Lecture 2 de Rham than an upes
Cohomolugy We Rhan \& (smooth) sigkem What is cohomolyg? itan contraviant functor $H^{2}: \mathrm{MgC}^{p} \longrightarrow \mathbb{R}$-cat ${ }^{N}$
satiffoug (1) homotopr ivenimce $H^{+}(M \times[0,7]) \simeq H^{*}(M)$
(2) Mage Vitars ofy for conng $M=U u V$

$$
\rightarrow H^{\prime}(M) \rightarrow H^{\prime}(u) \varnothing H^{\prime}(v) \rightarrow H^{\prime}(u, v) \xrightarrow{\square} \rightarrow H^{i^{2+1}}(M) \rightarrow-
$$

(3) allutury $H^{*}\left(\| M_{i}\right) \cong \oplus H^{*}\left(M_{i}\right)$

- honototy ciminame \sim varion of Paicace lame.

$$
0 \rightarrow \Omega^{\prime}(n) \rightarrow \Omega^{\prime}(u) \oplus \Omega^{\prime}(v) \rightarrow \Omega^{\prime}(u, v) \rightarrow 0
$$

Mibuer loy enat of of choorby
Exaple 2: (sumote) sigusun cohomadogy $\quad x \longmapsto H_{\text {igh }}^{*}(x, R)$
top otrate soplea $\Delta^{h}=\left\{(t, 0,-t) \in R^{(t y)}\right\}$

$$
\left.\begin{array}{ll}
\in \mathbb{R} & 1 \\
t=0, & 2 t=1
\end{array}\right)
$$

bantay mp $C_{n}(x, R) \rightarrow C_{n}(x, R) \cdot \sigma \longrightarrow \sum_{i=0}^{n}(n, i d i(\sigma)$

Suguler rohomolugy $H_{\text {sig }}^{i}(x, R)=H^{i}\left(C_{\text {cijo }}(x, R)\right)$
Propentes: homotog iinuicunce
(acobre, dai howiton bull hao
Ca bactorell homotoy spentor)
Megr-Vietoris Cas bygue, han axad syy of culai umplencs $0 \rightarrow C^{2}(M)^{4} \rightarrow C^{+}(M) \otimes C^{+}(\nu) \rightarrow C^{+}(M, \nu) \rightarrow 0$
Vaiation for eerLam thm: for moote ape M
use suooth siphics $\sigma: \Delta^{n} \longrightarrow M($ dy 1 hs broot up om opecibite

Whithey: contimom mups honotopic to smote nys
$\leadsto H_{\text {sig }}^{\text {a }}(M, \mathbb{R}) \simeq H_{s_{m}}^{*}(M, \mathbb{R})$
 (s.th. union of stokes the louls)

Theorcm of de Rham
The companis ar homomophism

$$
\begin{aligned}
\text { I: } \Omega^{2}(M) & \longrightarrow C_{s u m}^{k}(M, R) \\
\omega & \longmapsto\left(\gamma \longmapsto \rho_{\gamma} \omega\right)
\end{aligned}
$$

Properties: - indmes chai maps $\Omega^{*}(M) \rightarrow C_{\text {su }}^{2}(M, R)$

- indunced map $H_{d R}^{*}(M) \longrightarrow H_{s m}^{\&}(M, R)$ compatible w/ pullburs, boudmy maps in long exad sequences \& proluct v)
Theorem (lerhme): poery smook upl M,

$$
H_{d 2}^{2}(M) \longrightarrow H_{\text {sin }}^{e}(M, \mathbb{R}) \underset{\text { is an rom, of }}{\text { yminer } R} \mathbb{R} \cdot \cdots \text {. }
$$

If sketh:
(1) dethem iso holles for concex subsets in \mathbb{R}^{n} (Ponicáć Cemmera)
(2) if $M=u \cup v$ \& de Rhem iso lous for u, v, u, v then iso lolls for M (Maya. Victiris sapnace
(3) Ior family U_{α}, decrhmen iso for U_{α}
\Rightarrow eny M which has finite cove by open seth ditfoo to concer exhastion fuection tire (of. Lee or Tu books an \Rightarrow extend to all open $\leq R^{n}$
\& all smooth mpes

$$
\begin{aligned}
& \text { shenf. theonetci of, } \\
& \text { see kny's lect me }
\end{aligned}
$$

Periods
dy: unubers that canbe experred as itegrab of sot? diff. Pons over rational (somi) abebraic vanieties
$\frac{(\text { Lit of Kontrevich-Zagiar paper) }}{2}\left[\int_{P\left(x_{1}, x_{n}\right)>0} Q\left(x_{1}, x_{n}\right) d x_{1}-d x_{2}\right.$
Expl: $-\ln 2=\int_{1}^{2} \frac{d x}{x}$ $P\left(x_{1}, x_{n}\right)>0$

$$
\begin{aligned}
& -\iint_{1}^{x} \hat{1} d x{ }^{\infty}(P \text { mig, Q ats } w / Q \text {-coeff. } \\
& -\pi=\int_{x^{2}+y^{2} \leqslant 1} d x d y=\int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}}=\int_{-\infty}^{\infty} \frac{a x}{1+x^{2}} \text { can alow alyebrar } \\
& \text { - elliphcitognals }
\end{aligned}
$$

$-\varphi(3)=\iiint_{0<x<y<z<1} \frac{d x d y d z}{(1-x) y z}$ \& all otfer (musthple) zetr values

- conjectumal phriods
conjectural non-period: e
sperial L-akies
motivic picture (Koutsenich - Zagier, Nori) Hube.KlawiterMülls. Sach)
conjectumal presentation $w /$ generators (x, D, ω, γ)
(of periol aljebia $\hat{P}) \quad \begin{aligned} & X \operatorname{smoote} \operatorname{lar} / Q, D \operatorname{suc} \operatorname{dinijor}, d \text { din } X \\ & \omega \in \Omega^{d}(X), \gamma \in H_{d}(X(C), D(C) ; Q)\end{aligned}$
modulo @Livemik
epresating $\rho_{j e} w$
(2) hange of ar
(3) Stokes formula.
period ayebin \hat{P} as atyebica of functions on pro-ay. torsor of Bos between

$$
H_{\text {Belli }}^{2}: X \longrightarrow H_{\text {sin }}^{*}(x(c) ; Q) \& H_{d R}^{*}: X \longmapsto H^{+}\left(x, \Omega_{x}^{+}\right)
$$

concretely: periols are entries of the bue-chage matrics velating the turo Q-Structures unde de Rhen so

$$
H_{\sin }^{*}(x(\mathbb{C}), \mathbb{C}) \simeq H_{d R}^{*}(x(\mathbb{C}))
$$

in the baikground, thae is the motiniz Gilois gp

- motives as repuentations of imotivic Erbis.

