Exercise 7 for Number theory III^1

Kay Rülling

Exercise 7.1. Let K be a local field $(\neq \mathbb{R}, \mathbb{C})$. Show that there is a unique unramified \mathbb{Z}_p -extension of K, i.e. an unramified Galois extension L/K with Galois group $G(L/K) \cong \mathbb{Z}_p$.

Exercise 7.2 (The Legendre Symbol). Let p be an odd prime number and denote by $v_p : \mathbb{Q}^{\times} \to \mathbb{Z}$ the p-adic valuation. For a rational number $a \in \mathbb{Q}$ with $v_p(a) = 0$ define the Legendre symbol $\left(\frac{a}{p}\right) \in \{\pm 1\}$ by

$$\left(\frac{a}{p}\right) = 1 \iff a \text{ is a square mod } p.$$

- (1) We view $\{\pm 1\}$ as subgroup of \mathbb{F}_p^{\times} . Show that $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \mod p$.
- (2) Show $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$ and $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$. (*Hint:* For the second formula first observe that $\frac{p^2-1}{8} \equiv 1 \mod 2$ iff $p \equiv \pm 1 \mod 8$. Then show that if $\alpha \in \overline{\mathbb{F}}_p$ is an 8-th root of 1 and $y := \alpha + \alpha^{-1}$, then $\left(\frac{2}{p}\right) = y^{p-1}$ and conclude.)
- (3) Show $\sum_{a \in (\mathbb{Z}/\ell)^{\times}} \left(\frac{a}{\ell}\right) = 0.$
- (4) Show that the extension $\mathbb{Q}_p(\sqrt{a})/\mathbb{Q}_p$ is unramified of degree ≤ 2 .
- (5) Show that if we view $G(\mathbb{Q}_p(\sqrt{a})/\mathbb{Q}_p)$ as a subgroup of $\{\pm 1\}$, then

$$\rho_{\mathbb{Q}_p(\sqrt{a})/\mathbb{Q}_p}(p) = \left(\frac{a}{p}\right),$$

where

$$\rho_{\mathbb{Q}_p(\sqrt{a})/\mathbb{Q}_p} : \mathbb{Q}_p^{\times}/\mathrm{Nm}(\mathbb{Q}_p(\sqrt{a})^{\times}) \to G(\mathbb{Q}_p(\sqrt{a})/\mathbb{Q}_p)$$

is the local Artin map.

¹This exercise sheet will be discussed on December 5. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math.fu-berlin. de or l.zhang@fu-berlin.de

Exercise 7.3 (Gauß Reciprocity Law). The aim of this exercise is to show the Gauß Reciprocity law: Let p, ℓ be two distinct odd prime numbers, then

$$(*) \quad \left(\frac{\ell}{p}\right) \cdot \left(\frac{p}{\ell}\right) = (-1)^{\frac{p-1}{2}\frac{\ell-1}{2}}.$$

To this end proceed as follows: Set $\ell^* := (-1)^{\frac{\ell-1}{2}}\ell$.

(1) Show that (*) is equivalent to $\left(\frac{\ell^*}{p}\right) = \left(\frac{p}{\ell}\right)$. (2) Show

$$\operatorname{Nm}(\mathbb{Q}_p(\sqrt{\ell^*})^{\times}) = \begin{cases} \mathbb{Q}_p^{\times}, & \text{if } \mathbb{Q}_p(\sqrt{\ell^*}) = \mathbb{Q}_p, \\ < p^2 > \times \mathbb{Z}_p^{\times}, & \text{else,} \end{cases}$$

where $\langle p^2 \rangle$ denotes the infinite cyclic group multiplicatively generated by p^2 .

- (3) Conclude that $\left(\frac{\ell^*}{p}\right) = 1 \Leftrightarrow \mathbb{Q}_p(\sqrt{\ell^*}) = \mathbb{Q}_p$.
- (4) Let $\zeta \in \overline{\mathbb{Q}}$ be an ℓ -th root of 1. Show that $\mathbb{Q}(\sqrt{\ell^*}) \subset \mathbb{Q}(\zeta)$. (*Hint*: Set $\tau := \sum_{n \in (\mathbb{Z}/\ell)^{\times}} {n \choose \ell} \zeta^n$ and use Excercise, 7.2, 3 to show $\left(\frac{-1}{\ell}\right) \cdot \tau^2 = \ell$.
- (5) Conclude from 4 that: $\mathbb{Q}_p(\sqrt{\ell^*}) = \mathbb{Q}_p \Leftrightarrow \frac{\ell-1}{2} |[\mathbb{Q}_p(\zeta) : \mathbb{Q}_p].$ (6) Show that $\mathbb{Q}_p(\zeta)$ is unramified over \mathbb{Q}_p of degree f, where f is the minimal positive integer with $p^f \equiv 1 \mod \ell$.
- (7) Conclude from 5 and 6 that: $\mathbb{Q}_p(\sqrt{\ell^*}) = \mathbb{Q}_p \Leftrightarrow \binom{p}{\ell} = 1$. Put all together to conclude (*).

Exercise 7.4. Is 105 a square modulo 257?