Exercise sheet 7 Elliptic Curves 1

Kay Rülling

Exercise 7.1. Which of the following Weierstraß equations over \mathbb{Q} are smooth (and hence define elliptic curves)? Are some of them isomorphic over \mathbb{Q} ? In the smooth cases when viewing it as an elliptic curve over \mathbb{Q}_5 find a minimal Weierstraß equation and say whether it has good reduction.

- (1) $y^2 = x^3$
- $(2) \ y^2 = x^3 + x$
- $(3) y^2 = x^3 + 1$
- $(4) \ y^2 = x^3 + 5x + 7$
- (5) $y^2 = x^3 + 20x + 56$
- (6) $y^2 = x^3 + 625x$

Exercise 7.2. Consider the Weierstraß equation

$$y^2 + xy + y = x^3 + x^2 + 22x - 9.$$

Show that its discriminant is $\Delta = -2^{15} \cdot 5^2$ and $c_4 = -5 \cdot 211$. Show that if we view it as an Weierstraß equation over \mathbb{Q}_p , then it is minimal, where p is any prime.

Exercise 7.3. Let A be a DVR with residue field k and fraction field K. Set $S = \operatorname{Spec} A$ and denote by $s = \operatorname{Spec} k$ and $\eta = \operatorname{Spec} K$, the closed and generic point of S, respectively. Let $\pi : \mathcal{C} \to S$ be a surjective morphism from an integral scheme \mathcal{C} , such that its generic fiber $C_{\eta} = C \times_S \eta \to \eta$ and its special fiber $C_s = C \times_S s \to s$ are smooth of relative dimension 1. Let $\sigma : S \to \mathcal{C}$ be a closed immersion over S, i.e. a section of π . Show that its ideal sheaf \mathcal{I} is invertible.

(*Hint*: It suffices to check that the stalks in the points $\sigma(\eta)$ and $\sigma(s)$ are free of rank 1. $\mathcal{I}_{\sigma(\eta)}$ is the ideal sheaf of $\sigma(\eta) \hookrightarrow C_{\eta}$ and hence is invertible, since C_{η} is smooth. For $\mathcal{I}_{\sigma(s)}$ it suffices to check

¹This exercise sheet will be discussed on December 9 and 16. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or l.zhang@fu-berlin.de

that $\mathcal{I}_{\sigma(s)} \otimes_{\mathcal{O}_{\mathcal{C},\sigma(s)}} k(\sigma(s))$ is k(s)-vector space of dimension 1 (see Exercise 5.2, (1)). To this end show that this vector space is equal to $\mathcal{O}_{\mathcal{C}_s}(-[\sigma(s)])_{\sigma(s)} \otimes_{\mathcal{O}_{\mathcal{C}_s,\sigma(s)}} k(s)$ to conclude. For the latter use that the sequence $0 \to \mathcal{I}_{\sigma(s)} \to \mathcal{O}_{\mathcal{C},\sigma(s)} \to A \to 0$ is split exact and hence stays exact when pulled back to the special fiber.)

Exercise 7.4. Let K be a complete discrete valuation field with ring of integers equal to A and residue field k. Set $S = \operatorname{Spec} A$ and denote by η and s the generic and the closed point of S, respectively. Let E/K be an elliptic and $P_0 \in E(K)$ a fixed K-rational point. We assume E/K has good reduction and denote by \bar{E}/k its reduction, i.e. we take a minimal Weierstraß equation for E/K which defines a model \mathcal{W}/A and the following commutative diagram in which both squares are cartesian

$$E \xrightarrow{j} W \xleftarrow{i} \bar{E}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\eta \longrightarrow S \longleftarrow s.$$

We denote by

$$\sigma: E(K) \to \bar{E}(k)$$

the reduction map which we defined in the lecture.

- (1) Let $\tilde{P} = (a:b:c) \in \mathcal{W}(A) \subset \mathbb{P}^2(A)$ be an A-rational point (see Exercise 1.1 for notation). It defines a closed subscheme of \mathcal{W} and we denote by $\mathcal{O}_{\mathcal{W}}(-[\tilde{P}])$ the corresponding ideal sheaf. Show that $\mathcal{O}_{\mathcal{W}}(-[\tilde{P}])$ is invertible. (*Hint:* Exercise 7.3.)
- (2) Let \bar{P} be as above. Denote by $P \in E(K)$ its inverse image along j and by \bar{P} its inverse image along i. Show

$$j^*\mathcal{O}_{\mathcal{W}}(-[\tilde{P}]) = \mathcal{O}_E(-[P]), \quad i^*\mathcal{O}_{\mathcal{W}}(-[\tilde{P}]) = \mathcal{O}_{\bar{E}}(-[\bar{P}]),$$

where the right hand sides are the usual invertible sheaves which we defined on smooth curves.

