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1. Rational resolutions

Let k be a perfect field and X an integral k-scheme, which we always assume
to be separated and of finite type over k. In order to study the singularities of X
- and as we see later also certain arithmetic properties- it is natural and classical
to compare it to a smooth k-scheme by choosing a resolution, i.e. a proper and
birational k-morphism π : Y → X from a smooth scheme Y to X. One drawback is
that resolutions in positive characteristic are known to exist only if X has dimension
at most 3 (see [CP09]). Thus in general the existence of a resolution is an extra
assumption. We know that X is normal if and only if π∗OY = OX for some (or
any) resolution π : Y → X. Therefore in this case the global sections of a locally
free sheaf E on X are the global sections of the locally free sheaf π∗E on the smooth
scheme Y , H0(X, E) = H0(Y, π∗E). The wish to control also the higher cohomology
groups and their duality theory in terms of Y , leads to the following definition (see
[KKMS73, p. 50]).

Definition 1.2. Let X be an integral k-scheme of dimension d. Then we say a
morphism π : Y → X is a rational resolution if the following conditions are satisfied:

(i) π is a resolution, i.e. it is proper and birational and Y is smooth.
(ii) π∗OY = OX .

(iii) Riπ∗OY = 0 for all i ≥ 1.
(iv) Riπ∗ωY = 0 for all i ≥ 1, where ωY = ΩdY/k.
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2 KAY RÜLLING

Notice that the existence of a rational resolution of X already implies that X is
normal and Cohen-Macaulay (CM). Indeed normality is equivalent to (ii) and CM
follows by applying duality theory to the isomorphism Rπ∗OY ∼= OX and using
(iv). In particular the reflexive hull of ΩdX/k is the canonical dualizing sheaf ωX
and the following equality holds

ωX = π∗ωY .

Furthermore if X is proper and F is a coherent sheaf on X then we have a com-
mutative diagram of isomorphisms

Hi(X,F)∨
'

duality
// Extd−i(F , ωX)

Hi(Y,Lπ∗F)∨
'

duality
//

'

OO

Extd−i(Lπ∗F , ωY ),

'

OO

where (−)∨ denotes the duality functor on finite dimensional k-vector spaces. Thus
once X admits a rational resolution, we can describe the coherent cohomology
of X plus its duality theory in terms of a smooth scheme. For example, if the
characteristic of k is zero and L is a big and nef invertible sheaf on X and if we
assume that X has a rational resolution π : Y → X, then we have Hi(X,L−1) = 0
for all i < d. This follows from the Kawamata-Viehweg vanishing theorem applied
to the nef and big invertible sheaf π∗L on the smooth scheme Y .

But it is not clear that the existence of one rational resolution characterizes an
intrinsic property of X. This motivates the following definition:

Definition 1.3. Let X be an integral k-scheme. Then we say that X has rational
singularities if X admits at least one resolution and all resolutions are rational.

The problem with this definition is that it is not easy to find examples of rational
resolutions. It is even not clear whether a smooth scheme has rational resolutions.

2. Rational singularities in characteristic zero

In this section we assume that the characteristic of k is zero. Then the theory
of rational singularities is well developed and there are many important classes of
singularities which are known to be rational. First of all, resolutions of singularities
always exist in characteristic zero, by the fundamental work of Hironaka. Further
we have the following two vanishing results

(i) (Grauert-Riemenschneider vanishing) Let X be any reduced k-scheme and
π : Y → X a resolution, then Riπ∗ωY = 0, for all i > 0.

(ii) Let π : Y → X be a proper and birational morphism between smooth
k-schemes, then we have Rπ∗OY ∼= OX .

Here (i) was first proven in [GR70, Satz 2.3] using analytic methods, alternatively
it also follows from the Kawamata-Viehweg vanishing theorem together with Serre
vanishing (see e.g. [KM98, Cor. 2.68]). Part (ii) was proven by Hironaka (see
[Hir64, p. 144, (2)]). Let us recall Hironaka’s proof: Since π : Y → X is birational,

we have a rational map X // Y . Now by [Hir64, p. 144, (1)] we can eliminate
the indeterminacies by successively blowing up smooth loci in X. We obtain a
commutative diagram of smooth k-schemes

Y ′
π′ //

f

��

X ′

g

��

φ

~~
Y

π // X,
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in which f and g are successive blow ups in smooth loci; in particular it is straight-
forward to compute that Rf∗OY ′ = OY and Rg∗OX′ = OX . Now the composition

Rπ∗OY
φ∗−→ Rπ∗Rφ∗OX′ = Rg∗OX′

π′∗−−→ Rg∗Rπ
′
∗OY ′ = Rπ∗Rf∗OY ′

is an isomorphism since it equals Rπ∗ of the isomorphism f∗ : OY
'−→ Rf∗OY ′ .

But it factors over Rg∗OX′ = OX , which implies Riπ∗OY = 0 for all i > 0. Notice
that the proofs of (i) and (ii) use characteristic zero in an essential way.

Since any two resolutions of an integral k-scheme X can be dominated by a third
one, we obtain that once X has one rational resolution, then all its resolutions have
to be rational. In particular: An integral k-scheme X has rational singularities
if and only if it is normal and there exists one resolution π : Y → X, such that
Riπ∗OY = 0 for all i > 0. Using duality theory and Grauert-Riemenschneider
vanishing one easily sees that this is also equivalent to: X is CM and there exists
a resolution π : Y → X, such that π∗ωY ∼= ωX .

Examples of rational singularities are the singularities of toric varieties (see
[KKMS73, I, Thm 14, c)]), quotient singularities (see e.g. [Vie77, Prop. 1]) and log
terminal singularities (see e.g. [Elk81], [Kov00]). Let us also mention two special
cases:

Isolated singularities of surfaces. Assume k is algebraically closed and let X
be a normal surface with one isolated singularity x0 ∈ X. Let π : Y → X be a
resolution and let E = π−1(x0)red be the reduced preimage of x0 with irreducible
components E = ∪iEi. In [Art66] the fundamental cycle of E is defined to be the
smallest positive cycle Z supported on E such that (Z.Ei) ≤ 0 for all i. It always
satisfies Z ≥

∑
iEi. Denote by p(Z) = 1 − (dimH0(Z,OZ) − dimH1(Z,OZ))

the arithmetic genus of Z (viewed as a closed subscheme of X). Then by [Art66,
Thm 3] X has rational singularities if and only if p(Z) = 0. Also if X has rational
singularities and the irreducible components Ei are smooth then Ei ∼= P1.

Cone singularities. Let k be algebraically closed and X0 a smooth connected
projective k-scheme and L an ample line bundle on X0. Let X = Proj(S[z]), with
S = ⊕n≥0H

0(X0,L⊗n), be the projective cone of (X0,L), which has an isolated
singularity at the vertex v ∈ X. Assume L is sufficiently ample (more precisely
Hi(X0,L⊗n) = 0, for all i, n ≥ 1). Then X has rational singularities if and only if
Hi(X0,OX0

) = 0. (This is well-known.)

3. Rational singularities in characteristic p > 0

Now we assume that k is a perfect field of characteristic p > 0.

Definition 3.2. We say that an integral and normal k-scheme X is a finite quotient
if there exists a finite and surjective morphism X ′ → X from a smooth and integral
k-scheme X ′ to X. We say that X is a tame finite quotient if there exists such a
morphism whose degree is prime to p.

Notice that if X is integral and normal and π : X ′ → X is finite and surjective of
degree prime to p with X ′ smooth and integral and if in addition the field extension
k(X ′)/k(X) is normal, then π is a Galois covering and we have X = X ′/G, with
G = AutX(X ′).

