The Fargues-Fontaine-Curve Chapter 8: The ring B

Setting:

• $q = p^r \in \mathbb{N}$ with $p \in \mathbb{P}$ fixed

• E/\mathbb{Q}_p finite extension

• $(\mathcal{O}_E, (\pi))$ ring of integers of E with uniformizer $\pi \in \mathcal{O}_E$

• $\mathbb{F}_q = \mathcal{O}_E/(\pi)$ residue field

• $(F/\mathbb{F}_q, |-|)$ a non-archimedian algebraically closed extension with a norm $|-|: F \to \mathbb{R}_{\geq 0}, \ a \mapsto q^{-v(a)}$ corresponding to a valuation $v: F \to \mathbb{R} \cup \{+\infty\}$.

• $(\mathcal{O}_F, \mathfrak{m}_F)$ ring of integers of F with $\mathcal{O}_F := \{x \in F | |x| \le 1\}$ and $\mathfrak{m}_F := \{x \in F | |x| < 1\}$

• C/E algebraic closed, non-archimedian extension with a valuation $v_C: C \to \mathbb{R} \cup \{+\infty\}$, such that (\mathcal{O}_C, v_C) as valuation ring

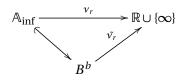
In a talk before we have seen that for all $r \ge 0$ there are valuations

$$\begin{split} v_r : \mathbb{A}_{\inf} &\to \mathbb{R} \cup \{\infty\} \\ f &= \sum_{i=0}^{\infty} [x_i] \cdot \pi^i \mapsto \inf_{i \in \mathbb{Z}} \{v(x_i) + ir\} \end{split}$$

Newt(f) is the convex, decreasing, piecewise linear function with Legendre transform

$$\mathscr{L}(\operatorname{Newt}(f)) := \begin{cases} v_r(f) & , r \ge 0 \\ -\infty & , r < 0 \end{cases}$$

The following commutative diagram



with

$$B^{b} := \mathbb{A}_{\inf}[\frac{1}{\pi}, \frac{1}{[\omega]}] = \{ \sum_{n > -\infty}^{\infty} [x_{n}] \pi^{n} | \inf_{i \in \mathbb{Z}} \{v(x_{i})\} > -\infty \}$$

$$\begin{split} \tilde{v_r} : B^b &\to \mathbb{R} \cup \{\infty\} \\ f &= \sum_{n > -\infty}^{\infty} [x_n] \pi^n \mapsto \inf_{i \in \mathbb{Z}} \{v(x_i) + i\, r\} \end{split}$$

defines an extension $\tilde{v_r}$ of v_r to B^b and $\overline{\omega} \in \mathfrak{m}_F \setminus \{0\}$. Futhermore

$$\mathcal{L}(\operatorname{Newt}(f)) := \begin{cases} \tilde{v_r}(f) & , r \ge 0 \\ -\infty & , r < 0 \end{cases}.$$

is the corresponding extension from Newt(f) to B^b .

Definition 1. Let $I \subset (0,\infty)$ be an interval. The completion of B^b for the family of valuations $(v_r)_{r \in I}$ is given by

$$B_I = \varprojlim_{\mathscr{U} \in \mathscr{F}} B^b / \mathscr{U}$$

with the fundamental system $\mathscr{F}:=\{\bigcap_{i=1}^n v_{r_i}^{-1}[m,\infty)|n,m\in\mathbb{N},r_i\in I\}\subset B^b.$

Bemerkung 2. The completion comes from the following idea in commutative algebra: Let R be a topological ring $s.th.\ 0$ has a fundamental system $\mathcal{F} = \{\mathcal{U} \text{ neighborhood of } 0 | \mathcal{U} \text{ subgroups} \}$. Then the ring

$$\hat{R} = \varprojlim_{\mathcal{U} \in \mathcal{F}} R/\mathcal{U}$$

is the completion of R.

Definition 3. We set $B := B_{(0,\infty)}$.

