Exercise 4 for Number theory III

Kay Rülling

Exercise 4.1. Let K be a complete discrete valuation field with normalized discrete valuation $v: K^{\times} \rightarrow \mathbb{Z}$ and L / K a finite separable field extension. We know from the lecture that L is also a complete discrete valuation field. Show that its normalized discrete valuation is given by

$$
v_{L}: L^{\times} \rightarrow \mathbb{Z}, \quad a \mapsto \frac{1}{f} \cdot v\left(\operatorname{Nm}_{L / K}(a)\right)
$$

where $\mathrm{Nm}_{L / K}: L^{\times} \rightarrow K^{\times}$is the norm map and $f=f(L / K)$ is the inertia degree.
(Hint: To show $v_{L}\left(L^{\times}\right) \subset \mathbb{Z}$, let E be the maximal unramified subextension of L / K and use $\mathrm{Nm}_{L / K}=\mathrm{Nm}_{E / K} \circ \mathrm{Nm}_{L / E}$.)
Exercise 4.2. Let K be a local field (not \mathbb{R}, \mathbb{C}) and let $q=p^{n}$ be the cardinality of its residue field. Set $\mu_{q-1}(K):=\left\{a \in K^{\times} \mid a^{q-1}=1\right\}$.
(1) Show that the natural surjection $\mathcal{O}_{K} \rightarrow \mathbb{F}_{q}$ induces a bijection of groups $\mu_{q-1}(K) \xrightarrow{\simeq} \mathbb{F}_{q}^{\times} \cong \mathbb{Z} /(q-1) \mathbb{Z}$. (Hint: Hensel's Lemma.)
(2) Let $\pi \in \mathcal{O}_{K}$ be a local parameter. Show that the group K^{\times} admits a canonical decomposition

$$
K^{\times} \cong \pi^{\mathbb{Z}} \times \mu_{q-1}(K) \times U_{K}^{(1)},
$$

where $U_{K}^{(1)}=1+\pi \mathcal{O}_{K}$.
(3) Show that if $a \in K^{\times}$has finite order n (i.e. the group $\left\{1, a, a^{2}, \ldots\right\}$ has cardinality n), then $n \mid q-1$.

Exercise 4.3. Recall that we proved the following in Number Theory 2: Let $\zeta \in \overline{\mathbb{Q}}$ be a p^{r}-th primitive root of unity. Then
(1) $[\mathbb{Q}(\zeta): \mathbb{Q}]=\varphi\left(p^{r}\right):=(p-1) p^{r-1}$.
(2) $\mathcal{O}_{\mathbb{Q}(\zeta)}=\mathbb{Z}[\zeta]$.
(3) $p \mathbb{Z}[\zeta]=(1-\zeta)^{\varphi\left(p^{r}\right)}$.

Show:

[^0](1) The same conclusion holds when we replace \mathbb{Q} by \mathbb{Q}_{p} and \mathbb{Z} by \mathbb{Z}_{p}.
(2) There is a canonical decomposition
$$
\mathbb{Q}_{p}(\zeta)^{\times} \cong(1-\zeta)^{\mathbb{Z}} \times \mathbb{Z} /(p-1) \mathbb{Z} \times U_{\mathbb{Q}_{p}(\zeta)}^{(1)}
$$

Exercise 4.4. Let K be a finite extension of \mathbb{Q}_{p}. We know that it is a complete discrete valuation field. Let A, \mathfrak{m}, v_{K} be its ring of integers, its maximal ideal and its normalized discrete valuation.
(1) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of elements in K and assume $v_{K}\left(a_{n}\right) \rightarrow$ ∞, for $n \rightarrow \infty$. Show that the sum $\sum_{n=1}^{\infty} a_{n}$ converges, i.e. there exists a unique element $s \in K$ such that $s \equiv \sum_{n=1}^{\infty} a_{n}$ $\bmod \mathfrak{m}^{N}$ for all $N \geq 1$. Notice that by assumption the sum is finite modulo \mathfrak{m}^{N}. (In terms of the non-archimedean absolute value $|-|_{v_{K}}$ defined in Exercise 1.1 one can rephrase this by saying: If $\left(a_{n}\right)_{n}$ is a null sequence in K with respect to $|-|_{v_{K}}$ then the sequence $\left(\sum_{n \geq 1}^{N} a_{n}\right)_{N}$ converges in K.)
(2) Show that for $x \in \mathfrak{m}$ the sum $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$ converges. We set

$$
\log (1+x):=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}, \quad x \in \mathfrak{m}
$$

(3) Show that we obtain a continuous group homomorphism

$$
\log : U_{K}^{(1)} \rightarrow K, \quad 1+x \mapsto \log (1+x)
$$

Here we equip $U_{K}^{(1)}$ with the topology which is uniquely determined by the property that $U_{K}^{(1)}$ is a topological group and the sets $U_{K}^{(n)}:=1+\mathfrak{m}^{n}, n \geq 1$, form a fundamental system of open neighborhoods of 1 and similar K is the topological group with $\mathfrak{m}^{n}, n \geq 1$, as a fundamental system of open neighborhoods.
(4) Show that there is a continuous homomorphism

$$
\log : K^{\times} \rightarrow K
$$

which is uniquely determined by the properties that $\log _{\mid U_{K}^{(1)}}$ is the map from (3) and $\log (p)=0$. (Hint: Use Exercise 4.2.)

[^0]: ${ }^{1}$ This exercise sheet will be discussed on November 14. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math. fu-berlin.de or l.zhang@fu-berlin.de