- (3) Denote by $\operatorname{Pic}^0(\mathcal{W})$ the subgroup of $\operatorname{Pic}(\mathcal{W})$ consisting of line bundles L on \mathcal{W} such that $\deg_K(j^*L) = 0$ and $\deg_k(i^*L) = 0$. Show that $j^* : \operatorname{Pic}^0(\mathcal{W}) \to \operatorname{Pic}^0(E)$ is surjective. (*Hint:* By the isomorphism $E(K) \cong \operatorname{Pic}^0(E)$ any line bundle $L \in \operatorname{Pic}^0(E)$ can be represented by a line bundle of the form $\mathcal{O}_E([P] [P_0])$. Use this and 1, 2.)
- (4) Show that j^* : $\operatorname{Pic}^0(\mathcal{W}) \to \operatorname{Pic}^0(E)$ is also injective and hence is an isomorphism.

(5) Show that the following diagram commutes

(6) Conclude that σ is a group homomorphism.

Exercise 7.5. Let k be an algebraically closed field of characteristic $\neq 2$. Let E/k be an elliptic curve. Show that it has a Weierstraß equation of the form

$$y^2 = x(x-1)(x-\lambda), \quad \lambda \in k \setminus \{0,1\}.$$

This is called a Legendre equation for E. (Hint: Since we are in characteristic $\neq 2$ we find a Weierstraß equation of the form $y^2 = x^3 + ax^2 +$ bx + c. Since k is algebraically closed we can factor the polynomial on the right of the equality as $(x-\alpha_1)(x-\alpha_2)(x-\alpha_3)$, $\alpha_i \in k$. Then show that the discriminant is given by $\Delta = 16(\alpha_1 - \alpha_2)^2(\alpha_1 - \alpha_3)^2(\alpha_2 - \alpha_3)^2$. Since $\Delta \neq 0$ one can define $\lambda = \frac{\alpha_3 - \alpha_1}{\alpha_2 - \alpha_1}$. Show that the Legendre form can be achieved with this particular λ .

Exercise 7.6. Let k be a field with algebraic closure k. Show that for any $j_0 \in k$ there exists an elliptic curve $E/k(j_0)$ with j-invariant $j(E) = j_0$. Concretely, show

(1) If $j_0 \neq 0, 1728$, then the Weierstraß equation

$$y^{2} + xy = x^{3} - \frac{36}{j_{0} - 1728}x - \frac{1}{j_{0} - 1728}$$

- has $\Delta = \frac{j_0^3}{(j_0-1728)^3}$ and $j=j_0$. (2) The Weierstraß equation $y^2+y=x^3$ has $\Delta=-27$ and j=0.
- (3) The Weierstraß equation $y^2 = x^3 + x$ has $\Delta = -64$ and j =1728.

The following two exercise are equal to the Exercises 6.3 and 6.4.

Exercise 7.7. Let k be a field.

(1) Let X, Y be k-schemes and denote by $p_1: X \times Y \to X$ the projection. We have a natural map $\Omega^1_{X/k} \to p_{1*}\Omega^1_{X\times_k Y/Y}$. Show the natural map induced by adjunction $p_1^*\Omega^1_{X/k} \to \Omega^1_{X\times_k Y/Y}$ is an isomorphism. (Hint: It suffices to check this locally, hence

- to show $B \otimes_k \Omega^1_{A/k} \cong \Omega^1_{A \otimes_k B/B}$. This follows easily from the universal property.)
- (2) Let G be a group scheme over k. Denote by $\pi: G \to \operatorname{Spec} k$ the structure map, by $m: G \times_k G \to G$ the group law, by $\iota: G \to G$ the inverse and by $e: \operatorname{Spec} k \to G$ the neutral section (see Exercise sheet 4.) Consider $G \times_k G$ as a G-scheme via the second projection p_2 . Show that $\tau = m \times p_2 : G \times_k G \to G \times_k G$ is an automorphism of G-schemes.
- (3) Show that $m^*\Omega^1_{G/k} \cong p_1^*\Omega^1_{G/k}$. (*Hint*: From (2) we get an iso-
- morphism $\tau^*\Omega^1_{G\times G/G} \cong \Omega^1_{G\times G/G}$. Then use (1).) (4) Show that $\Omega^1_{G/k} \cong \pi^*e^*\Omega^1_{G/k}$. (*Hint:* Pullback (3) along id $\times \iota$: $G \to G \times_k G$.

Exercise 7.8. Let C be a smooth projective curve over a field k which has the structure of a group scheme. Show that C is an elliptic curve. (*Hint*: Use Exercise 7.7, (4) to show that ω_C is trivial and conclude.)