For any $I \subset (0,\infty)$ there is the interval $qI := \{q \cdot y | y \in I\} \subset (0,\infty)$ and the bijective map of sets

$$I \to qI$$
$$y \mapsto q \cdot y$$

and the commutative diagram

$$B^{b} \xrightarrow{\varphi} B^{b}$$

$$\downarrow \qquad \qquad \downarrow$$

$$B_{I} \xrightarrow{\tilde{\varphi}} B_{qI}$$

with the maps

$$\varphi: B^b \xrightarrow{\sim} B^b$$

$$\sum_{n >> -\infty}^{\infty} [x_n] \pi^n \mapsto \sum_{n >> -\infty}^{\infty} [x_n^q] \pi^n$$

$$B^b \to B_I$$

$$x \mapsto (x + \mathcal{U})_{\mathcal{U} \in \mathcal{F}_I}$$

$$\tilde{\varphi}: B_I \xrightarrow{\sim} B_{qI}$$

$$(\sum_{n >> -\infty}^{\infty} [x_{n,\mathcal{U}}] \pi^n + \mathcal{U})_{\mathcal{U} \in \mathcal{F}_I} \mapsto (\sum_{n >> -\infty}^{\infty} [x_{n,\mathcal{U}}^q] \pi^n + \mathcal{U})_{\mathcal{U} \in \mathcal{F}_{qI}}$$

and the obvious inverse map

$$\psi: B^b \to B^b$$

$$\sum_{n > -\infty}^{\infty} [y_n] \pi^n \mapsto \sum_{n > -\infty}^{\infty} [(y_n)^{\frac{1}{q}}] \pi^n$$

$$\tilde{\psi}: B_{qI} \to B_I$$

$$(\sum_{n > -\infty}^{\infty} [x_{n,\mathcal{U}}] \pi^n + \mathcal{U})_{\mathcal{U} \in \mathcal{F}_{ql}} \mapsto (\sum_{n > -\infty}^{\infty} [x_{n,\mathcal{U}}^{-q}] \pi^n + \mathcal{U})_{\mathcal{U} \in \mathcal{F}_I}$$

is the extension by continuity of B^b .

Question: Why is $\tilde{\varphi}$ well-defined?

Answer: Let

$$\forall \mathcal{U} = \bigcap_{i=0}^{k} v_i^{-1}([m, \infty)) \in \mathcal{F}_I : \sum_{n > -\infty}^{\infty} [x_{n, \mathcal{U}}] \pi^n \in \mathcal{U}.$$

We have to show

$$\sum_{n>>-\infty}^{\infty}[(x_{n,\mathcal{U}})^q]\pi^n\in\mathcal{V}=\bigcap_{j=0}^lv_{r_j}^{-1}([q\cdot m,\infty))\in\mathcal{F}_{qI.}$$

For all $j \in \{0, ..., l\}$ it holds

$$v_{r_j}(\sum_{n > -\infty}^{\infty} [(x_{n,\mathcal{U}})^q] \pi^n) = \inf_{n \in \mathbb{Z}} \{v(x_{n,\mathcal{U}}^q) + n \cdot r_j\} = \inf_{n \in \mathbb{Z}} \{q \cdot v(x_{n,\mathcal{U}}) + q \cdot n \cdot r_i\} = q \cdot \inf_{n \in \mathbb{Z}} \{v(x_{n,\mathcal{U}}) + n \cdot r_i\} \ge q \cdot m.$$

The reason or this inequality is that $r_j \in qI$ for all $j \in \{0,...,l\}$ and v is a valuation on F.

If $I = (0, +\infty)$ then we have the commutative diagram

$$\begin{array}{ccc}
B^b & \xrightarrow{\varphi} B^b \\
\downarrow & & \downarrow \\
V & \tilde{\varphi} & \downarrow \\
B & \xrightarrow{\tilde{\varphi}} B
\end{array}$$

