Lösungsskizze zur Probeklausur Lineare Algebra I

Lösung Aufgabe 1

- a) Eine Matrix $A \in K^{n \times n}$ heißt invertierbar, wenn es eine Matrix $B \in K^{n \times n}$ mit $A \cdot B = B \cdot A = E_n$ gibt.
- b) Eine Matrix $A \in K^{n \times n}$ ist genau dann invertierbar, wenn
 - a) $det(A) \neq 0$
 - b) Rang(A) = n
 - c) $Kern(A) = \{0\}$
- c) Siehe Vorlesungsmitschrift.
- d) Sei $A = F_1 \cdot \dots \cdot F_m$ ein Produkt von Elementarmatrizen F_i . Wir wissen, dass Elementarmatrizen invertierbar sind. Also ist A als Produkt invertierbarer Matrizen ebenso invertierbar.

Sei nun A eine invertierbare Matrix. Wir können A mittels elementaren Zeilenoperationen in seine reduzierte Zeilenstufenform A' überführen. Es gilt n = Rang(A) = Rang(A'). Nach Definition der reduzierten Zeilenstufenform muss $A' = E_n$ gelten. Da wir A' aus A durch elementare Zeilenumformungen erhalten, so gilt $A' = E_n = F_1 \cdots F_m \cdot A$ für die Elementarmatrizen F_i , welche zu den elementaren Zeilenoperationen korrespondieren. Da Elementarmatrizen invertierbar sind und ihre Inversen wieder Elementarmatrizen sind, folgern wir, dass A ein Produkt von Elementarmatrizen ist.

Lösung Aufgabe 2

a) Bestimmen Sie eine Zerlegung in Transpositionen der folgenden Permutationen.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 4 & 3 & 5 & 2 & 6 & 7 \end{pmatrix} \text{ und } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 7 & 1 & 5 & 4 & 6 \end{pmatrix}.$$

Es gilt

$$\sigma=\sigma^{18}\sigma^{87}\sigma^{76}\sigma^{62}\sigma^{34}$$
 und $\tau=\sigma^{12}\sigma^{23}\sigma^{37}\sigma^{76}\sigma^{64}$

- b) Es gilt $sgn(\sigma) = (-1)^5 = -1$ und $sgn(\tau) = (-1)^5 = -1$.
- c) Es gilt $\det(P_{\sigma}) = \operatorname{sgn}(\sigma)$. Also $\det(P_{\sigma}) = -1$ und ebenso $\det(P_{\tau}) = -1$. Außerdem haben wir

Lösung Aufgabe 3

- a) Es gilt det(A) = -1 und damit $det(A^{2018}) = det(A)^{2018} = (-1)^{2018} = 1$ nach dem Determinantenmultiplikationssatz.
- b) Wir benutzen den Gauss-Algorithmus

$$\begin{pmatrix} 1 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 3 & 4 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 1 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & -3 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & -2 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & \frac{3}{2} & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Wir erhalten somit

$$B^{-1} = \begin{pmatrix} -2 & 1 & -1 & -1 \\ \frac{3}{2} & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Damit ergibt sich

$$(^tBB)^{-1} = B^{-1} \cdot (^tB)^{-1} = B^{-1} \cdot ^t(B^{-1}) = \begin{pmatrix} -2 & 1 & -1 & -1 \\ \frac{3}{2} & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & \frac{3}{2} & 0 & 0 \\ 1 & \frac{-1}{2} & 0 & 0 \\ -1 & \frac{1}{2} & 1 & 0 \\ -1 & \frac{1}{2} & 0 & 1 \end{pmatrix}.$$

Also gilt

$$(^{t}BB)^{-1} = \begin{pmatrix} 7 & -\frac{9}{2} & -1 & -1 \\ -\frac{9}{2} & 3 & \frac{1}{2} & \frac{1}{2} \\ -1 & \frac{1}{2} & 1 & 0 \\ -1 & \frac{1}{2} & 0 & 1 \end{pmatrix}.$$

c) Nach Aufgabe 3a) auf Blatt 12 gilt $\operatorname{Rang}({}^tC \cdot C) \leq \operatorname{Rang}(C) \leq 3$. Also gilt $\det({}^tC \cdot C) = 0$. Damit hat ${}^tC \cdot C \in \mathbb{R}^{4 \times 4}$ Rang echt kleiner als 4 und ist somit nicht invertierbar. Es gilt

$$C \cdot {}^t C = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 7 \end{pmatrix}.$$

Somit gilt $det(C \cdot {}^tC) = 13$.

