Exercise sheet 8 Elliptic Curves

Kay Rülling

Exercise 8.1. Let K be a field of characteristic $\neq 2$ and E an elliptic curve over k given by the equation $y^2 = x^3 + ax + b$. Denote by E_2 the group scheme of 2-torsion points in E.

Show:

$$E_2(K) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2 \text{ (as abstract groups)}$$

 $\iff x^3 + ax + b = (x - \alpha)(x - \beta)(x - \gamma), \quad \alpha, \beta, \gamma \in K.$

Exercise 8.2. Let E be an elliptic curve over \mathbb{Q} with $E_2(\mathbb{Q}) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$ and discriminant Δ . By the Mordell-Weil Theorem we can write $E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus T$, where T is a finite torsion group.

- (1) Show that $T/2T = \mathbb{Z}/2 \oplus \mathbb{Z}/2$.
- (2) Show $r \leq 2 \cdot \#\{p \in \mathbb{N} \text{ prime with } p | 2\Delta\}$. (*Hint:* Use (1) and that the cardinality of $E(\mathbb{Q})/2E(\mathbb{Q})$ is bounded by the 2nd Selmer group $S^{(2)}(E/Q)$.)

Exercise 8.3. Let G be a finite group, $H \subset G$ a normal subgroup and M a G-module.

(1) Let $f: G/H \to M^H$ be a crossed homomorphism and denote by Inf(f) the composition

$$G \to G/H \xrightarrow{f} M^H \hookrightarrow M.$$

Show that this induces a well defined homomorphism

Inf:
$$H^1(G/H, M^H) \to H^1(G, M)$$
.

(2) Show that there is a short exact sequence

$$0 \to H^1(G/H, M^H) \xrightarrow{\mathrm{Inf}} H^1(G, M) \xrightarrow{\mathrm{Res}} H^1(H, M).$$

(3) Generalize the above to the case of a profinite group G with a closed subgroup H and an discrete G-module M.

¹This exercise sheet will be discussed on February 3. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or l.zhang@fu-berlin.de

Exercise 8.4. Denote by $H : \mathbb{P}^n(\overline{\mathbb{Q}}) \to \mathbb{R}_{\geq 1}$ the absolute height function and for an algebraic number $x \in \overline{\mathbb{Q}}$ set H(x) := H((x : 1)).

Show for $x \in \overline{\mathbb{Q}^{\times}}$ we have

$$H(x) = 1 \iff x \text{ is a root of } 1.$$

To this end proceed as follows:

- (1) Show this ' \Leftarrow ' direction.
- (2) Let K be a number field and set $S = \{x \in K^{\times} | H(x) = 1\}.$
 - (a) Show S is a subgroup of K^{\times} .
 - (b) Let $x \in S$ and $f = T^d + a_{d-1}T^{d-1} + \ldots + a_0$ the minimal polynomial of x with $a_i \in \mathbb{Q}$. Show that $H((1 : a_{d-1} : \ldots : a_0)) \leq 2^{d-1}$.
 - (c) Conclude that there is a constant C such that $H_K(x) \leq C$, for all $x \in S$.
 - (d) Conclude that S is a finite group.
- (3) Conclude.