Exercise 4 for Number theory III^{1}

Kay Rülling

Exercise 4.1. Let K be a complete discrete valuation field with normalized discrete valuation $v: K^{\times} \to \mathbb{Z}$ and L/K a finite separable field extension. We know from the lecture that L is also a complete discrete valuation field. Show that its normalized discrete valuation is given by

$$v_L: L^{\times} \to \mathbb{Z}, \quad a \mapsto \frac{1}{f} \cdot v(\operatorname{Nm}_{L/K}(a)),$$

where $\operatorname{Nm}_{L/K} : L^{\times} \to K^{\times}$ is the norm map and f = f(L/K) is the inertia degree.

(*Hint*: To show $v_L(L^{\times}) \subset \mathbb{Z}$, let E be the maximal unramified subextension of L/K and use $\operatorname{Nm}_{L/K} = \operatorname{Nm}_{E/K} \circ \operatorname{Nm}_{L/E}$.)

Exercise 4.2. Let K be a local field (not \mathbb{R}, \mathbb{C}) and let $q = p^n$ be the cardinality of its residue field. Set $\mu_{q-1}(K) := \{a \in K^{\times} | a^{q-1} = 1\}$.

- (1) Show that the natural surjection $\mathcal{O}_K \to \mathbb{F}_q$ induces a bijection of groups $\mu_{q-1}(K) \xrightarrow{\simeq} \mathbb{F}_q^{\times} \cong \mathbb{Z}/(q-1)\mathbb{Z}$. (*Hint*: Hensel's Lemma.)
- (2) Let $\pi \in \mathcal{O}_K$ be a local parameter. Show that the group K^{\times} admits a canonical decomposition

$$K^{\times} \cong \pi^{\mathbb{Z}} \times \mu_{q-1}(K) \times U_K^{(1)},$$

where $U_{K}^{(1)} = 1 + \pi \mathcal{O}_{K}$.

(3) Show that if $a \in K^{\times}$ has finite order n (i.e. the group $\{1, a, a^2, \ldots\}$ has cardinality n), then n|q-1.

Exercise 4.3. Recall that we proved the following in Number Theory 2: Let $\zeta \in \overline{\mathbb{Q}}$ be a p^r -th primitive root of unity. Then

(1)
$$[\mathbb{Q}(\zeta) : \mathbb{Q}] = \varphi(p^r) := (p-1)p^{r-1}.$$

(2) $\mathcal{O}_{\mathbb{Q}(\zeta)} = \mathbb{Z}[\zeta].$
(3) $p\mathbb{Z}[\zeta] = (1-\zeta)^{\varphi(p^r)}.$

Show:

¹This exercise sheet will be discussed on November 14. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math. fu-berlin.de or l.zhang@fu-berlin.de

- (1) The same conclusion holds when we replace \mathbb{Q} by \mathbb{Q}_p and \mathbb{Z} by \mathbb{Z}_n .
- (2) There is a canonical decomposition

$$\mathbb{Q}_p(\zeta)^{\times} \cong (1-\zeta)^{\mathbb{Z}} \times \mathbb{Z}/(p-1)\mathbb{Z} \times U^{(1)}_{\mathbb{Q}_p(\zeta)}.$$

Exercise 4.4. Let K be a finite extension of \mathbb{Q}_p . We know that it is a complete discrete valuation field. Let A, \mathfrak{m}, v_K be its ring of integers, its maximal ideal and its normalized discrete valuation.

- (1) Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of elements in K and assume $v_K(a_n) \to \infty$, for $n \to \infty$. Show that the sum $\sum_{n=1}^{\infty} a_n$ converges, i.e. there exists a unique element $s \in K$ such that $s \equiv \sum_{n=1}^{\infty} a_n$ mod \mathfrak{m}^N for all $N \geq 1$. Notice that by assumption the sum is finite modulo \mathfrak{m}^N . (In terms of the non-archimedean absolute value $|-|_{v_K}$ defined in Exercise 1.1 one can rephrase this by saying: If $(a_n)_n$ is a null sequence in K with respect to $|-|_{v_K}$ then the sequence $(\sum_{n\geq 1}^N a_n)_N$ converges in K.) (2) Show that for $x \in \mathfrak{m}$ the sum $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ converges. We
- set

$$\log(1+x) := \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \quad x \in \mathfrak{m}.$$

(3) Show that we obtain a continuous group homomorphism

$$\log: U_K^{(1)} \to K, \quad 1 + x \mapsto \log(1 + x).$$

Here we equip $U_K^{(1)}$ with the topology which is uniquely determined by the property that $U_{K}^{(1)}$ is a topological group and the sets $U_K^{(n)} := 1 + \mathfrak{m}^n, n \ge 1$, form a fundamental system of open neighborhoods of 1 and similar K is the topological group with \mathfrak{m}^n , $n \geq 1$, as a fundamental system of open neighborhoods.

(4) Show that there is a continuous homomorphism

$$\log: K^{\times} \to K$$

which is uniquely determined by the properties that $\log_{|U_{c}^{(1)}|}$ is the map from (3) and $\log(p) = 0$. (*Hint*: Use Exercise 4.2.)

 $\mathbf{2}$