Exercise 7 for Number theory III ${ }^{[1]}$

Kay Rülling

Exercise 7.1. Let K be a local field $(\neq \mathbb{R}, \mathbb{C})$. Show that there is a unique unramified \mathbb{Z}_{p}-extension of K, i.e. an unramified Galois extension L / K with Galois group $G(L / K) \cong \mathbb{Z}_{p}$.

Exercise 7.2 (The Legendre Symbol). Let p be an odd prime number and denote by $v_{p}: \mathbb{Q}^{\times} \rightarrow \mathbb{Z}$ the p-adic valuation. For a rational number $a \in \mathbb{Q}$ with $v_{p}(a)=0$ define the Legendre symbol $\left(\frac{a}{p}\right) \in\{ \pm 1\}$ by

$$
\left(\frac{a}{p}\right)=1 \Longleftrightarrow a \text { is a square } \bmod p
$$

(1) We view $\{ \pm 1\}$ as subgroup of \mathbb{F}_{p}^{\times}. Show that $\left(\frac{a}{p}\right)=a^{\frac{p-1}{2}} \bmod$ p.
(2) Show $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$ and $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}$. (Hint: For the second formula first observe that $\frac{p^{2}-1}{8} \equiv 1 \bmod 2$ iff $p \equiv \pm 1$ $\bmod 8$. Then show that if $\alpha \in \overline{\mathbb{F}}_{p}$ is an 8 -th root of 1 and $y:=\alpha+\alpha^{-1}$, then $\left(\frac{2}{p}\right)=y^{p-1}$ and conclude.)
(3) Show $\sum_{a \in(\mathbb{Z} / \ell) \times}\left(\frac{a}{\ell}\right)=0$.
(4) Show that the extension $\mathbb{Q}_{p}(\sqrt{a}) / \mathbb{Q}_{p}$ is unramified of degree ≤ 2.
(5) Show that if we view $G\left(\mathbb{Q}_{p}(\sqrt{a}) / \mathbb{Q}_{p}\right)$ as a subgroup of $\{ \pm 1\}$, then

$$
\rho_{\mathbb{Q}_{p}(\sqrt{a}) / \mathbb{Q}_{p}}(p)=\left(\frac{a}{p}\right),
$$

where

$$
\rho_{\mathbb{Q}_{p}(\sqrt{a}) / \mathbb{Q}_{p}}: \mathbb{Q}_{p}^{\times} / \operatorname{Nm}\left(\mathbb{Q}_{p}(\sqrt{a})^{\times}\right) \rightarrow G\left(\mathbb{Q}_{p}(\sqrt{a}) / \mathbb{Q}_{p}\right)
$$

is the local Artin map.

[^0]Exercise 7.3 (Gauß Reciprocity Law). The aim of this exercise is to show the Gauß Reciprocity law: Let p, ℓ be two distinct odd prime numbers, then

$$
(*) \quad\left(\frac{\ell}{p}\right) \cdot\left(\frac{p}{\ell}\right)=(-1)^{\frac{p-1}{2} \frac{\ell-1}{2}} .
$$

To this end proceed as follows: Set $\ell^{*}:=(-1)^{\frac{\ell-1}{2}} \ell$.
(1) Show that $(*)$ is equivalent to $\left(\frac{\ell^{*}}{p}\right)=\left(\frac{p}{\ell}\right)$.
(2) Show

$$
\operatorname{Nm}\left(\mathbb{Q}_{p}\left(\sqrt{\ell^{*}}\right)^{\times}\right)= \begin{cases}\mathbb{Q}_{p}^{\times}, & \text {if } \mathbb{Q}_{p}\left(\sqrt{\ell^{*}}\right)=\mathbb{Q}_{p} \\ <p^{2}>\times \mathbb{Z}_{p}^{\times}, & \text {else }\end{cases}
$$

where $<p^{2}>$ denotes the infinite cyclic group multiplicatively generated by p^{2}.
(3) Conclude that $\left(\frac{\ell^{*}}{p}\right)=1 \Leftrightarrow \mathbb{Q}_{p}\left(\sqrt{\ell^{*}}\right)=\mathbb{Q}_{p}$.
(4) Let $\zeta \in \overline{\mathbb{Q}}$ be an ℓ-th root of 1 . Show that $\mathbb{Q}\left(\sqrt{\ell^{*}}\right) \subset \mathbb{Q}(\zeta)$. (Hint: Set $\tau:=\sum_{n \in(\mathbb{Z} / \ell) \times}\left(\frac{n}{\ell}\right) \zeta^{n}$ and use Excercise, $7.2,3$ to show $\left(\frac{-1}{\ell}\right) \cdot \tau^{2}=\ell$.)
(5) Conclude from 4 that: $\left.\mathbb{Q}_{p}\left(\sqrt{\ell^{*}}\right)=\mathbb{Q}_{p} \Leftrightarrow \frac{\ell-1}{2} \right\rvert\,\left[\mathbb{Q}_{p}(\zeta): \mathbb{Q}_{p}\right]$.
(6) Show that $\mathbb{Q}_{p}(\zeta)$ is unramified over \mathbb{Q}_{p} of degree f, where f is the minimal positive integer with $p^{f} \equiv 1 \bmod \ell$.
(7) Conclude from 5 and 6 that: $\mathbb{Q}_{p}\left(\sqrt{\ell^{*}}\right)=\mathbb{Q}_{p} \Leftrightarrow\left(\frac{p}{\ell}\right)=1$. Put all together to conclude (${ }^{*}$).

Exercise 7.4. Is 105 a square modulo 257?

[^0]: ${ }^{1}$ This exercise sheet will be discussed on December 5. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math.fu-berlin. de or l.zhang@fu-berlin.de

