lecture 5) harmonie forms & Hodge devoluposition Recollection from Kay's lecture geometric diject where caugher andysts words! I holo morphic transition ways sheaves S2° of holo morphiz p-forms sheries $\mathcal{A}^{\mu} - \mathcal{D} \mathcal{O}_{P'}^{P'T} \mathcal{O}_{f}^{P} \mathcal{O}_{f'}^{P'T} = h \mathcal{O}_{f'}^{P'T} \mathcal{O}_{f}^{P} \mathcal{O}_{f'}^{P'T} \mathcal{O}_{f'}^{P} \mathcal{O}_{f'}^{P'T} \mathcal{O}_{f'$ from Dollam 11 Cerma ~> Dolbert gets as resolution $\mathcal{D}^{p} \longrightarrow \mathcal{A}^{p, 0} \xrightarrow{3} \mathcal{A}^{p, 1} \xrightarrow{3} \mathcal{A}^{p, 2} \longrightarrow \cdots$ $Do | bank cohomology H^4(M, \mathcal{R}^p) = H^{p,4}_{\overline{s}}(M) = H^4(\mathcal{R}^{p,*})$ goal for next 3 lectures : Hodge theory - upreator cohomology by homowing forms Unlye denous osition H"(X, C) = D HPA(X) for got beller Holge denous osition H"(X, C) = D HPA(X) for got beller unrequest : Hdg 2 dR spectral sq. H (X, 2ª) => H P+7 (X, 2°) Griffithe & Hins & in red Hodge structures principles of dy por -Hermitian metrics, Caplace ophrator & harmonic forms for gets structure coc=coc cphe ufl M M fungat bill. TM⊗C = TN²⁰ ⊕T⁹²M hemitian metric he reduction of structure gp holow tayas bell. $V \otimes \overline{U} \to C$ (1) of $\overline{U}^{20} \to U(n) = GL_n(C)$. h(2, u) = h(u, 2)(= holomorphic tryat spaces equipped w/ pos. def. Hermitian inner product) real part g= 2 (h+ h) - Riemanian metric 1 - imay part w= i (h-h) (7,7)- form. Kinhler manifold dw = 0(m w symplector pm) Riem pom , ____ ghr geon 2xpl. Fubini - Staday - metric on CPh $CPh \simeq (C^{ht7}(E_{3}))/C^{x} = S^{2n+7}/S^{2n}$ expl. Fubini-Study- metric on CPh hemitian metric on C⁴⁺⁷ ds² = Z dz; Ø dz; , stanled enclosen metric on R²ⁿ respiction to S²ⁿ⁺⁷ a centred under S⁷ action No in denes hemitian metric on CP^h E closed submit MSCP" } there are all tabler.

M got & hermitian we tric no hermitian from on all TV = NTT (200) & 1 + TT (200) $M \text{ in er } p \text{ roduct on forms} (\varphi, \varphi) = \int_{M} h(\varphi(z), \varphi(z)) \frac{\omega}{h!} (z) \qquad \text{ forms} \\ \text{for } for \\ \text{forms} \\ \text{SD } O2^{P_{1}\varphi} \text{ is uppmed icitor game} \qquad \text{ lobme for } for \\ \text{forms} \\ \text$ $\begin{array}{c} \hline O \\ \hline \hline O \hline \hline \hline \hline$ this is assuming Or Pig is Hilbert space & I bounded into Laplace equation ()- q = () 5 + 5 +) q = 0 (solutions are called havenound forms ~ unique representatives of colomology classes. Why does this make save? actual definition of 3° is u= dim M Hodge star greator &: Or PIG (M) -> Or "-PIN-J (M) $dy^{4} by (\varphi(z), \gamma(z))^{\omega^{4}} = \varphi(z) \wedge * \gamma(z)$ then def $\overline{J}^{2} = - * \overline{J}^{2}$, aljeration follows from Sokes. $\frac{Ruz}{2}; \quad on \quad C^{h} \; w/ \; s \; tandad \; metric \; , \; p=q=0 \quad iz \; , \; f \in C_{c}^{bo}(C^{h})$ $\stackrel{S}{=} \; vol \; form \; dz = dz_{1} \wedge Az_{n}$ $\Delta(f) = \overline{\partial}^{*} \overline{\partial} f = \overline{\partial}^{*} \left(\sum_{j=1}^{2} d\overline{z}_{j} \right)^{= \dots = -2\sum_{j=1}^{2} \overline{\partial}^{2} f}_{\overline{\partial} \overline{z}_{i}} = -\frac{7}{2} \sum_{j=1}^{2} \left(\frac{\partial^{2}}{\partial \overline{z}_{i}} + \frac{\partial^{2}}{\partial \overline{z}_{i}} \right)^{d} \int_{\overline{z}_{i}} dz \; genter$ The Hodge theorem 3 H Fit (M) is finite-dimensional M apt 5 I have Geen genator G: OLP: 9 - 7 Get & site yet Hodye decomposition of forms $\varphi = \partial \mathcal{C}^{p; \sharp}(\varphi) + \overline{\mathfrak{d}}(\overline{\mathfrak{d}}^* \mathcal{G}(\varphi)) + \overline{\mathfrak{d}}^*(\overline{\mathfrak{d}}\mathcal{G}(\varphi))$ 3erg: 02 P.9 - 7 H 8.4 orlogond proj. harmonic repr. of Q H = 4 (M) 3 OL P = 7 (M) 3 OL P = 14 (M) on manfolds, i.e. globed analysis weed to solve Caplace en Sp = 4 on manfolds, i.e. globed analysis (I) first get formal solution 4 in Hilbert space completion of OR P. 9. Ψ ((Ψ, Δφ) = (η, φ) for all φ ∈ Q Pig
Ψ regularity: found solution is actually a C⁶⁰-fonction !
Φ spectral theory: firste-den eig aspros

Applications & examples M opt opts upl for I, I, D finite-dimensionality M opt kahler for rest H^{PII} (M) — H^P(M, SP) is a finite-di-lector space applies e.g. to global holoimorphic differentials SP(M)) The Kodaina - Sence duality 4" (M, 52") ~ C & Hodge stor induces wonly paining H "(M, 2") & H " " (M, 2") -> H (M, 2") (II) Hodge derouposition $H^{r}(M, C) \cong \bigoplus H^{p,q}(M) \cong \bigoplus H^{q}(M, SP)$ $H^{r}(M, C) \cong \bigoplus H^{p,q}(M) \cong \bigoplus H^{q}(M, SP)$ $P^{r}q = r$ $H^{p,q}(M) = H^{q,p}(M)$ Consequences: - holomorphic forms are harmonic- odd Bett: umbers bryin (M) are even - een Bett; umlers b (01) 70 (w^q closed 29 Won-end (9,9) Com) Holge - diamond dørg ram for Holge umbas Hodge star i symmety and cater ghe conj. : uf l. on valiant lie (n, 0) (n, p, h, p) (0, n)(7, 0) (0, n)(0, n) $expl: P^{h} \qquad h^{p,q} = \begin{cases} 1 & p=q \\ 0 & \text{otherwise} \end{cases}$ Cxpl. k3 surface 1 1 20 0 1 20 1 0 0 1 The Godge conjecture X smooth projective complex correty NCycle Ches up CHP(X) - H²P(X, Z) (in age contained (closed subseriely Poincare darl of 2 = X produced (class (3)) (in HP,P(X)) Holge coajecture : rationally, classes in H²(X,Q) or H^{P,P}(X) are algebraic Connection between alf. Geom & topology us priod integrals.