An alternative definition of B is used in the following examples and is given by

Definition 4. Let $I \subset (0,1)$ be an interval. The completion of B^b for the family of norms $(|.|_{\rho})_{\rho \in I}$ is given by

$$B_I = \varprojlim_{\mathscr{U} \in \mathscr{F}} B^b / \mathscr{U}$$

and the open neighbourhoods \mathcal{U} of 0 are given by the topology of the complete norm

$$||.||_I = \sup_{\rho \in I} |.|_{\rho} : B_I \to [0, +\infty].$$

Here is

$$|.|_{\rho}: B^{b} \to \mathbb{R} \cup \{+\infty\}$$

$$\sum_{n > -\infty}^{\infty} [x_{n}] \pi^{n} \mapsto \sup_{n \in \mathbb{Z}} |x_{n}| \rho^{n}$$

for every $\rho \in (0,1)$. For every $\rho \in (0,1)$ there exists an unique element $r \in (0,+\infty)$, such that $\rho = q^r$ and $|.|_{\rho} = \rho^{-\nu_r(.)}$, where

$$\nu_r: B^b \to \mathbb{R} \cup \{+\infty\}$$

$$\sum_{n >> -\infty}^{\infty} [x_n] \pi^n \mapsto \inf_{n \in \mathbb{Z}} \{\nu_r(x_n) + nr\}$$

are the previous valuations $\forall r > 0$. The change from a norm $|.|_{\rho}$ and the corresponding valuation v_r for $a \ \rho \in (0,1)$ and $r \in (0,\infty)$ such that $\rho = q^r$ changes the open intervals (0,1) and $(0,+\infty)$. In this sense the definitions are compatible.

Beispiel 5. Let $I = [\rho_1, \rho_2] \subset (0,1]$ with $a, b \in F$ s.th. $|a| = \rho_1$ and $|b| = \rho_2$. Furthermore $B := B_{(0,1)}$ in this situation. Then it follows

$$B(0,1) = \{x \in B^b | ||x||_I \le 1\} = A_{\inf}[\frac{[a]}{\pi}, \frac{\pi}{[b]}]$$

with $B^b = \mathbb{A}_{\inf}[\frac{1}{\pi}, \frac{1}{[\overline{\omega}]}]$, the norm $||.||_I : \sup_{\rho \in I} |.|_{\rho} : B_I \to [0, +\infty]$ and $B_I = \mathbb{A}_{\inf}[\frac{[a]}{\pi}, \frac{\pi}{[b]}][\frac{1}{\pi}]$ in the π -adic topology. Here is

$$|.|_{\rho}: B^{b} \to [0, +\infty]$$

$$\sum_{n >> -\infty}^{\infty} [x_{n}] \pi^{n} \mapsto \inf_{n \in \mathbb{N}} \{v(x_{n}) \rho^{n}\}$$

 $\forall \rho \in I$.

Definition 6. The schematic Fargues-Fontaine curve is defined as

$$X:=X_{E,F}:=\operatorname{Proj}(\bigoplus_{d\geq 0}B^{\varphi=\pi^d})$$

with $B^{\varphi=\pi^d} = \{x \in B | \varphi(x) = \pi^d \cdot x\}$ for all $d \ge 0$.

Beispiel 7. We consider the simpler setting $E = \mathbb{Q}_p \subset F = \operatorname{Quot}(\mathscr{O}_C^b)$ with $C = \widehat{\mathbb{Q}_p}$ and $B = B_{(0,1)}$ to look at the graded ring structure of the ring $\bigoplus_{n \in \mathbb{Z}} B^{\varphi = p^n}$. Let $f \in B^{\varphi = p^m}$, $g \in B^{\varphi = p^n}$ and then the graded ring structure is given by

$$\varphi(f\cdot g)=\varphi(f)\cdot \varphi(g)=(p^m\cdot f)\cdot (p^n\cdot f)=p^{m+n}\cdot f\in B^{\varphi=p^{m+n}}$$

For $f = \sum_{n \in \mathbb{Z}} [c_n] \cdot p^n \in \bigoplus_{n \in \mathbb{Z}} B^{\varphi = p^n}$ converging, i.e. $c_n \in C^b$ for all $n \in \mathbb{Z}$ with $\limsup_{n > 0} |c_n|^{\frac{1}{n}} \le 1$ and $\lim_{n \to \infty} |c_{-n}|^{\frac{1}{n}} = 0$, it follows by Definition

$$\sum_{n\in\mathbb{Z}}[c_n^p]\cdot p^n=\varphi(f)=p^k\cdot f=\sum_{n\in\mathbb{Z}}[c_n^p]\cdot p^{n+k}=\sum_{n\in\mathbb{Z}}[c_{n-k}]\cdot p^n.$$

Hence $c_{n-k} = c_n^p$ for all $n, k \in \mathbb{Z}$.

