Exercise sheet 8 Elliptic Curves

Kay Rülling

Exercise 8.1. Let K be a field of characteristic $\neq 2$ and E an elliptic curve over k given by the equation $y^{2}=x^{3}+a x+b$. Denote by E_{2} the group scheme of 2-torsion points in E.

Show:

$$
\begin{aligned}
E_{2}(K) & \cong \mathbb{Z} / 2 \oplus \mathbb{Z} / 2(\text { as abstract groups }) \\
& \Longleftrightarrow x^{3}+a x+b=(x-\alpha)(x-\beta)(x-\gamma), \quad \alpha, \beta, \gamma \in K .
\end{aligned}
$$

Exercise 8.2. Let E be an elliptic curve over \mathbb{Q} with $E_{2}(\mathbb{Q}) \cong \mathbb{Z} / 2 \oplus$ $\mathbb{Z} / 2$ and discriminant Δ. By the Mordell-Weil Theorem we can write $E(\mathbb{Q}) \cong \mathbb{Z}^{r} \oplus T$, where T is a finite torsion group.
(1) Show that $T / 2 T=\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$.
(2) Show $r \leq 2 \cdot \#\{p \in \mathbb{N}$ prime with $p \mid 2 \Delta\}$. (Hint: Use (1) and that the cardinality of $E(\mathbb{Q}) / 2 E(\mathbb{Q})$ is bounded by the 2nd Selmer group $S^{(2)}(E / Q)$.)

Exercise 8.3. Let G be a finite group, $H \subset G$ a normal subgroup and M a G-module.
(1) Let $f: G / H \rightarrow M^{H}$ be a crossed homomorphism and denote by $\operatorname{Inf}(f)$ the composition

$$
G \rightarrow G / H \xrightarrow{f} M^{H} \hookrightarrow M .
$$

Show that this induces a well defined homomorphism

$$
\text { Inf : } H^{1}\left(G / H, M^{H}\right) \rightarrow H^{1}(G, M)
$$

(2) Show that there is a short exact sequence

$$
0 \rightarrow H^{1}\left(G / H, M^{H}\right) \xrightarrow{\mathrm{Inf}} H^{1}(G, M) \xrightarrow{\mathrm{Res}} H^{1}(H, M) .
$$

(3) Generalize the above to the case of a profinite group G with a closed subgroup H and an discrete G-module M.

[^0]Exercise 8.4. Denote by $H: \mathbb{P}^{n}(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}_{\geq 1}$ the absolute height function and for an algebraic number $x \in \overline{\mathbb{Q}}$ set $H(x):=H((x: 1))$.

Show for $x \in \overline{\mathbb{Q}}^{\times}$we have

$$
H(x)=1 \Longleftrightarrow x \text { is a root of } 1 .
$$

To this end proceed as follows:
(1) Show this ' \Leftarrow ' direction.
(2) Let K be a number field and set $S=\left\{x \in K^{\times} \mid H(x)=1\right\}$.
(a) Show S is a subgroup of K^{\times}.
(b) Let $x \in S$ and $f=T^{d}+a_{d-1} T^{d-1}+\ldots+a_{0}$ the minimal polynomial of x with $a_{i} \in \mathbb{Q}$. Show that $H\left(\left(1: a_{d-1}: \ldots\right.\right.$: $\left.\left.a_{0}\right)\right) \leq 2^{d-1}$.
(c) Conclude that there is a constant C such that $H_{K}(x) \leq C$, for all $x \in S$.
(d) Conclude that S is a finite group.
(3) Conclude.

[^0]: ${ }^{1}$ This exercise sheet will be discussed on February 3. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or l.zhang@fu-berlin.de