Lösung Aufgabe 4

a) Da v_1, v_2, v_3 per Definition ein Erzeugendensystem von U bilden, so reicht es zu zeigen, dass diese Vektoren linear unabhängig sind. Seien $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ mit $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$. Es gelten also insbesondere die Gleichungen

$$\bullet \ \lambda_1 + \lambda_3 = 0$$

$$\bullet$$
 $-\lambda_3=0$

$$\bullet \ \lambda_2 + \lambda_3 = 0.$$

Aus der zweiten Gleichung folgt $\lambda_3 = 0$. Aus der ersten und dritten Gleichungen folgern wir $\lambda_1 = \lambda_2 = 0$ ist. Die Vektoren sind also linear unabhängig.

- b) Wir behaupten, dass die Vektoren v_1, v_2, v_3, e_4, e_5 linear unabhängig sind. Seien $\lambda_1, \ldots, \lambda_5 \in \mathbb{R}$ mit $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 + \lambda e_4 + \lambda e_5 = 0$. Wie in Teil b) gelten nun insbesondere die Gleichungen
 - $\bullet \ \lambda_1 + \lambda_3 = 0$
 - $\bullet \ -\lambda_3 = 0$
 - $\bullet \ \lambda_2 + \lambda_3 = 0$

aus denen wir wiederum $\lambda_1 = \lambda_2 = \lambda_3 = 0$ folger
n können. Aus der vierten und fünften Gleichung folgeren wir damit direkt, das
s $\lambda_4 = \lambda_5 = 0$ sein muss. Da die Vektoren v_1, v_2, v_3, e_4, e_5 line
ar unabhängig sind und $\dim(\mathbb{R}^5) = 5$ ist, so bilden sie bereits eine Basis.

- c) Wegen Teil b) können wir $U_1 = \langle e_4, e_5 \rangle$ wählen.
- d) Wegen Teil b) können wir $U_2 = \langle v_3, e_4 \rangle$ wählen.

Lösung Aufgabe 5

Wir benutzen den Gauss-Algorithmus und nehmen zunächst $\lambda \neq 2$ an.

$$(A_{\lambda} \mid b) = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & \lambda & 1 & 0 \\ -1 & 0 & 1 - \lambda & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & \lambda - 2 & 0 & -1 \\ 0 & 2 & 2 - \lambda & 0 \end{pmatrix}$$

$$\rightarrow^{\lambda \neq 2} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & \frac{-1}{\lambda - 2} \\ 0 & 2 & 2 - \lambda & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & \frac{-1}{\lambda - 2} \\ 0 & 0 & 1 & \frac{-2}{\lambda - 2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & p(\lambda) \\ 0 & 1 & 0 & \frac{-1}{\lambda - 2} \\ 0 & 0 & 1 & \frac{2}{\lambda - 2} \end{pmatrix} ,$$

wobei $p(\lambda) := 1 + \frac{2}{\lambda - 2} - \frac{2}{(\lambda - 2)^2}$. Für $\lambda = 2$ gilt

$$(A_2 \mid b) \to \begin{pmatrix} 1 & 2 & 1 & | & 1 \\ 0 & 0 & 0 & | & -1 \\ 0 & 2 & 0 & | & 0 \end{pmatrix}$$

a) Für $\lambda \neq 2$ gilt also Kern $(A_{\lambda}) = \{0\}$ und somit Bild $(A_{\lambda}) = \mathbb{R}^3$. Für $\lambda = 2$ gilt Kern (A_2)) = Spann $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$). Ferner erzeugen die Spalten der Matrix A das Bild $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

und es gilt somit $Bild(A_2) = Spann(\begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 2\\2\\0 \end{pmatrix}).$

b) Für
$$\lambda \neq 2$$
 gilt $L_{A_{\lambda},b} = \operatorname{Spann}(\begin{pmatrix} p(\lambda) \\ \frac{-1}{\lambda-2} \\ \frac{1}{\lambda-2} \end{pmatrix})$ und für $\lambda = 2$ gilt $L_{A_2,b} = \emptyset$.

c) Ja. Nach Teil b) gilt etwa $L_{A_2,b} = \emptyset$.