Definition 3.3. Let S be a k-scheme and X and Y integral k-schemes, which map
to S. Then we say that X and Y are properly birational over S if there exists an
integral k-scheme Z over S and proper and birational S-morphisms Z → X and
Z → Y . In this case Z is called a proper birational correspondence between X and
Y over S.



4 KAY RÜLLING

For example, if X and Y are integral k-schemes which are proper over S and
with non-empty open subsets U ⊂ X and V ⊂ Y which are isomorphic over S, then
X and Y are properly birational over S. (Indeed the closure in X×S Y of the graph
of U ∼= V with its reduced scheme structure is a proper birational correspondence.)

Now the main result of Chapter 2 is the following:

Theorem 3.4 ([CR11, Thm 4.3.1]). Let S be a k-scheme. Let X and Y be two tame
finite quotients over S, which are properly birational over S. Denote by πX : X → S
and πY : Y → S the structure maps. Then any proper birational correspondence Z
between X and Y over S induces isomorphisms of OS-modules

RiπXOX ∼= Riπ∗OY and RiπXωX ∼= Riπ∗ωY , for all i ≥ 0.

Furthermore, these isomorphisms depend only on the isomorphism k(X) ∼= k(Y )
induced by Z.

We will give the main idea and explain the main technical tool needed to prove
this theorem in Section 5 of this introduction. The proof is actually also valid
in characteristic 0 and gives a new proof of the above statement without using
resolutions of singularities or Grauert-Riemenschneider vanishing.

The theorem implies:

(i) Let X be an integral k-scheme, which has a resolution. Then one resolution
of X is rational if and only if all its resolutions are rational if and only if
X has rational singularities.

(ii) Let f : X
'−→ Y be a proper and birational morphism between integral

schemes with rational singularities. Then

Rf∗OX ∼= OY , Rf∗ωX ∼= ωY .

(iii) Tame finite quotients, which have some resolution, have rational singular-
ities.

(iv) Toric varieties have rational singularities (by (i) and [KKMS73, I, Thm 14,
c)]).

Let us give an arithmetic application of (ii) above. For each k-scheme X we have
the sheaves of Witt vectors of length n, WnOX and of infinite length

WOX = lim←−
n

WnOX

at our disposal. We set

K0 = Frac(W (k)).

We have the following general statement.

Proposition 3.5. Let π : X → Y be a proper morphism between two k-schemes
and assume Riπ∗OX = 0 for all i ≥ 1. Let Y ′ → Y be any morphism of k-schemes
and denote by π′ : X ′ = X ×Y Y ′ → Y ′ the projection. Then

Riπ′∗WOX′ ⊗K0 = 0 for all i ≥ 1.

Proof. For all n ≥ 1 we have an exact sequence of sheaves of abelian groups

0→Wn−1OX
V−→WnOX → OX → 0,

where V is the Verschiebung, V (a0, . . . , an−2) = (0, a0, . . . , an−2) and the map on
the right is the restriction (a0, . . . , an−1) 7→ a0. Hence Riπ∗WnOX = 0, for all
n, i ≥ 1, by induction. Further we have exact sequences for all i ≥ 1

0→ R1 lim←−
n

Ri−1π∗WnOX → Riπ∗WOX → lim←−
n

Riπ∗WnOX → 0.
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Thus also Riπ∗WOX = 0 for all i ≥ 1. (For the case i = 1 notice that the restric-
tion maps π∗WnOX → π∗Wn−1OX are surjective, which implies the vanishing of
R1 lim←−n π∗WnOX .)

Now assume i : Y ′ ↪→ Y is a closed immersion. Hence X ′ ↪→ X is a closed
immersion and we denote by I its ideal sheaf. We obtain a long exact sequence

· · · → Riπ∗WOX ⊗K0 → i∗R
iπ′∗WOX′ ⊗K0 → Ri+1π∗WI ⊗K0 → · · · .

By the above the term on the left vanishes and the term on the right vanishes
by [CR12, Prop 4.6.1], which is a slight modification of [BBE07, Thm 2.4, (i)].
This gives the statement in this case. In the general case the statement follows
by factoring Y ′ → Y into a closed immersion followed by a flat morphism, e.g.
Y ′ ↪→ Y ′ × Y → Y , and flat base change. �

Assume k = Fq is the field with q = pr elements. Then the r-th power of
the absolute Frobenius on X yields a K0-linear endomorphism φ on the vector
space Hi(X,WOX) ⊗W (Fq) K0 and on Berthelot’s rigid cohomology Hi

rig(X/K0).
Further if X is proper both spaces are finite dimensional K0-vector spaces. Denote
by Hi

rig(X/K0)<1 the part of rigid cohomology on which the eigenvalues of φ in

the algebraic closure of K0 have p-adic valuation less than 1 (where the valuation
is normalized by v(q) = 1). Then it follows from the main result of [BBE07] that
we have a φ-equivariant isomorphism

Hi(X,WOX)⊗K0
∼= Hi

rig(X/K0)<1,

for all i ≥ 0 and for all proper k-schemes X. In the case where X is smooth and
proper rigid cohomology coincides with crystalline cohomology and this result was
proven by Bloch in the case p 6= 2 and dimX < p (see [Blo77]) and by Illusie in
general (see [Ill79]). In particular the Lefschetz trace formula for rigid cohomology
yields

(3.5.1) |X(k)| ≡
∑
i≥0

(−1)iTr(φ|Hi(X,WOX)⊗K0) mod q.

We have the following application of (ii) above.

Corollary 3.6. Assume k is a finite field and let S be a k-scheme. Let X and Y
be S-schemes with rational singularities and assume that there exists a proper and
birational S-morphism π : X → Y . Then

|Xs(k
′)| ≡ |Ys(k′)| mod |k′|

for all finite field extensions k′ of k and all k′-rational points s in S, where Xs and
Ys denote the fibers of X and Y over s, respectively.

Proof. Let k′ be a finite field extension of k. Then the base change of π over
k′, πk′ : Xk′ → Yk′ , is a proper and birational morphism between Sk′ -schemes
with rational singularities. Hence it suffices to prove the statement for k′ = k.
Furthermore it clearly suffices to show, that |π−1(y)| ≡ 1 mod |k| for all k-rational
points y ∈ Y . Set A = H0(π−1(y),Oπ−1(y)), for some y ∈ Y (k). Since π is
proper, surjective and geometrically connected, SpecA→ y is finite, surjective and
geometrically connected, hence radical. The perfectness of k thus yields, that A is
an artinian local k-algebra with residue field k. In particular

H0(π−1(y),WOπ−1(y))⊗K0 = W (A)⊗K0 = K0,

where the second equality follows from F ◦ V = p = V ◦ F on W (A), where
F : W (A) → W (A), (a0, a1, . . .) 7→ (ap0, a

p
1, . . .) is the Frobenius morphism on the

Witt vectors. Further (ii) above and Proposition 3.5 give

Hi(π−1(y),WOπ−1(y))⊗K0 = 0 for all i ≥ 1.
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Thus the statement follows from (3.5.1). �

Actually the formulation of the above corollary is a bit complicated, as we see
in the proof it would suffice to say |π−1(y)| ≡ 1 mod |k|, without any reference to
a base scheme S. The reason we wrote it this way is to indicate what the general
statement should be. Namely in case X and Y are properly birational equivalent
over S, but there exists no map π, the statement should still be the same. This
clearly holds in case we have resolutions of singularities, but we cannot prove it at
the moment in the general case.

The result above should be compared to [FR05, Thm 1.1, Rmk 3.2], where the
authors obtain the same conclusion under the assumption that S is smooth, X
and Y have quotient singularities and are proper and dominant over S and the
condition Rπ∗OX ∼= OY (the condition, which is really needed in the corollary
above) is replaced by a cycle theoretic condition.