1. case: Suppose that k < 0. For all $n \in \mathbb{Z}$ we consider the sequence $c_{n+k} = c_n^{\frac{1}{p}}, c_{n+2k} = c_n^{\frac{1}{p^2}}, c_{n+3k} = c_n^{\frac{1}{p^3}}, \dots$

2.case: Let k = 0. Hence $c_n = c_n^p$ for all $n \in \mathbb{Z}$, i.e. $c_n \in \mathbb{F}_p \subset C^b$. This induce a map

$$\mathbb{F}_p \to W_{\mathcal{O}_E}(\mathbb{F}_p) \hookrightarrow W_{\mathcal{O}_E}(\mathbb{F}_p)[\frac{1}{p}] := W(\mathbb{F}_p)[\frac{1}{p}] = \mathbb{Q}_p \to B^{\varphi = \pi}$$

$$c_n \mapsto [c_n] \mapsto [c_n] \mapsto [c_n] \cdot p^n$$

<u>3.case</u>: Let k > 0. Then from the condition $c_{n-k} = c_n^p$ is follows

$$c_{k}^{p} = c_{0} \Rightarrow c_{k} = c_{0}^{\frac{1}{p}}$$

$$c_{k+1}^{p} = c_{1} \Rightarrow c_{k+1} = c_{1}^{\frac{1}{p}}$$

$$c_{k+2}^{p} = c_{2} \Rightarrow c_{k+2} = c_{2}^{\frac{1}{p}}$$

$$c_{k+3}^{p} = c_{3} \Rightarrow c_{k+3} = c_{3}^{\frac{1}{p}}$$

$$\vdots$$

$$c_{2k}^{p} = c_{k} \Rightarrow c_{2k} = c_{k}^{\frac{1}{p}} = c_{0}^{\frac{1}{p^{2}}}$$

$$c_{2k+1}^{p} = c_{k+1} \Rightarrow c_{2k+1} = c_{k+1}^{\frac{1}{p}} = c_{1}^{\frac{1}{p^{2}}}$$

$$c_{2k+2}^{p} = c_{k+2} \Rightarrow c_{2k+1} = c_{k+1}^{\frac{1}{p}} = c_{2}^{\frac{1}{p^{2}}}$$

$$\vdots$$

$$c_{3k}^{p} = c_{2k} \Rightarrow c_{3k} = c_{k}^{\frac{1}{p^{2}}} = c_{0}^{\frac{1}{p^{3}}}$$

$$c_{3k+1}^{p} = c_{2k+1} \Rightarrow c_{3k+1} = c_{2k+1}^{\frac{1}{p^{2}}} = c_{1}^{\frac{1}{p^{3}}}$$

Therefore $c_0,...,c_{k-1}$ determines the sequence $(c_n)_{n\in\mathbb{Z}}$.

<u>claım:</u>

$$c_0,...,c_{k-1} \in \mathfrak{m}_C^b \subset \mathscr{O}_C^b.$$

proof:

 \overline{This} follows directly by the 1:1-correspondence

$$\mathfrak{m}_C^b \to B^{\varphi=p}$$

$$c \mapsto \sum_{n \in \mathbb{Z}} [c^{q^{-n}}] p^n$$

(cf. Annschütz [10] in Proposition 4.2.1. part (2)) where $f \in B^{\varphi=p}$.

Lemma 8. It holds
$$(B^b)^{\varphi=\pi^d} = \begin{cases} E, \ d=0 \\ 0, \ d \neq 0 \end{cases}$$

Beweis. We are separating the proof in two cases:

- 1. d = 0
- 2. $d \neq 0$

 $\underline{\text{1.Case:}} \text{ Let } f = \sum_{i > -\infty}^{\infty} [x_i] \pi^i \in (B^b)^{\varphi = 1}. \text{ By Definition } \forall i \in \mathbb{Z} \text{ we get } \varphi(x_i) = x_i, \text{ i.e. } x_i \in \mathbb{F}_q.$ This implies $f \in E$.