Lösung Aufgabe 6

Betrachten Sie für $x \in \mathbb{R}$ die Matrix

$$A(x) = \begin{pmatrix} 1 & x & x^2 & \dots & x^{n-1} \\ x^{n-1} & 1 & x & \dots & x^{n-2} \\ x^{n-2} & x^{n-1} & 1 & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ x & x^2 & & \dots & 1 \end{pmatrix} \in \mathbb{R}^{n \times n}$$

Zeigen Sie, dass $\det(A(x)) = (1 - x^n)^{n-1}$ ist. Für i = n - 1, ..., 1 tue folgendes: Subtrahiere das x-fache der i-te Spalte von der (i + 1)-ten Spalte. Wir erhalten die Matrix

$$A'(x) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ x^{n-1} & 1 - x^n & 0 & \dots & 0 \\ x^{n-2} & 0 & 1 - x^n & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ x & 0 & & \dots & 1 - x^n \end{pmatrix}$$

Somit ergibt sich $\det(A(x)) = \det(A'(x)) = (1 - x^n)^{n-1}$.

Lösung Aufgabe 7

- a) Zunächst stellen wir fest, dass die Nullfunktion $0: \mathbb{R} \to \mathbb{R}, x \mapsto 0$ in U_1 und U_2 liegt.
 - Seien $f, g \in U_1$ und $\lambda \in \mathbb{R}$. Für $x \in \mathbb{R}$ gilt (f+g)(x) = f(x) + g(x) = -f(-x) g(-x) = -(f(-x) + g(-x)) = -(f+g)(-x) und somit $f+g \in U_1$. Für $\lambda \in \mathbb{R}$ gilt $(\lambda f)(x) = \lambda f(x) = \lambda (-f(-x)) = -(\lambda f)(-x)$ und somit $\lambda f \in U_1$.
 - Seien $f, g \in U_2$ und $\lambda \in \mathbb{R}$. Für $x \in \mathbb{R}$ gilt (f+g)(x) = f(x) + g(x) = f(-x) + g(-x) = (f+g)(-x) und somit $f+g \in U_2$. Für $\lambda \in \mathbb{R}$ gilt $(\lambda f)(x) = \lambda f(x) = \lambda f(-x) = (\lambda f)(-x)$ und somit $\lambda f \in U_2$.
- b) Sei $f \in M(\mathbb{R}, \mathbb{R})$ beliebig. Definiere $g : \mathbb{R} \to \mathbb{R}$ und $h : \mathbb{R} \to \mathbb{R}$ durch

$$g(x) := \frac{f(x) - f(-x)}{2}$$
 und $h(x) := \frac{f(x) + f(-x)}{2}$

Wegen

$$-g(-x) = -\frac{f(-x) - f(x)}{2} = \frac{f(x) - f(-x)}{2} = g(x)$$

gilt $g \in U_1$ und wegen

$$h(-x) = \frac{f(-x) + f(x)}{2} = \frac{f(x) + f(-x)}{2} = h(x)$$

gilt $h \in U_2$. Außerdem gilt

$$g(x) + h(x) = \frac{f(x) - f(-x)}{2} + \frac{f(x) + f(-x)}{2} = \frac{2f(x)}{2} = f(x)$$

und daher g + h = f. Wir erhalten somit $M(\mathbb{R}, \mathbb{R}) = U_1 + U_2$.