3.6.1. In positive characteristic rational singularities behave less convenient than
in characteristic zero. For example, the existence of a resolution is an extra assump-
tion (at least in dimension ≥ 4), there are finite quotients Ank/G with G = Z/prZ,
which are not CM (see e.g. [ES80]) and hence also don’t have rational singularities.
Furthermore Kodaira vanishing and hence also Grauert-Riemenschneider vanishing
is wrong in positive characteristic. These problems lead to the search of a wider
class of singularities and in view of Proposition 3.5 it seems a natural try to replace
the structure sheaf by the sheaf of Witt-vectors modulo torsion.

4. Witt-rational singularities

In this section we assume that k is a perfect field of characteristic p > 0. Further
k-schemes are assumed to be quasi-projective over k. In the following if A is an
abelian category and A ∈ A is an object we denote by AQ the image of A in the
category AQ, which has the same objects as A and the homomorphisms are given
by HomAQ(A,B) = HomA(A,B) ⊗Z Q. (If the reader wishes he can replace the
subscript (−)Q with (−)⊗Q, but in general the statements for (−)Q are finer, e.g.
if A is an abelian group then AQ = 0 means that there exists a non-zero integer n
with nA = 0.)

We want to define a version of rational singularities where we replace O by
WO. First we need a replacement for the canonical sheaf. Recall from [Ill79] that
the de Rham-Witt pro-complex W•Ω

•
X of a k-scheme X is a projective system

Wn+1Ω•X → WnΩ•X , n ≥ 1, of differential graded algebras (dga’s), which satisfies
WnΩ0

X = WnOX for all n ≥ 1, and is equipped with a map of graded pro-rings

F : W•Ω
•
X →W•−1Ω•X ,

called the Frobenius and a map of graded pro-groups,

V : W•Ω
•
X →W•+1Ω•X ,

called the Verschiebung, which in degree 0 are compatible with the Frobenius and
Verschiebung morphisms on W•O and satisfy

FV = p, FdV = d, V (xF (y)) = V (x)y, for all x ∈W•Ω•X , y ∈W•+1Ω•X

Fd[a] = [a]p−1d[a], for all a ∈ OX ,
where d : W•Ω

•
X → W•Ω

•+1
X is the differential and [−] : OX → W•OX , a 7→ [a] =

(a, 0, . . .) is the Teichmüller lift. Furthermore, W•Ω
•
X is universal with the above

property, i.e. it maps uniquely to any such pro-complex. We have

W1Ω•X = Ω•X .
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The de Rham-Witt complex of X is defined to be the limit of the pro-complex,

WΩ•X := lim←−WnΩ•X ;

it is a dga equipped with Frobenius and Verschiebung satisfying the relations above.
If X is smooth and proper it was proven by Bloch in the case dimX < p and in gen-
eral by Illusie (see [Blo77], [Ill79]) that the hypercohomology of the complex WΩ•X
is canonically isomorphic to the crystalline cohomology of X, Hi

crys(X/W (k)) =

Hi(X,WΩ•X). Furthermore, in this case the spectral sequence induced by the
näıve filtration of the de Rham-Witt complex

Ei,j1 = Hi(X,WΩjX)Q ⇒ H∗(X,WΩ•X)Q

degenerates at E1 and gives a canonical decomposition

Hn(X,WΩ•X)Q =
⊕
i+j=n

Hi(X,WΩjX)Q.

This is reminiscent of the Hodge decomposition in characteristic zero and one is
tempted to view WΩdimX

X,Q as a replacement of ωX . This is supported by the
following result of Ekedahl: Let X be a smooth k-scheme of equidimension d and
with structure map π : X → Spec k. We obtain a morphism of finite type πn :
WnX = SpecWnOX → SpecWn(k). Then by [Eke85, I, Thm 4.1] there is a
canonical isomorphism

π!
nWn(k) ∼= WnΩdX [d]

in the derived category Db
c(WnOX) of bounded complexes of sheaves of WnOX -

modules with coherent cohomology groups. Here π!
n : Db

c(Wn) → Db
c(WnOX) is

the extraordinary inverse image constructed in [Har66, VII, Cor 3.4]. This leads to
the following definition:

Definition 4.2 (cf. [CR12, Def 4.1.2]). Let π : X → Spec k be a k-scheme of pure
dimension d. Then for n ≥ 1 we set (with above notation)

WnωX := H−d(π!
nWn(k)).

One can show that the (WnωX)n form a projective system equipped with Frobenius
and Verschiebung which is called the Witt canonical system of X and is denoted
by W•ωX . We set

WωX := lim←−W•ωX .

The Witt canonical system has various nice properties, e.g. if X is normal
W1ωX = ωX is the canonical sheaf of X, if j : U ↪→ X is the inclusion of a smooth
open subset which contains all 1-codimensional points of X, we have W•ωX =
j∗W•Ω

d
U , if f : X → Y is a projective morphism between schemes of pure dimension

d, then there is a pushforward f∗ : f∗W•ωX →W•ωY and finally we have an exact
sequence for all n ≥ 1

0→Wn−1ωX
p
−→WnωX

Fn−1

−−−→ ωX ,

which is surjective on the right if X is CM.

Definition 4.3. We say that an integral normal scheme is a topological finite quo-
tient if there exists a universal homeomorphism u : X → X ′ with X ′ a finite
quotient in the sense of Definition 3.2.

Recall, that a map between integral and normal k-schemes is a universal home-
omorphism if and only if it is finite, surjective and purely inseparable.

Definition 4.4. A morphism between two integral k-schemes f : X → Y is a
quasi-resolution if X is a topological finite quotient and f is projective, surjective,
generically finite and generically purely inseparable.
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Notice that in particular any resolution f : X → Y is a quasi-resolution. By a
result of de Jong (cf. [dJ97, Cor. 5.15]) quasi-resolutions always exist. The main
result of [CR12] is the following theorem:

Theorem 4.5 ([CR12, Thm 4.3.3]). Let Y be a topological finite quotient and
f : X → Y a quasi-resolution. Then we have isomorphisms in Db(WOY,Q)

WOY,Q
f∗'−−−→ Rf∗WOX,Q, Rf∗WωX,Q ∼= f∗WωX,Q[0]

f∗'−−−→WωY,Q,

which are compatible with Frobenius and Verschiebung.

The idea of the proof is similar to one for the proof of Theorem 3.4; it is explained
in Section 5 of this introduction.

Definition 4.6. Let X be an integral k-scheme.

(i) We say that X has Witt-rational singularities if for all quasi-resolutions
f : Y → X the following conditions are satisfied:

(a) f∗ : WOX,Q
'−→ f∗WOY,Q is an isomorphism.

(b) Rif∗WOY,Q = 0, for all i ≥ 1.
(c) Rif∗WωY,Q = 0, for all i ≥ 1.

(ii) We say that X has WO-rational singularities if for all quasi-resolutions
only (a) and (b) above are satisfied.

(iii) We say X has BE-Witt-rational singularities if for any alteration g : Z →
X with Z smooth the pullback morphism

g∗ : WOX ⊗Z Q→ Rg∗WOZ ⊗Z Q

splits in the derived category of sheaves of abelian groups on X.

BE-Witt-rational singularities were first defined in [BE08] (and there they were
called Witt-rational singularities). This definition is motivated by the following
result of Kovács (see [Kov00]): An integral scheme X over a field of characteristic
zero has rational singularities if and only if there exists an alteration g : Z → X
with Z smooth such that the pullback g∗ : OX → Rg∗OZ splits in the derived
category of OX -modules.

