Dff/enestial poums \& algebmic de Rhann cohomology, WS23/24
(Lecture 1) Introduction differatial fooms \& ERhan comples on manipols.
Sarooth manifolls \& dofferential foms \square more detrits
Th: intoduction sumoth infls or ullectire rootes on
def suooth mamiplel top. spece M

$$
\rho \cdot \lim n \quad+\text { atlas }\left\{\left(U_{i}, \varphi_{i}: U_{i} \rightarrow R^{n}\right\}\right.
$$

ste. $\cup u_{i}=M, \varphi_{i}: u_{i} \rightarrow R^{i}$ is homeo ato gren \& $\varphi_{i}{ }^{\circ} \varphi_{j}^{-1}: \varphi_{j}\left(u_{i} \cap u_{j}\right) \xrightarrow{i} C^{\infty} \varphi_{i}\left(u_{i} \cap u_{j}\right)$
$(\Rightarrow$ locally encidem, din whel $=$)
 Gassinemins $G(l, n)$, clorad oiatel supres Σ_{z}

is chat

$\exp 1$.

- 1obnowiclly dified ungs
- comporitions
$(z, w) \longmapsto[z: \omega]$
dy tangat vectors \& bunde sum mpe $M, p \in M$,
 currus $\mathrm{f}:(a, b) \rightarrow$ M theoge p
Cequinalar 1 dyine sme diverioml
derintion an sacore prochers ats) pfy M

$$
D_{\nu}^{\text {daications }} C_{p}^{\infty}(M) \longrightarrow R
$$

$$
\mathbb{R} \text {-liear myn site. } \quad D(a b)=a D b+D \cdot D(a) b
$$

app 1 for $v \in \mathbb{R}^{n}$

$$
D_{v}: f \longmapsto D_{v f}=\sum v^{i} \frac{\partial f}{\partial r}(p) \text {. }
$$

for emb $p \in M$ have targat space $T_{p} M$ \leadsto conbive ito tagnat bunde FM
(vectorbace $\in \longrightarrow M$ loc. triv $E l_{n i} \xrightarrow{\longrightarrow} u_{i} \times \mathbb{R}^{k}$ fo covering
def differatial of smooth map
$f: M \rightarrow N \quad$ iduces $\quad d f: T_{p} M \rightarrow T_{p(r)} N$

$$
\text { de mop } \mathrm{mp} \rightarrow T N
$$

by couposition w/ f. (inayes of tazart vectors or
Sy example: $\quad f: M \rightarrow \mathbb{R}$ suroote
d / f eation $d f: T M \longrightarrow T \mathbb{R}$, vienel as section $d \rho: M \rightarrow T M^{-}$

$$
\rho \longmapsto d f=\sum \frac{\partial f}{\partial x^{x}} d x
$$

$\Omega^{*}(M)$ \& de Rham complex
def defferatial Poms smoth sactions of exterior power of cotrugut bal

$$
\Omega^{2}(M)=\Gamma\left(M, \Lambda^{2} T M\right)
$$

for us $E \rightarrow M$ cm palom hicur algeborn
(section $\sigma: M \rightarrow E$ sunote mpp rite. constructions "Piberwire"
expl: df as 7 -form
local desonotion in chats: $\left(4, x^{2}, x^{4}\right)$ gat \leadsto beris $d x^{i}$ of coturgat space

$$
d x^{I}=d x_{1}^{i n} 1-1 d x^{i} \leqslant \text { of } 1 \leq i,<-<i_{z} \leq n \text { benis of } \Lambda^{2} T U_{1}
$$

can wite $\left|\omega=\sum_{I \leq\{\geqslant-4\}, t I=\varepsilon} a_{t} d x_{x}^{I}\right| w / a_{I}$ suovth futions.
wedge prodact: $1: \Omega^{2}(M) \times \Omega^{e}(M) \longrightarrow \Omega^{Q+R}(M)$ (prodedi io exteior ageomen)
$\leadsto\left(\Omega^{2}(M), 1\right)$ a asoc \& gembed-comutatice R-elg

$$
\alpha \wedge \beta=\{-1)^{i j} \beta \wedge \alpha \quad \text { for } \alpha \in \Omega^{i}, \beta \in \Omega^{j}
$$

exterior derivative: these exists a unique r-hican map

$$
d: \Omega^{2}(I) \longrightarrow \Omega^{4+1}(M)
$$

s.te: (1) α,3 graed daicution $d(\alpha, \beta)=(d \alpha) \wedge \beta+(-1)^{2} \alpha \wedge(\alpha \beta), \quad \alpha \in \Omega^{2}$,
(2) $d^{2}=0$ $\beta \in \Omega^{c}$
(3) $d: \Omega^{0}(M) \longrightarrow \Omega^{1}(M)$ is edfection han bype
in $\operatorname{Gat}\left(U, x^{7}, \ldots, x^{4}\right): \omega=\sum a_{I} d x^{I} \leadsto d \omega=\sum d a_{I} \cap d x^{I}$
de Rham complex: for suoota unge in of diri n