Sei nun $f \in U_1 \cap U_2$. Für $x \in \mathbb{R}$ gilt dann f(x) = f(-x) = -f(x) und somit 2f(x) = 0, also f = 0. Mit anderen Worten $U_1 \cap U_2 = \{0\}$.

c) • Seien $f, g \in M(\mathbb{N}, \mathbb{R})$ und $\lambda \in \mathbb{R}$. Dann gilt

$$\varphi(f+g)(n) = (f+g)(n+1) = f(n+1) + g(n+1) = \varphi(f)(n) + \varphi(g)(n)$$

also $\varphi(f+g) = \varphi(f) + \varphi(g)(n)$. Außerdem gilt

$$(\lambda \varphi)(f)(n) = (\lambda f)(n+1) = \lambda f(n+1) = \lambda \varphi(f)(n)$$

also $\varphi(\lambda f) = \lambda \varphi(f)$. Somit ist die Abbildung φ linear.

• Es ist

$$\operatorname{Kern}(\varphi) = \{ f \in M(\mathbb{N}, \mathbb{R}) \mid f(n) = 0 \text{ für alle } n > 0 \}.$$

Sei $e: \mathbb{N} \to \mathbb{R}$ mit e(n) = 0 für n > 0 und e(0) = 1. Dann gilt $\operatorname{Kern}(\varphi) = \operatorname{Spann}(\{e\})$. Also ist φ nicht injektiv.

• Für $f \in M(\mathbb{N}, \mathbb{R})$ beliebig definieren wir g(n) := f(n-1) für n > 0 und g(0) = 0. Damit gilt $\varphi(g)(n) = g(n+1) = f(n)$. Also gilt $\varphi(g) = f$ und somit ist φ surjektiv.

Lösung Aufgabe 8

Beweisen oder widerlegen Sie folgende Aussagen.

a) Diese Aussage ist falsch. Zunächst zeigen wir dazu folgende Hilfsaussage: Sei V ein n-dimensionaler \mathbb{R} -Vektorraum, n > 1. Dann gibt es unendlich viele Untervektorräume der Dimension n - 1.

Beweis: Da V isomorph zu \mathbb{R}^n ist, können wir ohne Einschränkung $V = \mathbb{R}^n$ annehmen. Sei $0 \neq A \in \mathbb{R}^{1 \times n}$. Dann definiert Kern(A) einen Untervektorraum von \mathbb{R}^n der Dimension n-1.

Für Matrizen $0 \neq A, B \in \mathbb{R}^{1 \times n}$ gilt nun Kern(A) = Kern(B) genau dann, wenn $A = \lambda B$ für ein $\lambda \in \mathbb{R} \setminus \{0\}$. Dies folgt aus folgender Überlegung: Seien $0 \neq A, B \in \mathbb{R}^{1 \times n}$ mit Kern(A) = Kern(B) und $x \in V \setminus \text{Kern}(A)$. Dann ist $Bx, Ax \in \mathbb{R}$ und wir finden $\lambda \in \mathbb{R}$ mit $\lambda Bx = Ax$. Dann stimmen aber λB und A auf $\text{Spann}(\{x\}) + \text{Kern}(A) = \mathbb{R}^n$ überein. Somit also $\lambda B = A$. Die andere Richtung ist trivial.

Da nun n > 2 ist, gibt es unendlich viele Matrizen $A \in \mathbb{R}^{1 \times n}$ mit $A_{11} = 1$, die unterschiedliche Kerne haben. Dies beweist die Aussage.

Nehmen wir nun an, dass es Untervektorräume $U_1, U_2, \dots, U_n \subsetneq \mathbb{R}^3$ des \mathbb{R}^3 mit

$$\mathbb{R}^3 = \bigcup_{i=1}^n U_i$$

gibt. Sei U ein Untervektorraum der Dimension 2 des \mathbb{R}^3 mit $U \neq U_i$ für alle $i=1,\ldots,n$. Also ist $U_i':=U\cap U_i$ ein echter Untervektorraum von U. Wir können also

$$U = \bigcup_{i=1}^{n} U_i'$$

schreiben. Nun finden wir einen Untervektorraum U' von U der Dimension 1 mit $U' \neq U'_i$. Also ist $U' \cap U'_i$ ein echter Untervektorraum von U' und daher $U' \cap U'_i = \{0\}$. Wir erhalten somit den Widerspruch $U' = \{0\}$.

b) Es gilt

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

c) Sei

 $U := \{ A = (a_{ij}) \in GL_n(\mathbb{R}) \mid a_{i,j} = 0 \text{ für } i > j \text{ und } a_{i,i} = 1 \text{ für alle } 1 \le i, j \le n \}.$

Wir behaupten, dass U eine Untergruppe von $\mathrm{GL}_n(\mathbb{R})$ ist.