We have:

• In (i) and (ii) (resp. in (iii)) above it suffices to consider a single quasi-
resolution (resp. alteration). Since any two quasi-resolutions (resp. alter-
ations) can be dominated by a third one this follows from Theorem 4.5
(resp. from f∗ ◦ f∗ = deg f for an alteration f between smooth schemes).

• If u : X → X ′ is a universal homeomorphism between normal k-schemes,
then X has Witt-rational singularities (resp. WO-rational singularities,
resp. BE-Witt-rational singularities) if and only if X ′ has.

• Topological finite quotients have Witt-rational singularities as follows im-
mediately from Theorem 4.5.

• We have the following chain of implications (see [CR12, Prop 4.4.17]):

rational singularities⇒Witt-rational singularities

⇒WO-rational singularities

⇒ BE-Witt-rational singularities

Notice that the first implication is strict, e.g. finite quotients in posi-
tive characteristic are in general not CM. We conjecture that the sec-
ond implication is in fact an equivalence, i. e. some version of Grauert-
Riemenschneider vanishing for the Witt canonical sheaf modulo torsion
should hold.
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• If X has Witt-rational singularities and f : Y → X is a quasi-resolution
we also have f∗WωY,Q ∼= WωX,Q (see [CR12, Lem 4.3.4]).

Using Theorem 4.5 and the main result of [BBE07] as explained in section 3 we
obtain:

Corollary 4.7 ([CR12, Cor 4.4.15, Cor 4.4.16]). Let X and Y be two integral and
projective k-schemes, which have Witt-rational singularities. Assume that X and
Y are quasi-birational, i.e. there exists an integral k-scheme Z with two quasi-
resolutions πX : Z → X, πY : Z → Y . Then we have Frobenius equivariant
isomorphisms

Hi
rig(X/K0)<1 ∼= Hi

rig(Y/K0)<1 for all i > 0.

In particular if k is a finite field and k′ is a finite extension of k we have

|X(k′)| ≡ |Y ′(k′)| mod |k′|.

We refer to [CR12, Section 4] for some more elaborations on the notion of Witt-
rational singularities, e.g. a description of Witt rational singularities using alter-
ations from smooth schemes (see Theorem 4.5.6 ibid.), or using morphisms with
smooth and rationally connected generic fiber (see Theorem 4.8.1 ibid.).

Finally we want to give two more examples of WO-rational singularities to com-
pare with the situation in characteristic zero (see the end of Section 2 of this
introduction):

Isolated singularities. Assume k is algebraically closed and let X be a normal
surface over k, which is defined over a finite field and has one isolated singularity
x0 ∈ X. Let π : Y → X be a resolution such that E = π−1(x0)red is a strict
normal crossing divisor. Then X has WO-rational singularities if and only if E
is a tree of P1’s. Notice that this condition only depends on the set-theoretic
exceptional divisor in contrast to what happens if we consider O instead of WO
(see [Art66]). In [CR12, Thm 4.6.7] we also give a necessary and sufficient condition
for an isolated singularity in a higher dimensional normal scheme over a finite field
to be WO-rational in case a nice resolution exists.

Cone singularities. Let X0 be a smooth, projective and geometrically connected
k-scheme and L and ample line bundle on X0. Then the projective cone of (X0,L)
has WO-rational singularities if and only if Hi(X0,WOX0)Q = 0 for all i ≥ 1 (see
[CR12, Thm 4.7.4]). Notice that in contrast to what happens in characteristic zero
we don’t need to assume that L is sufficiently ample.

5. Action of correspondences

In this section we assume that all our scheme are quasi-projective over a perfect
ground field k.

Let S be a k-scheme. We denote by CS the category with objects the S-schemes,
which are smooth over k and the morphisms are given by

HomCS (X/S, Y/S) = lim−→
V

CH(V),

where the limit is over all reduced closed subschemes V ⊂ X ×S Y , such that the
projection to Y restricts to a proper morphism V → Y , and CH(V ) = ⊕iCHi(V )
denotes the graded Chow groups of cycles modulo rational equivalence. Here the
composition is defined as follows (cf. [CR11, Sec 1]): For X,Y, Z ∈ CS and V ⊂
X ×S Y and W ⊂ Y ×S Z closed subschemes, which are proper over Y and Z,
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respectively, we have the following cartesian diagram,

(V ×k Z) ∩ (X ×k W ) //

��

(V ×k Z)×k (X ×k W )

��
X ×k Y ×k Z

∆ // (X ×k Y ×k Z)× (X ×k Y ×k Z),

where the lower horizontal map is the diagonal embedding and the right vertical
map is the natural closed immersion. The intersection (V ×k Z) ∩ (X ×k W ) =
V ×Y W is proper over Z a fortiori it is proper over X ×S Z and we have Fulton’s
refined Gysin homomorphism (see [Ful98, 6])

∆! : CH((V ×k Z)×k (X ×k W ))→ CH(V ×Y W ).

Then the composition in CS is defined via

[W ] ◦ [V ] = p1,3∗(∆
!([V ×k Z]× [X ×k W ])),

where p1,3 : V ×Y W → X ×S Z is induced by the projection from X ×S Y ×S Z.
Now for an object f : X → S in CS we denote

H•(X/S) =
⊕
i,j≥0

Rif∗W•Ω
j
X ;

it is a projective system of W•OS-modules. Notice that the OS-module H1(X/S)

equals
⊕

i,j R
if∗Ω

j
X . Further we define the WOS-module

H(X/S) =
⊕
i,j≥0

Rif∗WΩjX .

Notice that the Frobenius F , the Verschiebung V and the differential d naturally
act on H•(X/S) and H(X/S). The main technical tool for proving the results in
sections 3 and 4 is the following theorem which is a recollection of [CR11, Sec 1.3.18,
Lem 1.3.19, Thm 3.1.8, Sec 3.2.3 and Prop 3.2.4] for the case H1 and [CR12, Sec
3.5, in particular Prop 3.5.4] in the general case.

Theorem 5.2. There exist functors

H• : CS → (W•OS −modules), X/S 7→ H•(X/S)

and

H : CS → (WOS −modules), X/S 7→ H(X/S),

such that for any morphism h : X → Y of S-schemes which are smooth over k, we
have

H•([Γth]) = h∗, H([Γth]) = h∗,

where [Γth] denotes the transpose of the graph of h viewed as a morphism Y/S →
X/S in the category CS and h∗ denotes the natural pullback map in both cases.
Furthermore, for any α : Y/S → X/S in CS, the morphisms H•(α) and H(α) are
compatible with F , V and d.

In the case H1 the assumption on the quasi-projectivity of the schemes in ques-
tion made at the beginning of this section is in fact not necessary and it suffices
to work with schemes separated and of finite type over k. Let f : X → S and
g : Y → S be two objects in the category CS . The morphisms H•([Z]) and H([Z])
for an integral closed subscheme Z ⊂ X ×S Y of codimension c in X ×k Y which
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is proper over Y is in fact induced by the following morphisms for j ≥ 0 in the
derived category of W•(k)-modules (see [CR12, Lem 5.1.9]):

R[Z]j• : Rf∗W•Ω
j
X

p∗1−→ R(f ◦ p1)∗W•Ω
j
X×kY(5.2.1)

∪cl([Z])−−−−−→ R(f ◦ p1)∗RΓZW•Ω
j+c
X×kY [c]

'−→ R(g ◦ p2)∗RΓZW•Ω
j+c
X×kY [c]

p2∗−−→ Rg∗W•Ω
j+c−dimX
Y [c− dimX].

