(ecture 6) spectial sequences (general \& thage 2 de rhame)
What ne hure so for: fa M got uge. M, shemer $\Omega^{P}$ of holowophic $r$ fopmes cubonolgy $H^{q}\left(M, \Omega_{m}^{p}\right)$
can be inlestorl via Holje theong \& hamowa fours can be compwed vin Dolbem4 cplX lorol. $\Omega^{p} \rightarrow \alpha^{p, 0} \xrightarrow{\frac{j}{p}} a^{p, 1} \xrightarrow{\frac{1}{\longrightarrow}} a^{p, 2} \rightarrow$
cohomology
goal la tody :
saguran wam
foom ansitac. Powiać lans
Related via Fröliker $\quad \mathbb{C} \approx \Omega^{*}$ quisi-so.

$$
\begin{aligned}
& \text { Froticher } \\
& \text { itoige-2-dethome spectial sy. }\left|H^{q}\left(M, \Omega^{p}\right) \Rightarrow H^{p+q}\left(M, \Omega^{*}\right)\right|
\end{aligned}
$$

Hege fitraton - how to bwild $\Omega_{n}^{*}$ from $\Omega_{m}^{p}$.
 deseadig fittition $\quad \Omega_{m}=\Omega_{m}^{\geqslant 0} \geq \Omega_{m}^{\geqslant 1} \geq \ldots \Omega_{m}^{\geqslant h}=\Omega_{m}^{n} \supseteq \Omega_{n}^{7 m 1}=0$ induces filtation on cohondeng

$$
F^{\varepsilon} H^{p}\left(\mu, \Omega_{m}^{z}\right)=\operatorname{Im}\left(H^{p}\left(m, \Omega_{m}^{2 q}\right) \rightarrow H^{p}\left(m, \Omega^{2}\right)\right)
$$

How does this ulate $H^{p}\left(M, \Omega^{*}\right)$ \& $H^{p}\left(M, \Omega^{q}\right)$ ?
for fixed $r$ hare exad sy of cplxs $0 \rightarrow \Omega_{M}^{\geqslant 8+1} \rightarrow \Omega_{n}^{2 z} \rightarrow \Omega_{h}^{2} \rightarrow 0$ $\leadsto$ langsxat colh. sy

$$
-\rightarrow H^{p}\left(\mu, \Omega^{2 k+1}\right) \rightarrow H^{\rho}\left(M_{1} \Omega^{2 q}\right) \rightarrow H^{p}\left(M_{1} \Omega^{\varepsilon}\right) \rightarrow H^{p+1}\left(M, \Omega^{\geqslant \varepsilon+1}\right) \rightarrow \cdots
$$

longexall seq encodes how coh. of $\Omega^{\geqslant 2+1}$ \& $\Omega^{\geqslant k}$ liffer $i$ tems of can. of $\Omega^{3}$.


$$
\cdots \rightarrow H^{p}\left(c, \Omega^{2} E_{\square}\right) \rightarrow H^{p}\left(c, \Omega^{*}\right) \rightarrow H^{p}(c, 0) \rightarrow H^{p+1}\left(c, \Omega^{2}\right) \rightarrow \ldots
$$



Now would like to iterate His procedme, understand inductively how $\Omega^{*}$ is bielt from $\Omega^{2}$
spectial by. for filtand cmplas is a way agmize the unny lang

setup: cplt $C^{*} w /$ descading fittation ly sulcouplears $T^{2} C^{*}$
$\rightarrow C F^{3} C^{*} \longrightarrow F^{2} C^{2} \longrightarrow F^{2} C^{*} \longrightarrow F^{0} C^{2}=C^{*} \leftarrow$ pus $\Omega^{32}$

apply cohomology:

$$
-\longrightarrow H^{*}\left(F^{2} C\right) \longrightarrow H^{*}\left(F^{+} C^{*}\right) \longrightarrow H^{*}\left(F^{\circ} C^{*}\right)=H^{*}\left(C^{2}\right)
$$


$E_{1}$-prze: $E_{1}^{1 / q}=H^{p}\left(F^{q} / F^{q+1}\right)$
bomdany mups from loy exad sy have dyue 1: $H^{P}\left(F^{2} / F^{2 n-}\right) \rightarrow H^{p+p}\left(F^{\ell_{1}}\right)$

First appweination to $H^{2}\left(C^{*}\right)$, but:

- could see aukfisint cycle in $F^{2} / T^{2+1}$ besure actualy wouzero bendan in $F^{8+7}$
- could fail to see boundaies fon otter fithation levels
keep thur of these probkens ky defferertials

$$
\begin{aligned}
& d_{1}: E_{1}^{p, q} \longrightarrow E_{1}^{p+1, q+1} \quad d_{1}=\pi_{q+1} \circ \partial_{q} \\
& -\leftarrow H^{0}\left(F^{2} / F^{3}\right) \underset{d_{1}^{*, 1}}{ } H^{0}\left(F^{1} / F^{2}\right) \underset{d_{1}^{*, 0}}{\leftarrow} H^{0}\left(F^{0} / F^{-}\right) \\
& d_{1} 0 d_{1}=\pi_{0+2} \circ \underbrace{\partial}_{=0} \underbrace{0}_{0+1} 0 \partial_{0}
\end{aligned}
$$

$\leadsto$ Can tike cohomology

$$
E_{2} \text {-pige } \quad E_{2}^{p, q}=\frac{r q-d_{1}^{p, q}: E_{1}^{p, q} \rightarrow E_{1}^{p+1, q+1}}{I_{m} d_{1}^{p, q, 1}: E_{1}^{p, q, q-1} \rightarrow E_{1}^{p, q}}| | \begin{aligned}
& \text { differtinds } \\
& d_{2}^{p, q}: E_{2}^{p, q} \rightarrow E_{2}^{p+1, q+2}
\end{aligned}
$$

class from $E_{2}^{p, q}$ upuseated as chass $x \in H^{P}\left(F^{q} / \not\right.$ qun $\left.^{\prime}\right)$

$$
\left.\prod^{p+r}\left(\bar{f}^{q+1}\right)\right) \text {, take } \pi_{q+2} \text { of presicuge }
$$

Now iterate: $E_{r+1}$-page $=$ cohomology of $E_{r}$-page $d_{r}$-diperentials $d_{r}^{p, q}: E_{r}^{p, q} \longrightarrow E_{r}^{p+1, q+r}$
Greptical $v_{p}$ xesatation
so it keops going
then whef?


Convayence issues coull say a
lot a bont this, but mon't.
In sumple ases - 0.9. If ork finites many $H^{P}$ ( $\left.F^{q} / F^{g n t}\right)$ vonzero -
thare is an $r$ s.th. all difleation on $E_{v^{\prime}}$ for $v^{\prime}>r$ are 0 .

$$
\Rightarrow E_{r^{\prime}}^{p, q}=E_{\infty}^{p, q}=g r_{F}^{q} H^{p}:=\frac{F^{q} H^{p}}{F^{q+\gamma} H^{p}} F^{q} H^{p}=\operatorname{Im}\left(H^{p}\left(F^{q} C^{q}\right) \rightarrow H^{p}\left(C^{p}\right)\right)
$$

Than still have extension probleins xeroveniy $H^{P}\left(C^{*}\right)$
from graber pieces of $F^{*} H^{P}\left(C^{*}\right)$
Hodge-to.deRtmm Frolihar Spetralsy. app乡 above to

$$
\text { Hodye filtation } F^{2} \Omega^{*}
$$

$\Rightarrow$ spetial seqp $\mid E^{p, q}=H^{p}\left(M, \Omega^{q}\right) \Longrightarrow H^{p+q}\left(M, \Omega^{*}\right)$
$w /$ diffeatials $d_{r}^{p, q}: E_{r}^{p, q} \longrightarrow E^{p+1-2, q+2}$
About idering: previons widices for $E_{1}^{p . q}=H^{p}\left(\Omega^{\geqslant q} / \Omega^{2 q+1}\right)=H^{p}\left(\Omega^{q}[-q]\right)$
but typial i dexiy for $\left.E_{1}^{p, q}=H^{p}\left(\Omega^{q}\right)=H^{p+q}\left(\Omega^{q} E_{q}\right]\right)$
$\longrightarrow$ shift in che dygue $P$
degeneration à Eivayy pirture slift gth now left q steps.

For $M$ got. Kaller, humonic louss a satily $d \alpha=0$
all $d_{r}^{p, q}=0$ spectal seyvence legenerates at $E_{1}$-page

$$
H^{n}\left(M, \Omega^{*}\right) \cong \underset{p+q=n}{\oplus} E_{1}^{p, q}=\underset{p+q=n}{\oplus} H^{p}\left(M, \Omega^{q}\right)
$$

Rem: mottrue geremlly los opt apt mps.
no extension problens
Reki vectorspuas! $\forall h \geqslant 2$ J wilmaifolls w/ houtir. $d_{n}$-eipeutial (Rollaske)