2.Case: Let $d \neq 0$ and $0 \neq f \in B^{\varphi = \pi^d}$. Then $\forall x \in \mathbb{R}$ we have

$$q$$
Newt $(f)(x)$ = Newt $(\varphi(f))(x)$ = Newt $(\pi^d f)(x)$ = Newt $(f)(x-d)$.

Thus $\forall n \in \mathbb{N}$ we have

$$q^n \text{Newt}(f)(x) = \text{Newt}(\varphi^n(f))(x) = \text{Newt}(\pi^{dn}f)(x) = \text{Newt}(f)(x - dn).$$

Now we distinguish the two subcases

- i.) d > 0
- ii.) d < 0

Ad i.): Now it follows q^n Newt $(f)(x) = \text{Newt}(f)(x-nd) = \infty$, $\forall n >> 0$. But this implies the contradiction f = 0.

Ad ii.): Now there exists a $x_0 << 0$ such that $\text{Newt}(f)(x_0) \ge \text{Newt}(f)(x) \ \forall x \in \mathbb{R}$. As Newt(f) is non-decreasing, we get

$$\operatorname{Newt}(f)(x) \ge \operatorname{Newt}(f)(x_0 - nd) = q^n \operatorname{Newt}(f)(x_0) \ge q^n \operatorname{Newt}(f)(x)$$

 $\forall n >> 0$, $\forall x \in \mathbb{R}$. This implies Newt $(f)(x) = \infty$, for all $x \in \mathbb{R}$ i.e. f = 0.

Lemma 9. Let $(x_n)_{n\in\mathbb{Z}} \subset F^{\mathbb{Z}}$ a sequence s.th.

$$\lim_{|n|\to\infty}v(x_n)+nr=\infty$$

for all $r \in (0, \infty)$. Then $\sum_{n \in \mathbb{Z}} [x_n] \pi^n$ converges in B.

Beweis. Hence it suffies to show that

$$v_r([x_n]\pi^n) \to \infty$$

for $|n| \to \infty$ and for all $r \in (0, \infty)$ holds. Because this is equivalent to $|[x_n] \cdot \pi^n|_{\rho} = 0 \ \forall |n| \to \infty, \forall \rho \in (0, 1)$. But this follows directly by the only assumption with

$$v_r([x_n]\pi^n) = v(x_n) + rn \to \infty$$

for all $|n| \to \infty$ and for all $r \in (0, \infty)$.

Bemerkung 10. We construct a bijektiv map $\mathfrak{m}_F \to B^{\varphi=\pi}$ in the following way:

Let $a \in \mathfrak{m}_F$, i.e. v(a) > 0. Then

$$f_a := \sum_{i \in \mathbb{Z}} [a^{q^{-i}}] \pi^i$$

converges in B, because of the previous Lemma with the satisfyed assumption:

$$v(a^{q^{-i}}) + ir = q^{-i}v(a) + ir \to \infty$$

for all $|i| \to \infty$ and v(a) > 0. Moreover

$$\varphi(f_a) = \sum_{i \in \mathbb{Z}} [a^{-(i-1)}] \pi^i = \pi \cdot f_a$$

after an Index shift, induce the map

$$\mathfrak{m}_F \to B^{\varphi = \pi}$$
 $a \mapsto f_a$

Definition 11. For an open interval $I \subset (0,\infty)$ and $f \in B_I$ we define $\operatorname{Newt}_I^0(f)$ as the decreasing convex function whose Legendre transformation is

$$\begin{aligned} \mathcal{L}: \mathbb{R} &\to \mathbb{R} \cup \{\pm \infty\} \\ r &\mapsto \begin{cases} v_r(f) &, r \in I \\ -\infty &, r \not\in I \end{cases} \end{aligned}$$

with

$$\operatorname{Newt}_I(f) := \{(x, \operatorname{Newt}_I^0(f)(x)) \in \Gamma(\operatorname{Newt}_I^0(f)) | \exists ! i \in \mathbb{N}_0 \colon x \in [i, i+1] : \lambda_i \in -I \} \subset \mathbb{R}^2.$$

Here λ_i is the slope of Newt $_I^0(f)$ on the interval [i, i+1] for all $i \in \mathbb{N}_0$.