We refer to the Sections 2, 3 and 5 of [CR12] for the notation and references and
just remark here the following:

• The maps p1 : X ×k Y → X and p2 : X ×k Y → Y denote the projections.
• The first arrow p∗1 is induced by the natural pullback map.
• The second arrow is induced by cup product with the cycle class cl([Z])

constructed by Gros in [Gro85].
• The third arrow is only a W•(k)-linear isomorphism. (It is an isomorphism

since Z ⊂ X ×S Y ).
• The forth map is the pushforward, the construction of which highly relies

on results of Ekedahl (see [Eke84]) and duality theory. Also that this
map is compatible with F , V , and d is a non-trivial fact due to general
constructions of Ekedahl. It is here where we need that Z is proper over
Y .

The maps H•([Z]) and H([Z]) are then defined by taking Hi and Hi ◦ R lim←− re-
spectively and summing over the various i, j ≥ 0. One checks by hand that these
morphisms become WOS-linear. Also notice that we do not know whether the
map in the derived category is compatible with composition, we know this only
after taking cohomology.

In order to obtain the vanishing results from the Sections 3 and 4 we also need
the following proposition.

Proposition 5.3 ([CR11, Prop 3.2.2], [CR12, Lem 3.6.1, Lem 3.6.2] ). In the
above situation assume that the dimension of Z is equal to the dimension of Y
(i.e. c = dimX) and fix an integer r ≥ 1. Then the restriction of H1([Z]) to

Rif∗Ω
j
X → Rig∗Ω

j
Y and the restriction of H([Z])Q to Rif∗WΩjX,Q → Rig∗WΩjY,Q

is the zero map in the following cases:

(i) codimX p1(Z) = r, j > dimX − r and i ≥ 0.
(ii) codimY p2(Y ) = r, j < r and i ≥ 0.

In particular if X and Y are integral and the closures of the projections of Z to X
and Y are strict subsets, then

H1([Z]) = 0 on Rif∗(OX ⊕ ωX)→ Rig∗(OY ⊕ ωY )

and

H([Z])Q = 0 on Rif∗(WOX,Q ⊕WωX,Q)→ Rig∗(WOY,Q ⊕WωY,Q).

In case resolutions of singularities hold for all closed subschemes of X and Y
of codimension at least r one obtains the same vanishing results for Hn([Z]) for
all n ≥ 1. (The reason we have it for H1([Z]) is the existence of a Künneth

decomposition for ΩjX×kY , which we do not have for WnΩjX×kY .)
With these techniques at hand it is easy to prove the Theorems 3.4 and 4.5. Let

us give a sample:

Proof of Theorem 3.4 for X and Y are smooth. Let f : X → S and g : Y → S
be two S-schemes, which are integral and smooth over k and let Z be a proper



12 KAY RÜLLING

birational correspondence between them, i.e. Z is an integral S-scheme and there
exist proper and birational S-morphisms Z → X and Z → Y . Clearly we may
assume that Z is an integral closed subscheme of X ×S Y . We obtain two maps in
the derived category of sheaves of k-vector spaces on S (see (5.2.1))

R[Z]1 : Rf∗(OX ⊕ ωX)→ Rg∗(OY ⊕ ωY )

and

R[Zt]1 : Rg∗(OY ⊕ ωY )→ Rf∗(OX ⊕ ωX).

Here Zt ⊂ Y ×S X denotes the transpose of Z. On the other hand using the bira-
tionality assumptions and the localization sequence for Chow groups it is straight-
forward to check that we have

[Z] ◦ [Zt] = [∆] + E in HomCS (Y/S, Y/S),

where ∆ ⊂ Y ×S Y denotes the diagonal and E is a cycle whose both projections
to Y are strict closed subsets. Therefore H1(E) = 0 on Rig∗(OY ⊕ωY ) for all i ≥ 0
by the proposition above. We obtain

Hi(R[Z]1 ◦R[Zt]1) = H1([Z]) ◦ H1([Zt]) = H1([∆] + E) = idRig∗(OY ⊕ωY ).

Similar with Hi(R[Zt]1 ◦R[Z]1), which yields the Theorem 3.4 in this case. �

Notice that under the above assumptions we in fact proved that R[Z]1 is a k-
linear isomorphism in the derived category

R[Z]1 : Rf∗(OX ⊕ ωX) ∼= Rg∗(OY ⊕ ωY ).

This together with the compatibility of R[Z]• with F , V and d enables us to use
Ekedahl’s Nakayama Lemma to deduce:

Theorem 5.4 ([CR12, Thm 5.1.10]). Under the above assumptions we have iso-
morphism in the derived category of sheaves of W (k)-modules on S

Rf∗(WOX ⊕WωX) ∼= Rg∗(WOY ⊕WωY ).

As a corollary we get:

Corollary 5.5 ([CR12, Thm 5.1.12]). Let X and Y be smooth, projective and
birational over k. Then we have isomorphisms for all i ≥ 0, which are compatible
with F , V , d

Hi(X,WOX) ∼= Hi(Y,WOY ), Hi(X,WωX) ∼= Hi(Y,WωY ).

Modulo torsion theWO-part of the above corollary was proven before by Ekedahl
using `-adic methods, see [Eke83].

6. Rational points over finite fields for regular models of Hodge
type ≥ 1

In this section k denotes a perfect field of characteristic p > 0. Let A be the
local ring at a closed point of a smooth curve over k. Denote by η its generic
point and by s its special point. Let X be an integral, regular and projective A-
scheme with smooth generic fiber (we could also allow X to have a model with
WO-rational singularities and smooth generic fiber) and assume that the degree

map induces an isomorphism CH0(Xη ×k(η) k(η)) ⊗Z Q ∼= Q, where k(η) is an
algebraic closure of k(η). Then a particular case of [CR12, Thm 4.8.1] yields the
vanishing Hi(X,WOX,Q) = 0 for all i > 0. Now one would like to conclude from
this by a kind of base change argument, similar to the reasoning in the proof of
Proposition 3.5 the vanishing modulo torsion of the Witt vector cohomology of the
special fiber Xs. Unfortunately we cannot make this work at the moment. But
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using the machinery of p-adic Hodge theory we prove in [BER12] the following
(stronger) version of a mixed characteristic analog of the above situation.

Theorem 6.2 ([BER12, Thm 1.3]). Let R be a discrete valuation ring of mixed
characteristic (0, p) with perfect residue field k. Denote by η the generic point of
SpecR and by s its closed point. Let X be a regular, proper and flat R-scheme and
assume Hi(Xη,OXη ) = 0 for some i ≥ 1. Then

Hi(Xs,WOXs)Q = 0.

Using (3.5.1) we get the following:

Corollary 6.3 ([BER12, Thm 1.1]). Let R and X be as above. Additionally
assume that k is a finite field, Xη is geometrically connected and that we have
Hi(Xη,OXη ) = 0 for all i ≥ 1. Then for any finite field extension k′ of k we have

|Xk(k′)| ≡ 1 mod |k′|.

A particular case of the generalized Hodge conjecture predicts the equivalence
of the following two statements for i ≥ 1 in the case Xη is projective over η:

(i) Hi(Xη,OXη ) = 0.

(ii) The algebraic de Rham cohomology Hi
dR(Xη) is supported in codimension

one, i.e. there exists some non-empty open subset U ⊂ Xη such that the
restriction Hi

dR(Xη)→ Hi
dR(U) is the zero map.

(It is known that (ii) implies (i), the generalized Hodge conjecture is needed for the
other direction.) Denote by η̄ a geometric point over η, then by Artin’s comparison
theorem of singular cohomology with étale cohomology (ii) is also equivalent to:

(ii)’ For some prime `, there exists a non-empty open subset U ⊂ Xη such that
the restriction map Hi

ét(Xη̄,Q`)→ Hi
ét(Uη̄,Q`) on `-adic étale cohomology

vanishes.