$$
0 \rightarrow \Omega^{0}(M) \xrightarrow{d} \Omega^{1}(M) \xrightarrow{l} \Omega^{2}(M) \rightarrow \ldots \rightarrow \Omega^{n}(M) \rightarrow 0
$$

complex of R-cector speces, ie $\left(d^{2}=0\right.$
de Rham cohomology, cohomology of this camplex

$$
H_{d R}^{i}(M)=\frac{\operatorname{ker}\left(d: \Omega^{i}(M) \rightarrow \Omega^{i n}(M)\right)}{\operatorname{Im}\left(d: \Omega^{i-1}(M) \rightarrow \Omega^{\prime}(M)\right)}
$$

teminologs: closed fom $d w=0$,
exact fom $\omega=d v$
Rm玉: for open $U \subseteq R^{3}$, con reevile de Rhm ople as

$$
0 \rightarrow c^{\infty}(u) \xrightarrow{\text { gnax }} \notin(u) \xrightarrow{\text { vot }} \notin(u) \xrightarrow{\text { dir }} c^{\infty}(u) \rightarrow 0
$$

suode nectiv fuochs encoles all chasinal vector matyssis.
but weels encidem matic \& korye star

Vutegration, Poï ané Cemmar \& Stokes thm (Vkit hilizy of Soles' the
integral far fuction a opa $U \leq \mathbb{R}^{n}: \quad f: u \rightarrow \mathbb{R} \leadsto \int_{\longrightarrow} f d x^{n}-d x^{n}$ orientation of smoote unfe M :
choize of volume form, ie. noukere uniskiz section vol $\in \Omega^{\text {lin M }}$ (M)
$\left(\leadsto\right.$ for any open $U \in M$, con wite n. form univee is $C^{\infty}(n)$-unlisien of whane foum $\omega=f \cdot d$, ther integnte of as above)
integral of n. fom $\omega \mathrm{w} /$ got support ore ointable mpd M of din wil piece togetter i itegnots is locol clant ive patition of unity colme four vemoves chores sotth morytion well-def 1) JM ω
Stokes theorem: M smote, ained u-din $n / e w / b o n d a y$
relace genend ane to then.
Consequerce for cot orialed n din ufe $\omega / \partial \mu=\varnothing$

$$
S_{n}: H_{M R}^{h}(M) \longrightarrow \mathbb{R} \text { well dp! R.inieer sinjection. }
$$

Poncré duality prfect paing $\Omega^{k}(G) \times \Omega^{n-g /(M)} \longrightarrow \mathbb{R}$ $\omega, \eta \longrightarrow \int_{\mu} \omega 1 \eta$
Poincré-Leuma: $\quad U \leq \mathbb{R}^{n}$ star-shapel:

$$
\text { then } H_{a R}^{i}(u)= \begin{cases}R & i=0 \\ 0 & \text { ottewix. }\end{cases}
$$

Pe. constinct chainhomotory between id \& $\Omega^{2}(u) \longrightarrow \Omega^{2}(u)$

$$
R: \Omega^{p}(n) \longrightarrow \Omega^{p-1}(n)
$$

$$
\Omega_{i}^{0}(u) \rightarrow p^{\mathbb{(c)}} \rightarrow \Omega_{i \cdot}^{\mathbb{R}(u)}
$$

mal.@ cuterpt.
sth $k-d+d \cdot k=i d-j$
(\sim this apties that iel\&fe idnce the some uaps on cohoun.
\& that $\mathbb{R} \xrightarrow[\text { contt. }]{\longrightarrow} \Omega^{2}(\omega)$ idaces isos on cohomology)
take $H: U \times[0,1] \rightarrow U$ contraction of U to conter point

$$
k(\omega)=\int_{0}^{1} i_{\partial t} H^{t}(w) d t
$$

contuction W/
pullber of w along H to $u \times[0,2]$

$$
\begin{aligned}
& \omega \in \Omega_{c}^{n-1}(M) \text { su. n-1 foom } w / \text { got suppot } \\
& \int_{M} d \omega=\int_{\partial M} \omega \quad \int_{[a, b]} P d x=\int_{\text {(a,s) }} d F=\int_{\partial a, i)} F=F(b)-F(a)
\end{aligned}
$$

