = 〈ϕ(v), ϕ(v)〉 = 〈ϕ∗(v), ϕ∗(v)〉 = ||ϕ∗(v)||2, for all
v ∈ V . Conversely, from 〈ϕ(v), ϕ(v)〉 = 〈ϕ∗(v), ϕ∗(v)〉 and 〈ϕ(v + aw), ϕ(v +
aw)〉 = 〈ϕ∗(v + aw), ϕ∗(v + aw)〉, for all v, w ∈ V and a ∈ K, we obtain
a〈ϕ(v), ϕ(w)〉+ a〈ϕ(w), ϕ(v)〉 = a〈ϕ∗(v), ϕ∗(w)〉+ a〈ϕ∗(w), ϕ∗(v)〉, which since
Φ is hermitian entails Re

(
a〈ϕ(v), ϕ(w)〉

)
= Re

(
a〈ϕ∗(v), ϕ∗(w)〉

)
, hence letting

a := 1 and a := −i shows that 〈ϕ(v), ϕ(w)〉 = 〈ϕ∗(v), ϕ∗(w)〉. ]

In particular, if ϕ is normal then we have ker(ϕ) = ker(ϕ∗). Moreover, if ϕ is
normal then for any ϕ-invariant K-subspace U ≤ V the K-subspace U⊥ ≤ V is
ϕ-invariant as well:

Let B := [v1, . . . , vn] ⊆ V be an orthonormal K-basis, where we assume
that B′ := [v1, . . . , vm] ⊆ U and B′′ := [vm+1, . . . , vn] ⊆ U⊥, where n :=
dimK(V ) ∈ N0 and m := dimK(U) ∈ N0; recall that V = U ⊕ U⊥. Then
A := MB

B (ϕ) ∈ Kn×n is an upper block triangular matrix of shape A =[
A′ C
. A′′

]
, where A′ ∈ Km×m and A′′ ∈ K(n−m)×(n−m) and C = [cij ]ij ∈

Km×(n−m). We have A∗ =

[
A′∗ .
C∗ A′′∗

]
, hence normality, that is AA∗ = A∗A,

implies A′∗A′ = A′A′∗ + CC∗. Since Tr(A′∗A′) = Tr(A′A′∗), this entails
0 = Tr(CC∗) =

∑m
i=1

∑n−m
j=1 cijcij =

∑m
i=1

∑n−m
j=1 |cij |2, thus C = 0; that is

A = A′ ⊕A′′ = MB′

B′ (ϕ|U )⊕MB′′

B′′ (ϕ|U⊥) is a block diagonal matrix. ]
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(5.3) Unitary maps. a) Let K be a field, let α : K → K be a field automor-
phism such that α2 = idK , let V be finitely generated K-vector space with a
non-degenerate hermitian form Φ, and let ϕ ∈ EndK(V ).

Then ϕ is unitary if and only if 〈ϕ(v), ϕ(w)〉 = 〈v, w〉, for all v, w ∈ V :

If ϕ is unitary, then 〈ϕ(v), ϕ(w)〉 = 〈ϕ∗ϕ(v), w〉 = 〈ϕ−1ϕ(v), w〉 = 〈v, w〉, for all
v, w ∈ V . Conversely, 〈ϕ∗ϕ(v), w〉 = 〈ϕ(v), ϕ(w)〉 = 〈v, w〉, for all w ∈ V , shows
that ϕ∗ϕ(v)− v ∈ V ⊥ = {0}, for all v ∈ V , that is ϕ∗ϕ = id. ]

If ϕ is unitary, then we have det(ϕ)1+α = det(ϕϕ∗) = det(id) = 1; in particular,
if [K,α] = [C, ] then |det(ϕ)| = 1, and if α = idK then det(ϕ) ∈ {±1}.
It follows from the above characterisation of unitary maps that ϕϕ′ and ϕ−1 are
unitary, whenever ϕ and ϕ′ are. Hence GU(V ) := {ϕ ∈ GL(V );ϕ unitary} ≤
GL(V ) is a subgroup, being called the general unitary group; moreover,
SU(V ) := GU(V ) ∩ SL(V ) = {ϕ ∈ GU(V ); det(ϕ) = 1} ≤ GL(V ) is called the
special unitary group. If α = idK the latter are also called the general
and special orthogonal groups, denoted by GO(V ) and SO(V ), respectively;
orthogonal maps of determinant 1 are called rotations.

b) Let Φ be a scalar product. Then ϕ is unitary if and only if ||ϕ(v)|| = ||v||, for
all v ∈ V ; this is the reason why unitary maps are also called isometries:

If ϕ is unitary, then we have ||ϕ(v)||2 = 〈ϕ(v), ϕ(v)〉 = 〈v, v〉 = ||v||2, for all v ∈ V .
Conversely, from 〈ϕ(v), ϕ(v)〉 = 〈v, v〉 and 〈ϕ(v+aw), ϕ(v+aw)〉 = 〈v+aw, v+
aw〉, for all v, w ∈ V and a ∈ K, we get a〈ϕ(v), ϕ(w)〉+a〈ϕ(w), ϕ(v)〉 = a〈v, w〉+
a〈w, v〉, which since Φ is hermitian entails Re

(
a〈ϕ(v), ϕ(w)〉

)
= Re

(
a〈v, w〉

)
,

hence letting a := 1 and a := −i shows that 〈ϕ(v), ϕ(w)〉 = 〈v, w〉. ]

In particular, if ϕ is unitary then for any eigenvalue a ∈ K, with associated
eigenvector v ∈ V , we get ||v|| = ||ϕ(v)|| = ||av|| = |a| · ||v||, hence |a| = 1.

If ϕ is unitary, then for 0 6= v, w ∈ V we have 〈ϕ(v),ϕ(w)〉
||ϕ(v)||·||ϕ(w)|| = 〈v,w〉

||v||·||w|| . Hence,

next to the length of vectors, unitary maps also leave the angle between vectors
invariant In particular, we recover the fact that unitary maps map orthonormal
bases to orthonormal bases; recall that conversely a K-linear map mapping an
orthonormal basis to an orthonormal basis is unitary.

(5.4) Theorem: Spectral theorem. Let [K,α] ∈ {[R, idR], [C, ]}, let Φ be a
scalar product on a finitely generated K-vector space V , and let ϕ ∈ EndK(V ).
Then there is an orthonormal K-basis of V consisting of eigenvectors of ϕ if and
only if ϕ is normal and χϕ ∈ K[X] splits into linear factors.

In particular, these conditions are fulfilled if
i) K = C and ϕ is normal, or ii) K = R and ϕ is symmetric.

Using standard scalar products, in terms of matrices this reads as follows: Given
a matrix A ∈ Kn×n, where n ∈ N0, then there is a unitary matrix P ∈ GLn(K)
such that P−1AP = P ∗AP ∈ Kn×n is a diagonal matrix, provided
i) K = C and A is normal, or ii) K = R and A is symmetric.
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Proof. Let B ⊆ V be an orthonormal K-basis consisting of eigenvectors of ϕ.
Then ϕ is diagonalisable, hence χϕ ∈ K[X] splits into linear factors. Moreover,
A := MB

B (ϕ) ∈ Kn×n, where n := dimK(V ) ∈ N0, is a diagonal matrix, hence
from MB

B (ϕ∗) = A∗ we infer AA∗ = A∗A, that is ϕϕ∗ = ϕ∗ϕ.

Conversely, we proceed by induction on n ∈ N0, the case n = 0 being trivial: Let
n ≥ 1, and since χϕ ∈ K[X] splits into linear factors, let v ∈ V be an eigenvector
of ϕ, where we may assume that ||v|| = 1, and let U := 〈v〉K . Hence we have
V = U ⊕U⊥. Since U is ϕ-invariant, we conclude that U⊥ is ϕ∗-invariant, and
since ϕ is normal, we infer that U⊥ is also ϕ-invariant. Since Φ|U⊥ is a scalar
product, in particular is non-degenerate, by the definition of adjoint maps we get
(ϕ|U⊥)∗ = ϕ∗|U⊥ . Hence ϕ|U⊥ is normal, and since χϕ = χϕ|U · χϕ|U⊥ ∈ K[X]
we are done by induction.

The assertion in (i) follows from C being algebraically closed.

To show (ii), we more generally allow for K = C or K = R, and that ϕ is
hermitian. Let A := MB

B (ϕ) ∈ Kn×n, where B ⊆ V be an orthonormal K-basis.
We have to show that χA ∈ K[X] splits into linear factors. Since χA ∈ C[X]
splits into linear factors anyway, we proceed to show that all complex eigenvalues
of A ∈ Cn×n actually belong to R:

For all a ∈ C we have (A − aEn)∗ = A∗ − aEn ∈ Cn×n. Since A is normal,
that is AA∗ = A∗A, we conclude that A − aEn is normal as well. Hence we
have Ta(A) = ker(A − aEn) = ker((A − aEn)∗) = ker(A∗ − aEn) = Ta(A∗).
Since A = A∗, this implies that all eigenvalues a of A fulfill a = a; recall that
eigenvectors with respect to distinct eigenvalues are linearly independent. ]

(5.5) Corollary: Unitary and hermitian maps. a) If K = C, then ϕ is
unitary if and only if ϕ is normal with all eigenvalues having absolute value 1.

b) The map ϕ is hermitian if and only if ϕ is normal and χϕ ∈ K[X] splits into
linear factors over R.