Assuming condition (ii)’ instead of (i) for all i ≥ 1 the corollary was already proved
before by Esnault in [Esn06] (there R is even allowed to be of equicharacteris-
tic p). Thus the above corollary was already predicted by the generalized Hodge
conjecture.

In case the modelX has semi-stable reduction Theorem 6.2 follows from standard
results of p-adic Hodge theory (”the Newton polygon of the filtered (ϕ,N)-module
Hi

log-crys(Xs/W (k))⊗Frac(R) ∼= Hi
dR(Xη/η) lies above its Hodge polygon”). Using

de Jong’s alteration theorem and cohomological descent one reduces the proof of
Theorem 6.2 to the following theorem (see the introduction of [BER12] for details):

Theorem 6.4 ([BER12, Thm 1.5]). Let R be as in Theorem 6.2 and f : Y → X
an alteration, i.e. a projective, surjective and generically finite morphism, between
regular, flat and finite type R-schemes. Then for all i ≥ 0 the pullback map

f∗s : Hi(Xs,WOXs)Q ↪→ Hi(Ys,WOYs)Q
is injective, where fs : Xs → Ys denotes the pullback of f along s ↪→ SpecR.

Let us explain the idea of the proof. By assumption we can factor f as a composi-
tion of a regular closed immersion i : Y ↪→ P := PrX with the projection π : P → X.
Denote by is : Ys ↪→ Ps and πs : Ps → Xs their pullback along s ↪→ SpecR. Since
everything is flat over R the closed immersion is is still regular. The theorem now
follows from the existence of WnOXs -linear maps

τis,πs,n : Rfs∗WnOYs →WnOXs ,
which are compatible with restriction and have the property that the composition

(6.4.1) WnOXs
f∗s−→ Rfs∗WnOYs

τis,πs,n−−−−−→WnOXs
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is multiplication with the degree of f , for all n ≥ 1.
First we explain how to define a map τf : Rf∗OY → OX as above: By duality

theory to define such a map is equivalent to defining an OY -linear morphism

(6.4.2) OY → f !OX = i!π!OX ∼= (

r∧
I/I2)∨ ⊗OY i∗ΩrP/X ,

where I is the ideal sheaf of the regular closed immersion Y ↪→ P . Thus one can
take τf to be the map induced by ∧rd :

∧r I/I2 → i∗ΩrP/X and check that it is

in fact independent of the chosen factorization f = π ◦ i. The analog of property
(6.4.1) is proved using computations with the residue symbol. Unfortunately there
is no relative duality theory developed so far for WnO-modules. (The absolute
duality theory for the de Rham-Witt complex of smooth schemes over a perfect
field developed by Ekedahl and which is heavily used in [CR12] does not suffice in
this situation.) The way around is to unravel the duality theory in the definition
of τf and try to imitate this on the WnO-level using an ad hoc approach: Recall
that the fundamental local isomorphism yields an isomorphism

(

r∧
I/I2)∨ ⊗OY i∗ΩrP/X ∼= ī∗Extr(i∗OY ,ΩrP/X),

where ī : (Y,OY )→ (P, i∗OY ) is the canonical map of locally ringed spaces. There-
fore (6.4.2) gives a canonical map

(6.4.3) OY → ī∗Extr(i∗OY ,ΩrP/X),

which can be described explicitly using symbols (see [BER12, Sec 4]). Then the
map τf is given by the composition of Rf∗(6.4.3) with the trace map

Rf∗ī
∗Extr(i∗OY ,ΩrP/X)→ OX ,

which itself is induced by the composition of Rπ∗ applied to the natural map

Extr(i∗OY ,ΩrP/X)→ Extr(OP ,ΩrP/X) ∼= ΩrP/X [r]

with the projective trace map

Rπ∗Ω
r
P/X [r] ∼= OX .

Now the general approach is to replace in the above construction O by WO and
ΩrP/X by the degree r part of the relative de Rham-Witt complex WnΩrPs/Xs con-

structed in [LZ04] and to imitate the above construction. This occupies Sections
5, 6 and 7 of [BER12]. In this way we obtain the map τis,πs,n for general n. The
property (6.4.1) is then proved in Section 8 of loc. cit. by a comparison of the map
τis,πs,n with the reduction of τf modulo mn+1. Notice that we don’t check that the
maps τis,πs,n are independent of the factorization f = π ◦ i, which is not needed for
the injectivity result of Theorem 6.4.

7. Reciprocity Functors

Recall that the key tool to prove the main results in the Sections 3 and 4 was
the action of certain correspondences described in section 5. Also one of the main
ingredients in proving Theorem 6.2 was the construction of a kind of pushforward
map Rfs∗WnOYs → WnOXs (with the notation from Section 6), which naturally
raises the question whether there is a cycle action lurking in the background. (For
example the map τis,πs,n from Section 6 should then be given by the action of the
graph of f , Γf ⊂ Y ×Y X.) Therefore one would like to view the cohomology
theories appearing in the Sections 3–6 as something motivic. This is very vague
and in fact cannot be stated more precisely at the moment, since the motivic theory
developed so far aims to explain only A1-homotopy invariant theories, which none
of the above cohomology theories is. In Chapter 5 we want to go a little step in the
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direction of non-homotopy invariant motives. More precisely we are seeking for a
replacement of the homotopy invariant Nisnevich sheaves with transfers which play
a crucial role in the theory of motives as developed by Voevodsky et al. (see e.g.
[Voe00b]). Let us explain this in a little bit more detail.

Let k be a perfect ground field of characteristic p ≥ 0. Denote by Smk the
category of smooth separated k-schemes and denote by SmCork the category with
the same objects but with morphisms given by

HomSmCork(X,Y ) = Cor(X,Y ).

Here Cor(X,Y ) denotes the group of finite correspondences from X to Y , i.e. the
free abelian group generated by integral closed subschemes V ⊂ X ×k Y which are
finite and surjective over a connected component of X. The composition is defined
in a similar way to the one defined for CS at the beginning of Section 5, but instead
of Fulton’s refined Gysin homomorphism one can use the physical intersection of
cycles with multiplicities given by Serre’s Tor-formula. (Notice that there is a
natural contravariant functor SmCorok → Ck.) Now Voevodsky defines a homotopy
invariant Nisnevich sheaf with transfers to be a contravariant additive functor F :
SmCorok → (abelian groups), which is a sheaf in the Nisnevich topology on Smk

with the property that the pullback along the projection p∗1 : F (X)→ F (X ×k A1)
is an isomorphism for all X ∈ Smk (see [Voe00b, 3.1]). We denote by HINis the
category of homotopy invariant Nisnevich sheaves with transfers.

In the following a point over k, or for short a k-point, is a point x = SpecK,
where K is a finitely generated field extension of k. We denote by ptk the category
of k-points, with the obvious morphisms. For a k-point x we define

(7.1.4) F̂ (x) = lim−→
U3x

F (U),

where the limit is over all smooth models of x. Then it follows from [Voe00b, Prop.
3.1.11] and [Voe00a, Cor. 4.19] that for any smooth k-scheme X with generic point

η and any F ∈ HINis the natural map F (X)→ F̂ (η) is injective. Furthermore, for

any map of k-points f : x → y we naturally obtain a pullback f∗ : F̂ (y) → F̂ (x)
and if f is finite also a pushforward or trace

f∗ = Trf = Trx/y : F̂ (x)→ F̂ (y).