Bemerkung 1. Let $K \subset I$ and $(f_n)_{n \in \mathbb{Z}}$ a sequence in B^b and f an element in B^b with $f \neq 0$, s.th.

$$\lim_{n\to\infty} f_n = f.$$

I.e.

$$\forall r \in K : \forall \varepsilon \ge 0 : \exists N \in \mathbb{N} : \forall n \ge N : |f_n - f|_r \le \varepsilon.$$

Daraus folgt

$$\exists N \in \mathbb{N} : \forall n \geq N : \forall r \in K : v_r(f_n) = v_r(f).$$

Daraus folgt $\mathcal{L}(\operatorname{Newt}_I^0(f))$ is a concave function with integral slopes. Therefore Newt_I^0 is a decreasing convex polygon with integral break points. If $f \in B$ and λ_i the slope of Newt for all $i \in \mathbb{N}$, then

- 1.) $\lambda_i < 0$
- 2.) $\lim_{i\to\infty}\lambda_i=0$
- 3.) $\lim_{i \to -\infty} \lambda_i = \infty$

If the interval *I* is compact, then the definition of the Newton polygon must be modificated.

Definition 12. Let $I = [a, b] \subset (0, \infty)$ a compact interval, $f \in B_I$ and $f \neq 0$. We define $\operatorname{Newt}_I^0(f)$ as the decreasing convex function whose Legendre transform is

$$\begin{split} \mathcal{L}: \mathbb{R} &\to \mathbb{R} \cup \{\infty\} \\ r &\mapsto \begin{cases} v_r(f) &, r \in I \\ v_a(f) + (r-a)\partial_g v_a(f) &, r < a \\ v_b(f) + (r-b)\partial_d v_b(f) &, r > b \end{cases}$$

with

 $\operatorname{Newt}_I(f) := \{(x, \operatorname{Newt}_I^0(f)(x)) \in \Gamma(\operatorname{Newt}_I^0(f)) | \exists ! i \in \mathbb{N}_0 \colon x \in [i, i+1] : \lambda_i \in -I \} \subset \mathbb{R}^2.$

The λ_i is the slope of Newt $_i^0(f)$ on the interval [i, i+1] for all $i \in \mathbb{N}_0$ just like before.

Bemerkung 13. For an element $f \in B^b$ we consider in the definition before the fonction

$$\mathbb{R}_{\geq 0} \to \mathbb{R} \cup \{\infty\}$$
$$r \mapsto \nu_r(f)$$

with their left and right derivatives

$$\partial_g v_a(f) = \lim_{r \to a^-} \frac{v_r(f) - v_a(f)}{r - a} \ge \frac{v_r(f) - v_a(f)}{r - a}$$

for all r < a and

$$\partial_d v_b(f) = \lim_{r \to b^+} \frac{v_r(f) - v_b(f)}{r - b} \le \frac{v_r(f) - v_b(f)}{r - b}$$

for all b < r. This is equivalent to $v_r(f) \le v_a(f) + \partial_g v_a(f)(r-a)$ for all r < a and

$$v_r(f) \ge v_b(f) + \partial_g v_b(f)(r-b)$$

for all b < r. Furthermore let λ be a slope of $\operatorname{Newt}(f)$, then $m_{\lambda}(\operatorname{Newt}(f)) = \partial_g v_{-\lambda}(f) - \partial_d v_{-\lambda}(f)$, where $m_{\lambda}(\operatorname{Newt}(f))$ is the multiplicity of the slope λ of $\operatorname{Newt}(f)$. The multiplicity formula explains the difference between the open and the compact case and the right multiplicities of the slopes -a, -b are in the previous definition $m_{-a}(\operatorname{Newt}(f)) = \partial_g v_a(f) - \partial_d v_a(f)$ and $m_{-b}(\operatorname{Newt}(f)) = \partial_g v_b(f) - \partial_d v_b(f)$.