Proof. a) We have seen that unitary maps have the desired properties. Con-
versely, let B := [v1, . . . , vn| ⊆ V be an orthonormal C-basis such that ϕ(vi) =
aivi, where |ai| = 1, for all i ∈ {1, . . . , n}. Then for v =

∑n
i=1 bivi ∈ V , where

b1, . . . , bn ∈ C, we have ||ϕ(v)||2 = ||
∑n
i=1 aibivi||

2
=
∑n
i=1〈aibivi, aibivi〉 =∑n

i=1 |ai|2|bi|2 =
∑n
i=1 |bi|2 =

∑n
i=1〈bivi, bivi〉 = ||v||2, hence ϕ is unitary.

b) We have seen that hermitian maps have the desired properties. Conversely,
let B := [v1, . . . , vn| ⊆ V be an orthonormal K-basis such that ϕ(vi) = aivi,
where ai ∈ R, for all i ∈ {1, . . . , n}. Then MB

B (ϕ)∗ = (diag[a1, . . . , an])∗ =
diag[a1, . . . , an] = diag[a1, . . . , an] = MB

B (ϕ) says that ϕ is hermitian. ]

(5.6) Principal axes transformation. Let [K,α] ∈ {[R, idR], [C, ]}, let Φ be
a hermitian α-sesquilinear form on a K-vector space V , and let G := GBB(Φ) ∈
Kn×n with respect to any K-basis B ⊆ V , where n := dimK(V ) ∈ N0.
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Then we have
∑
a∈R νa(G) = n, and Φ has signature [

∑
a>0 νa(G),

∑
a<0 νa(G)]:

Since G is hermitian, there is a unitary matrix P ∈ GLn(K) such that G′ :=
P−1GP = P ∗GP = diag[a1, . . . , an] ∈ Kn×n, where ai ∈ R, for all i ∈
{1, . . . , n}. Hence on the one hand we have νa(G) = νa(G′) for all a ∈ K, where
νa(G) > 0 only if a ∈ R, and on the other hand G′ = GCC(Φ) is the Gram matrix
of Φ with respect to the K-basis C ⊆ V , where MC

B (id) = P . Hence replacing
all non-isotropic vectors v ∈ C by normed scalar multiples v′ := 1√

|Φ(v,v)|
· v

yields a K-basis C ′ ⊆ V such that GC
′

C′(Φ) = Ek ⊕ (−El) ⊕ (0 · Em), where
k =

∑
a>0 νa(G) and l =

∑
a<0 νa(G); note that m = dimK(V ⊥) = ν0(G). ]

The 1-dimensional K-subspaces of the eigenspace Ta(G) ≤ V are called prin-
cipal axes of Φ with respect to a ∈ R; recall that T0(G) = V ⊥ ≤ V . In
particular, if dimK(Ta(G)) = 1 then the latter are uniquely determined.

Example. For K := R and α = id, let Φ be given with respect to some

R-basis B ⊆ R3×1 by G = GBB(Φ) :=

 0 −2 4
−2 1 −1
4 −1 0

 ∈ R3×3. We have

χG = X3 − X2 − 21X = X(X − a+)(X − a−) ∈ R[X], hence we get the
eigenvalues a0 := 0 and a± := 1

2 (1 ±
√

85) ∈ R. Hence we conclude that Φ
has signature [1, 1], as we have already observed in (4.5); note that is suffices to
observe that a+a− = −21 < 0 to conclude that a− < 0 < a+.

Moreover, we get the principal axes T0(G) = 〈v0〉R and Ta±(G) = 〈v±〉R, where

v0 := [1, 4, 2]tr ∈ R3×1 and v± := [±4
√

85,−17 ∓
√

85, 34]tr ∈ R3×1. Letting
Γ = 〈·, ·〉 denote the standard scalar product on R3×1, we indeed have 〈v0, v±〉 =

0 = 〈v+, v−〉, as well as ||v0||2 = 21 and ||v±||2 = 2890 ± 34
√

85. Hence P :=
[v+, v−, v0] · diag[ 1

||v+|| ,
1
||v−|| ,

1
||v0|| ] ∈ GL3(R) is orthogonal, that is fulfills P−1 =

P tr, and thus we get P trGP = P−1GP = diag[a+, a−, 0] ∈ R3×3. ]