(Since the transpose of the graph of f spreads out to a finite correspondence from
a model of y to a model of x.) There are some natural compatibilities, which
the pushforward and pullback satisfy. A functor ptok → (abelian groups) with these
properties is called a Mackey functor and we denote by MF the category of Mackey
functors. Thus we obtain a functor

HINis →MF, F 7→ F̂

which is conservative by [Voe00a, Prop. 4.20]. On the other hand only considering
points makes it harder to express the homotopy-invariance, which involves the 1-
dimensional scheme A1

k. (In fact it is possible via the theory of Rost cycle modules,
but there one needs some extra data for each geometric discrete valuation defined
on finitely generated field extensions of k, see [Dég03].) Therefore it is natural to

consider the category Reg≤1
k of regular at most 1 dimensional k-schemes, which are

of finite type over some k-point and we can define the category Reg≤1Cork in an
analog way to SmCork. We make the following definition:

Definition 7.2. A Mackey functor with specialization map is a contravariant func-
tor M : Reg≤1Corok → (abelian groups), which satisfies the following conditions:

(Nis) M is a sheaf in the Nisnevich topology on Reg≤1
k .



16 KAY RÜLLING

(Inj) For all open immersions j : U ↪→ V between connected schemes in Reg≤1
k

the restriction map

j∗ :M(V ) ↪→M(U)

is injective.
(FP) For all connected X ∈ Reg≤1

k with generic point η the natural map

lim−→
U⊂X

M(U)
'−→M(η)

is an isomorphism, where the limit is over all non-empty open subsets
U ⊂ X.

We denote the category of Mackey functors with specialization map by MFsp.

In particular if C is a regular curve, which is of finite type over some k-point
and P ∈ C is a closed point, the graph of the inclusion P ↪→ C defines a finite
correspondence from P to C and hence induces a specialization map

sP :M(C)→M(P )

for any M∈MFsp. This explains the name. We obtain a conservative functor

HINis →MFsp, F 7→ F̂

and the A1-homotopy invariance translates in

s1 = s0 : F̂ (A1
x)→ F̂ (x)

for all k-points x. A key example for an object in HINis is given by the algebraic
group Gm and more general by any semi-abelian variety. Now we want to relax
the A1-homotopy invariance condition in such a way that also Ga and more general
any connected smooth commutative algebraic group satisfies this new condition. It
was suggested by B. Kahn that the modulus condition of Rosenlicht-Serre might
be a good replacement. This motivates the following definition:

Definition 7.3. A reciprocity functor is a Mackey functor with specialization map
M, such that for any regular connected curve, which is projective over some k-
point, any non-empty open subset U ⊂ C and any section a ∈ M(U), there exists
an effective divisor m with support equal to C \U satisfying the following condition

(MC)
∑
P∈U

vP (f)TrP/xCsP (a) = 0, for all f ∈ k(C)× with f ≡ 1 mod m

where the sum is over all closed points P ∈ U , vP is the associated normalized
discrete valuation, xC = SpecH0(C,OC) and the condition f ≡ 1 mod m means∑
P∈C\U vP (f − 1) · [P ] ≥ m.

The condition (MC) is exactly the modulus condition of Rosenlicht-Serre for
smooth, connected and commutative algebraic groups in [Ser84, III, §1] (there only
for curves over an algebraically closed ground field). Also we learned that in the
90’s Bruno Kahn was working on a similar but more global approach of Mackey
functors with reciprocity, see [Kah]. We denote by RF the category of reciprocity
functors. The name ”reciprocity functor” comes from the following fact, which is
proven as in [Ser84, III]: Let M be a reciprocity functor. Then for any regular
connected curve C which is projective over some k-point and with generic point η,
there exists a family of biadditive pairings

(−,−)P :M(η)×Gm(η)→M(xC)

indexed by the closed points P ∈ C satisfying the following conditions:

(i) For all P ∈ C and all a ∈ M(η), there exists an integer n0 ≥ 1 such that
(a, f)P = 0 for all f ∈ k(C)× with vP (f − 1) ≥ n0.
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(ii) For all P ∈ C, all open neighborhoods U of P and all a ∈ M(U) we have
(a, f)P = vP (f)TrP/xCsP (a) for all f ∈ Gm(η).

(iii) For all a ∈ M(η) and all f ∈ Gm(η) we have
∑
P∈C(a, f)P = 0. (Notice

that the sum is finite by (ii).)

Furthermore the family {(−,−)P }P∈C is uniquely determined by the above prop-
erties and is called the family of local symbols attached toM. For P ∈ C as above
we can use the symbol to define the following groups

Fil0PM(η) =MC,P = lim−→
U3P
M(U),

and for n ≥ 1

FilnPM(η) = {a ∈M(η) | (a, u)P = 0 for all u ∈ 1 + mnP },

where mP denotes the maximal ideal in OC,P . Thus the Fil•PM(η) form an in-
creasing and exhaustive filtration of M(η). We denote by RFn, n ≥ 0 the full
subcategory of RF whose objects satisfy FilnPM(η) = M(η) for all curves C and
closed points P ∈ C as above. We have the following examples (see [IR, Sec 2]):

• We have a conservative functor HINis → RF1, F 7→ F̂ .
• Any smooth, connected and commutative algebraic group G over k defines

a reciprocity functor, more precisely we have:

G ∈


RF0 if G is an Abelian variety,

RF1 if G is an semi-Abelian variety,

RF \
⋃
n≥0 RFn if G is unipotent.

In case G = Gm the symbol equals the tame symbol composed with the
norm,

(a, f)P = (−1)vP (a)vP (f)NmP/xC (
avP (f)

fvP (a)
);

in case G = Ga the symbol equals the residue map,

(a, f)P = ResP (a
df

f
).

• For n ≥ 1 the functor ptk 7→ (abelian groups), x 7→ KM
n (x) = n-th Milnor

K-theory of k(x), can be extended to a reciprocity functor, which for n = 1
coincides with Gm. (This can be checked directly via the theory of Rost
cycle modules from [Ros96], but is also a special case of the first example
by [Dég03].)

• For all n ≥ 1, the absolute Kähler differentials Reg≤1
k 3 X 7→ ΩnX/Z have

the structure of a reciprocity functor. For n = 0 it coincides with Ga.

7.3.1. K-groups of reciprocity functors. LetM1, . . . ,Mn be a finite family of reci-
procity functors in RF1 which admit fine symbols, i.e. for each regular, connected
curve C, which is projective over some k-point and with generic point η and each
closed point P ∈ C there is a biadditive pairing

∂P :Mi(η)×Gm(η)→Mi(P ),

such that (−,−)P = TrP/xC ◦∂P . Then one can define define for each k-point x the
Somekawa K-group K(x;M1, . . . ,Mn). It is defined as a quotient of the tensor
product of Mackey functors (M1 ⊗M . . .⊗MMn)(x) by the relations

(SK)
∑
P∈C

TrP/x(sP (a1)⊗ . . . ∂P (ai(P ), f) . . .⊗ sP (an)) = 0,
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where the ai’s are in Mi(η) and we assume that for all P ∈ C there exists an
index i(P ) such that ai ∈ Mi,C,P for all i 6= i(P ) and f ∈ k(C)× is any non-
zero function. This definition was first introduced for semi-Abelian varieties by
Somekawa following an idea of Kato in [Som90]. It was modified to work in various
other situations by several authors, see [RS00], [Akh04], [KY11]. There are two
problems with this definition: First it does not generalize to reciprocity functors
which do not have a fine symbol (such as Ga in the case k has positive characteristic)
and second it has a priori only the structure of a Mackey functor and not of a
reciprocity functor. The K-groups of reciprocity functors constructed in [IR, Sec
4] solve both this problems.

More precisely, let M1, . . . ,Mn,N be reciprocity functors. Then we say that
a collection Φ of maps Φ(X) : M1(X) × . . . × Mn(X) → N (X), for integral

X ∈ Reg≤1
k , is an n-linear map of reciprocity functors if all the Φ(X) are n-linear

maps of Z-modules, which are compatible with pullbacks and satisfy a certain
projection formula and for all integers r1, . . . , rn ≥ 1 and any regular curve which
is projective over some k-point and has generic point η and all closed points P ∈ C
we have

(L3) Φ(Filr1PM1(η)× . . .× FilrnP Mn(η)) ⊂ Fil
max{r1,...,rn}
P N (η).