Es gilt offensichtlich $E_n \in GL_n(\mathbb{R})$. Seien $A, B \in U$. Nach Blatt 10 Aufgabe 1 sind $A \cdot B$ und A^{-1} obere Dreicksmatrizen. Wir müssen also nur noch $(A \cdot B)_{ii} = (A^{-1})_{ii} = 1$ für $i = 1, \ldots, n$ zeigen. Da A und B obere Dreicksmatrizen sind, so gilt $(A \cdot B)_{ii} = A_{ii} \cdot B_{ii} = 1 \cdot 1 = 1$. Wegen $A \cdot A^{-1} = E_n$ gilt auch $1 = (E_n)_{ii} = (A \cdot A^{-1})_{ii} = A_{ii}(A^{-1})_{ii} = (A^{-1})_{ii}$.

d) Für
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 und $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ gilt $A \cdot B = 0$, aber $B \cdot A = A \neq 0$.

Lösung Aufgabe 9

Betrachten Sie die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^3$ mit

$$f(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \begin{pmatrix} 3x_1 + 3x_2 \\ 2x_1 - x_2 \\ -5x_1 + 3x_2 \end{pmatrix} \text{ für } \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2.$$

- a) Es gilt $M_B^A(f) = \begin{pmatrix} 3 & 3 \\ 2 & -1 \\ -5 & 3 \end{pmatrix}$.
- b) Die Vekoren $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ sind offensichtlich kein Vielfaches voneinander und daher linear unabhängig. Wegen $|A'| = \dim(\mathbb{R}^2)$ bilden die Vektoren aus A' daher eine Basis des \mathbb{R}^2 . Man sieht außerdem schnell ein, dass die Vektoren $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ linear unabhängig sind. Wegen $|B'| = \dim(\mathbb{R}^3)$ bilden die Vektoren aus B' daher eine Basis des \mathbb{R}^3 .

c) Es gilt
$$e_1 = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 und $e_2 = -\begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Somit erhält man
$$M_{A'}^A(\mathrm{id}_{\mathbb{R}^2}) = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}.$$

Es gilt
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ und $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Also erhalten wir

$$M_{B'}^B(\mathrm{id}_{\mathbb{R}^3}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

Nun gilt

$$f\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 6\\1\\-2 \end{pmatrix} = 6 \cdot \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\1\\1 \end{pmatrix} - 3 \cdot \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

und

$$f\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} 9\\0\\1 \end{pmatrix} = 9 \cdot \begin{pmatrix} 1\\0\\0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0\\1\\1 \end{pmatrix} + \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Damit ergibt sich

$$M_{B'}^{A'}(f) = \begin{pmatrix} 6 & 9 \\ 1 & 0 \\ -3 & 1 \end{pmatrix}.$$

Lösung Aufgabe 10

a) Es gilt

$$U_{1} = \left\{ \begin{pmatrix} x_{1} \\ 2x_{1} \\ x_{3} \\ 2x_{3} \end{pmatrix} \mid x_{1}, x_{3} \in \mathbb{R} \right\} = \operatorname{Spann} \left(\left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} \right\} \right).$$

Wir bemerken, dass
$$-\begin{pmatrix} 2\\4\\-1\\-2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} = \begin{pmatrix} 0\\-2\\-1\\0 \end{pmatrix}$$
. Also ist

$$U_2 = \operatorname{Spann}\left(\left\{ \begin{pmatrix} 2\\4\\-1\\-2 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} \right\} \right).$$

b) Es gilt sicherlich
$$\begin{pmatrix} 2\\4\\-1\\-2 \end{pmatrix} \in U_1$$
, aber $\begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} \notin U_1$. Somit ist $\dim(U_1 \cap U_2) \geq 1$.

