Lecture 5 Lumonic forms \& Itrolge devomposition
Recollection pom Kay's lecture
oforupd: bocilly like open $U \leq c^{n}$ + holomophic trasition ump
shemes $\Omega^{p}$ of nolonoppire pomes

$\rightarrow$ Dolbeant cpit as rsolition $\Omega^{p} \rightarrow a^{p, 0} \stackrel{\Xi}{\longrightarrow} a^{p i n} \stackrel{\sum}{\longrightarrow} a^{p i n} \rightarrow \ldots$
Dolbeall cohomology $H^{q}\left(M, \Omega^{p}\right)=H_{\frac{p, q}{2}}^{p}(M)=H^{q}\left(a^{p, *}\right)$

 anceparad: Hyzzar spatholsy. $H^{P}\left(X, \Omega^{*}\right) \Rightarrow H^{p+7}\left(X, \Omega^{*}\right)$ \& maded bryey shaturs

Hervition metrics, Caplace gerentor \& hamome foms
cple ufe M tagat bel. $T M \otimes \mathbb{C} \cong T \Pi^{10} \oplus T^{90} M$ hamition mettre $h$ veduction of structure $g P$ holon figur bel

$$
\text { of } T \rightarrow M_{n} \text { of stuctare } \quad u(n) \leq G L_{n}(c)
$$

( $£$ holomoppic traght spues equipped $w$ (posidef. Mermition inver poderit)
seal pal $g=\frac{1}{2}(h+\bar{h})$ - Riemerimen uetic, -ingeg pal $\omega=\frac{i}{2}(u-\bar{h})$ (1, ग) form. Kähler manifald $d \omega=0$
exp1. Fubui-Stahty-netic on $\mathbb{C} \mathbb{P}^{h}$

$$
\mathbb{C} \mathbb{P}^{n} \simeq\left(\mathbb{C}^{4+p}\{03) /_{\mathbb{C}^{x}}=S^{2 n+1} / S^{1}\right.
$$


hemition nethic on $\mathbb{C}^{h+1} d s^{2}=\sum d z_{i} \otimes d \bar{z}_{i}$, Sturiel entition untive of $\mathbb{R}^{2 n}$
usthiction to $S^{2 n+1}$ aimeniat unlar $S^{?}$-action
$\leadsto$ in dunes hesurtion thatic on © ©p


Mypt*) hamition uetric $\leadsto$ hamitam foom on all $T_{G * 1}^{v}=\Lambda^{\rho} T_{(t 00)}^{v} \otimes \Lambda^{4} T_{(a n)}^{\sim}$

$$
\leadsto \text { ainer prodend on foums }(\varphi, \psi)=\int_{M} h(\varphi(z), \psi(z)) \frac{\omega^{h}}{h^{4}}(z)
$$

so $a^{1 / 4}$ is nomed cutor pare
 of cohomeloy chases?
$\begin{aligned} & \bar{\partial} \text {-closed foom uniinal nom } \\ & \varphi \in Z_{\bar{\rho} \boldsymbol{q}}\end{aligned} \Longleftrightarrow \bar{\partial}^{\varphi} \varphi=0 \quad\left(\bar{\partial}^{2}\right.$ aujout of $\bar{\partial}$
$M$ consine $\begin{aligned} & \bar{\partial} \varphi=0 \\ & \bar{\partial}^{2} \varphi=0\end{aligned}$

in to Laplace equation $D_{\bar{\partial}} \varphi=\left(\bar{\partial}^{2}+\bar{\partial}^{*} \partial\right) \varphi=0$
solutions are called hummonic fooms ~umpre upereratatics of cohomotyy chres. Why doss teis make sase? acthal deforition of $\bar{\partial}^{2}$ via

Hodge star aprator $*: a^{p, q}(M) \longrightarrow a^{n-p, n-f(M)}$

$$
\text { dyd } y^{\prime} \quad(\varphi(z), \eta(z)) \frac{\omega^{h}}{u!}=\varphi(z) \wedge * \eta(z)
$$

then olf $\bar{z}^{2}=-+\bar{\partial} z$, aljunction follows pom shkes
Ruk: on $\mathbb{C}^{n} w /$ stindeal matic $\quad p=q=0$ ine. $f \in C_{c}^{\infty}\left(\mathbb{C}^{n}\right)$

The Holye theorem
(3) $H_{\frac{p, y}{\gamma}}^{\text {P/ }}(M)$ is pritt-dimarianal Mept!


$$
\varphi=\mathcal{X}^{P q}(\varphi)+\bar{\partial}(\bar{\gamma} \cdot G(\varphi))+\bar{\gamma}^{*}(\bar{\gamma} G(\varphi))
$$


 oregenend prog.
of idea: fuctionel acapocs weed to solve caplace of $\Delta \varphi=\eta$ on marifibls, ive. gobod anmbsis

$$
\text { for } y w / x^{P A}(y)=0 \quad \text { solution } \varphi=G(y)
$$



$$
\omega /(\psi, \Delta \varphi)=(\eta, \varphi) \text { for all } \varphi \in a^{p . q}
$$

(II) vegunits: formal solution is actualy a C Co-function!
(III) Spectrol theory firit-din aigarpnas

Appliations \& examples $M$ apt cpls infe for I, II,
(I) finitc-dimersionalits

Mapt kakler for rest

$$
H^{p, q}(M) \xrightarrow{\simeq} H^{q}\left(M, \Omega^{p}\right) \text { is a frioc-din }
$$

vechor space
(applies eig. to global holomozpaic differatials $\Omega^{p}(M)$ )
(11) Kodrina-Sene duatibs $H^{n}\left(M, \Omega^{n}\right) \simeq \mathbb{C}$
\& Hage Shar indues monly, paing $H^{q}\left(M, \Omega^{p}\right) \otimes H^{n-q}\left(\Pi, \Omega^{n-p}\right) \rightarrow H^{h}\left(H, \Omega^{n}\right)$
(IV) Hodye Ieromposition

$$
H^{r}(M, \sigma) \cong \bigoplus_{p+q=r} H_{\bar{\rho}}^{p, q}(M) \cong \mathbb{T}_{p+q=r} H^{q}\left(M, \Omega^{p}\right)
$$

$$
H^{p, q}(M)=\overline{H^{q, P}(M)}
$$

whatic verion deromperition ten 930
Consoquences: - holomozhic foms are harmomic

- odd Betti unubers $b_{\text {2qd1 }}(M)$ ore evew
- een Betti umitar $b_{2 g}(\omega)>0 \quad\left(w^{q}\right.$ closed won end $(9, q)$ lom)
Holge-diamone diagran for Holge


$$
\begin{array}{cccc}
\text { expl. k3 simpace } & & 1 & \\
& & 0 & 0 \\
& 1 & 0^{20} & 1
\end{array}
$$

no global kolonoghtic forms

The todge cajectume $X$ smooll projective camplex uriets Nayck ches unp $C H^{p}(x) \longrightarrow H^{2 p}(x, z) \quad$ ingege contained


Holye coajecture: vationally, chases in $H^{2}(x, Q) \cap A^{p, p}(x)$ are ayesmic comection befneew ay. foom \& topology ua priod citegrals,