Then in the above above situation we have the following Theorem:

Theorem 7.4 ([IR, Thm 4.2.4]). The functor from RF to the category of abelian
groups, which sends a reciprocity functor N to the abelian group of n-linear maps
fromM1×. . .×Mn to N is representable by a reciprocity functor T (M1, . . . ,Mn).

Roughly the construction of T also starts from the tensor product of Mackey
functors as in the Somekawa case but the relation (SK) is replaced by the following
relation: ∑

P∈C\|maxi{mi}|

vP (f)TrP/x(sP (a1)⊗ . . .⊗ sP (an)),

where C is a regular connected curve which is projective over some k-point x, the
mi are effective divisors on C, such that ai ∈ M(C \ |mi|) has modulus mi, for all
i = 1, . . . , n, and f ∈ k(C)× is a function satisfying f ≡ 1 mod maxi{mi}. And
then one needs to divide out some more relations to guarantee the property (Inj).
Actually one would like to call T a tensor functor and it has also all the properties
(commutativity, compatibility with direct sums, unit) but the associativity. In
general the universal property only gives a surjection

T (M1,M2,M3)→ T (T (M1,M2),M3).

Here again one problem which is in the way of associativity is the unnatural property
(Inj) (but also (L3) causes problems). Let us point out that it is a priori not clear at
all whether the groups T (M1, . . . ,Mn)(x) coincide with the Somekawa K-groups,
in case the latter are defined. But in fact they do in all the examples below, where
it is shown by computing both sides directly. We have the following computations:

Theorem 7.5 ([IR, Thm 5.1.8]). Let F1, . . . , Fn ∈ HINis be homotopy invariant
Nisnevich sheaves with transfers. There exists a canonical and functorial isomor-
phism of reciprocity functors

T (F̂1, . . . , F̂n)
∼−→ (F1 ⊗HINis

· · · ⊗HINis
Fn)̂ .

This result was suggested by the main Theorem in [KY11], which proves the
corresponding statement on étale k-points with the left hand side replaced by the
Somekawa type K-groups. In particular we obtain an isomorphism

K(k; F̂1, . . . , F̂n) ∼= T (F̂1, . . . , F̂n)(k).
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But notice that we don’t know the relation between the two groups on function
fields in positive characteristic. (Except in the case where the Fi are split tori, see
below.) In the same way as in [KY11] one can deduce form the above theorem:

Corollary 7.6 ([IR, Cor 5.2.5]). Let X1, . . . , Xn be smooth projective k-schemes
and r ≥ 0 an integer. Then for all S-points x we have an isomorphism

T (CH0(X1), . . . ,CH0(Xn),G×rm )(x) ∼= CH0(X1,x ×x . . .×x Xn,x, r).

The version of this corollary using Somekawa K-groups was first proved in [RS00]
(see also [Akh04]).

Theorem 7.7 ([IR, Thm 5.3.3]). For all n ≥ 1 and all k-points x, there is a
canonical isomorphism

T (G×nm )(x)
'−→ KM

n (x),

where KM
n (x) denotes the n-th Milnor K-group of k(x).

The version of this theorem using Somekawa K-groups is proved in [Som90].
In particular we have an isomorphism of Mackey functors K(−;T1, . . . , Tn) ∼=
T (T1, . . . , Tn), where the Ti are split tori.

A form of the following theorem was suggested by B. Kahn.

Theorem 7.8 ([IR, Thm 5.4.7]). There is a natural morphism of reciprocity func-
tors

θ : Ωn−/Z → T (Ga,G×nm ),

which is an isomorphism if the characteristic of k is zero.

The map θ is constructed using a presentation of Ωnx/Z as a quotient of k(x)⊗Z

(k(x)×)⊗n from [BE03b]. In characteristic zero it is easy to see that the filtration

Fil•PGa(η), for C ∈ Reg≤1
k a curve with generic point η and P ∈ C a closed point, is

the pole order filtration. It is therefore straightforward to check, that the collection
of maps

Ga(X)⊗Z Gm(X)⊗n → ΩnX/Z(X), (a, b1, . . . , bn) 7→ a
db1
b1
∧ . . . ∧ dbn

bn
,

for integral X ∈ Reg≤1
k , satisfies the condition (L3) above and hence induces an

(n + 1)-linear map of reciprocity functors. The universal property of T thus gives
a map in the other direction, which is inverse to θ.

Combining the above theorem with the theorem of Bloch and Esnault in [BE03a]
which identifies Ωn−1

x/Z with the additive higher Chow groups of x of level n and with

modulus 2, we obtain

T (Ga,G×n−1
m )(x) ∼= TCHn(x, n, 2), if char(k) = 0.

In positive characteristic it is not true any more that the map θ above is an
isomorphism. The reason is essentially that in positive characteristic the algebraic
group (or the reciprocity functor) Ga has more endomorphisms than in character-
istic zero, namely the absolute Frobenius comes into the game. This forces the
following:

Corollary 7.9 ([IR, Cor 5.4.12]). Assume the characteristic of k is p > 0. Then
for all k-points x we have a surjective morphism

Ωnx/Z/B∞ � T (Ga,G×nm )(x)
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and the following commutative diagram

Ωnx/Z/B∞
C−1

//

����

Ωnx/Z/B∞

����
T (Ga,G×nm )(x)

F⊗id // T (Ga,G×nm )(x),

where F : Ga → Ga is the absolute Frobenius, C−1 : Ωnx/Z → Ωnx/Z/dΩn−1
x/Z is the

inverse Cartier operator and B∞ is the union over Bn, where B1 = dΩn−1
x/Z and Bn

is the preimage of C−1(Bn−1) in Ωnx/Z for n > 2.

One would like to define an inverse of the map Ωnx/Z/B∞ � T (Ga,G×nm )(x)

above by sending an element (a, b1, . . . , bn) ∈ Ga(x)×Gm(x)×n to adb1b1 ∧ . . .∧
dbn
bn

in Ωnx/Z/B∞ and use the universal property of T . But we don’t know whether

the condition (L3) above is satisfied (and thus whether it is an (n+ 1)-linear map
of reciprocity functors). The problem is that we do not know how to control the
filtration Fil•PGa(η) in the case where C is a regular projective curve over some
k-point x and P ∈ C is a closed point which is purely inseparable over x.

The following result was suggested by B. Kahn and is proved by an easy com-
putation:

Theorem 7.10 ([IR, Thm 5.5.1]). Assume the characteristic of k is not 2. Let
M1, . . . ,Mn be reciprocity functors. Then

T (Ga,Ga,M1, . . . ,Mn) = 0.

Let us end with the following comment: The category of reciprocity functors
defined above is only the first attempt to get in the direction of a nice theory of
non-homotopy invariant Nisnevich sheaves with transfers. One wish for a more
general theory surely is to get something more global; the other wish is to replace
the very artificial condition (Inj) (which causes lots of problems) by some more
natural conditions, which force the condition (Inj) to hold and still are satisfied
by the above examples. There is work in progress by B. Kahn, S. Saito and T.
Yamazaki, which solves these problems (and goes beyond).
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no. 12, 627–629.
[Eke84] , On the multiplicative properties of the de Rham-Witt complex. I, Arkiv för

Matematik 22 (1984), no. 2, 185–239.

[Eke85] , On the multiplicative properties of the de Rham-Witt complex. II, Arkiv för
Matematik 23 (1985), no. 1, 53–102.
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