Andererseits ist $U_1 \cap U_2$ ein echter Untervektorraum von U_2 . Also $\dim(U_1 \cap U_2) <$

$$\dim(U_2) = 2$$
. Somit ist $\dim(U_1 \cap U_2) = 1$ und $U_1 \cap U_2 = \operatorname{Spann}\begin{pmatrix} 2\\4\\-1\\-1 \end{pmatrix}$).

Nach der Dimensionsformel für Untervektorräume gilt $\dim(U_1 + U_2) = 3$. Andererseits gilt

$$U_1 + U_2 = \operatorname{Spann}\left(\left\{\begin{pmatrix}1\\2\\0\\0\end{pmatrix}, \begin{pmatrix}0\\0\\1\\2\end{pmatrix}, \begin{pmatrix}2\\4\\-1\\-1\end{pmatrix}, \begin{pmatrix}1\\1\\-1\\-1\end{pmatrix}\right\}\right) = \operatorname{Spann}\left(\left\{\begin{pmatrix}1\\2\\0\\0\end{pmatrix}, \begin{pmatrix}0\\0\\1\\2\end{pmatrix}, \begin{pmatrix}1\\1\\-1\\-1\end{pmatrix}\right\}\right),$$

wobei die letzte Gleichheit aus
$$\begin{pmatrix} 2\\4\\-1\\-2 \end{pmatrix} \in U_1 \cap U_2$$
 folgt.

c) Die Vektoren $e_1, e_2, \begin{pmatrix} 2\\4\\-1\\-2 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}$ bilden eine Basis von \mathbb{R}^4 . Wir können daher eine lineare Abbildung $f: \mathbb{R}^4 \to \mathbb{R}^4$ mit

$$f(e_1) = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix}, f(e_2) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}, f(\begin{pmatrix} 2 \\ 4 \\ -1 \\ -2 \end{pmatrix}) = 0, \text{ und } f(\begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}) = 0$$

definieren. Diese Abbildung hat offensichtlich die geforderten Eigenschaften.

Lösung Aufgabe 11

(i) Es gilt $e_1 = a_1 - a_2 + a_3$, $e_2 = a_2 - a_3$, $e_3 = -a_1 + a_2$. Somit bilden die Vektoren a_1, a_2, a_3 eine Basis des \mathbb{R}^3 und gemäß Vorlesung können wir eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$ mit $f(a_i) = b_i$ für i = 1, 2, 3 definieren. Es gilt nun

•
$$f(e_1) = f(a_1) - f(a_2) + f(a_3) = b_1 - b_2 + b_3 = \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}$$

•
$$f(e_2) = f(a_2) - f(a_3) = b_2 - b_3 = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$

•
$$f(e_3) = -f(a_1) + f(a_2) = -b_1 + b_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

Für

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ -3 & 3 & 2 \end{pmatrix}$$

gilt also $f(v) = A \cdot v$.

(ii) Wir beachten, dass $3 \cdot a_1 + a_2 = a_3$, aber auch $3 \cdot b_1 + b_2 = b_3$. Wir ergänzen a_1, a_2 mit e_1 zu einer Basis des \mathbb{R}^3 . Nach Vorlesung können wir nun eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$ durch $f(a_1) = b_1$, $f(a_2) = b_2$ und $f(e_1) = 0$ definieren. Wir beachten, dass $f(a_3) = 3 \cdot f(a_1) + f(a_2) = 3 \cdot b_1 + b_2 = b_3$. Also erfüllt f die geforderten Bedingungen. Weiterhin gilt $e_2 = \frac{1}{4}(a_1 + a_2 - 2e_1)$ und $e_3 = \frac{3}{4}a_1 - \frac{1}{4}a_2 - \frac{1}{2}e_1$. Somit erhalten wir

•
$$f(e_1) = 0$$

•
$$f(e_2) = \frac{1}{4}b_1 + \frac{1}{4}b_2 = \frac{1}{4}\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

•
$$f(e_3) = \frac{3}{4}b_1 - \frac{1}{4}b_2 = \frac{1}{4} \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$$
.

Für

$$A = \frac{1}{4} \begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

gilt also $f(v) = A \cdot v$.