Exercise sheet 6 Elliptic Curves ${ }^{1}$

Kay Rülling

Exercise 6.1. Let k be a field of characteristic $\neq 2,3$ and $E \subset \mathbb{P}_{k}^{2}$ an elliptic curve given by

$$
Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}, \quad a, b \in k, 4 a^{3}+27 b^{2} \neq 0
$$

Hence

$$
E(k)=\left\{(x, y) \in k^{2} \mid y^{2}=x^{3}+a x+b\right\} \cup\{O\},
$$

where O corresponds to the point $Z=0, X=0$. Recall that the group structure on $E(k)$ is defined such that the injective map

$$
E(k) \rightarrow \operatorname{Pic}^{0}(E) \rightarrow \mathrm{CH}^{1}(E), \quad P \mapsto \mathcal{O}_{E}([P]-[O]) \mapsto[P]-[O]
$$

is a group homomorphism. We denote by $+_{E}$ the group law on $E(k)$.
(1) Let $P, Q, S \in E(k)$. Show that $P+_{E} Q=S$ if and only if there exists a function $f \in k(E)^{\times}$such that $\operatorname{div}(f)=[P]+[Q]-[S]-$ [O].
Fix two points $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ in $E(k) \backslash\{O\}$ and assume $x_{1} \neq x_{2}$.
(2) Show that there is a unique line $L_{1}=V_{+}\left(c_{1} X+d_{1} Y+e_{1} Z\right) \subset \mathbb{P}_{k}^{2}$, such that $L_{1}(k) \cap E(k)=\{P, Q, R\}$ for some point $R \in E(k)$.
(3) Show that there is a unique line $L_{2}=V_{+}\left(c_{2} X+d_{2} Y+e_{2} Z\right) \subset \mathbb{P}_{K}^{2}$ such that $L_{2}(k) \cap E(k)=\{R, O, S\}$, for some point $S \in E(k) \backslash$ $\{O\}$.
(4) Show that $P+_{E} Q=S$. (Hint: Denote by $f \in k(E)$ the image of $\frac{c_{1} X+d_{1} Y+e_{1} Z}{c_{2} X+d_{2} Y+e_{2} Z}$ and compute $\operatorname{div}(f)$.)
(5) Show that S is equal to (x, y) with
$x=\frac{x_{1} x_{2}^{2}+x_{1}^{2} x_{2}-2 y_{1} y_{2}+a\left(x_{1}+x_{2}\right)+2 b}{\left(x_{1}-x_{2}\right)^{2}}, \quad y=\frac{W_{2} y_{2}-W_{1} y_{1}}{\left(x_{1}-x_{2}\right)^{3}}$,
where
$W_{1}=3 x_{1} x_{2}^{2}+x_{2}^{3}+a\left(x_{1}+3 x_{2}\right)+4 b, \quad W_{2}=3 x_{1}^{2} x_{2}+x_{1}^{3}+a\left(3 x_{1}+x_{2}\right)+4 b$.

[^0]Exercise 6.2. Let C be a smooth projective curve over a field k and assume $C(k) \neq \emptyset$. Let $L=\mathcal{O}_{C}\left(\sum_{i} n_{i}\left[P_{i}\right]\right)$ be a line bundle on C and recall that its degree (over k) is equal to $\operatorname{deg}_{k}(L)=\sum_{i} n_{i} \cdot\left[k\left(P_{i}\right): k\right]$. Also recall that if C^{\prime} is a smooth projective curve and $f: C^{\prime} \rightarrow C$ is a finite surjective morphism, then we defined the pullback

$$
f^{*}\left(\sum_{i} n_{i}\left[P_{i}\right]\right):=\sum_{i} n_{i} \sum_{Q \in f^{-1}\left(P_{i}\right)} e\left(Q / P_{i}\right)[Q],
$$

where the $e\left(Q / P_{i}\right)$ are the ramification indices.
(1) Let $f: C^{\prime} \rightarrow C$ be as above and $L=\mathcal{O}_{C}(D)$ a line bundle on C given by the divisor D. Show that $f^{*} L=\mathcal{O}_{C^{\prime}}\left(f^{*} D\right)$.
(2) Let K / k be a finitely generated field extension. Denote by $C_{K}=C \times_{\text {Spec } k}$ Spec K the base change and by $\pi: C_{K} \rightarrow C$ the projection. Show that $\operatorname{deg}_{K}\left(\pi^{*} L\right)=\operatorname{deg}_{k}(L)$. (Hint: Consider the cases where K / k is finite and purely transcendental, separately. In the case where K / k is finite show that $[K: k] \cdot \operatorname{deg}_{K}\left(\pi^{*} L\right)=[K: k] \cdot \operatorname{deg}_{k}(\mathrm{~L})$ using the $\sum_{i} e_{i} f_{i}=n$ formula.)
(3) Let $f: S \rightarrow T$ be a morphism of k-schemes. Show that $\left(\mathrm{id}_{C} \times\right.$ $f)^{*}: \operatorname{Pic}(C \times T) \rightarrow \operatorname{Pic}(C \times S)$ sends $\operatorname{Pic}^{0}(C \times T)$ to $\operatorname{Pic}^{0}(C \times S)$.

Exercise 6.3. Let k be a field.
(1) Let X, Y be k-schemes and denote by $p_{1}: X \times Y \rightarrow X$ the projection. We have a natural map $\Omega_{X / k}^{1} \rightarrow p_{1 *} \Omega_{X \times{ }_{k} Y / Y}^{1}$. Show the natural map induced by adjunction $p_{1}^{*} \Omega_{X / k}^{1} \rightarrow \Omega_{X \times_{k} Y / Y}^{1}$ is an isomorphism. (Hint: It suffices to check this locally, hence to show $B \otimes_{k} \Omega_{A / k}^{1} \cong \Omega_{A \otimes_{k} B / B}^{1}$. This follows easily from the universal property.)
(2) Let G be a group scheme over k. Denote by $\pi: G \rightarrow$ Spec k the structure map, by $m: G \times_{k} G \rightarrow G$ the group law, by $\iota: G \rightarrow G$ the inverse and by $e: \operatorname{Spec} k \rightarrow G$ the neutral section (see Exercise sheet 4.) Consider $G \times_{k} G$ as a G-scheme via the second projection p_{2}. Show that $\tau=m \times p_{2}: G \times_{k} G \rightarrow G \times_{k} G$ is an automorphism of G-schemes.
(3) Show that $m^{*} \Omega_{G / k}^{1} \cong p_{1}^{*} \Omega_{G / k}^{1}$. (Hint: From (2) we get an isomorphism $\tau^{*} \Omega_{G \times G / G}^{1} \cong \Omega_{G \times G / G}^{1}$. Then use (11).)
(4) Show that $\Omega_{G / k}^{1} \cong \pi^{*} e^{*} \Omega_{G / k}^{1}$. (Hint: Pullback (3) along id $\times \iota$: $G \rightarrow G \times_{k} G$.)

Exercise 6.4. Let C be a smooth projective curve over a field k which has the structure of a group scheme. Show that C is an elliptic curve. (Hint: Use Exercise 6.3, (4) to show that ω_{C} is trivial and conclude.)

[^0]: ${ }^{1}$ This exercise sheet will be discussed on November 24. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or l.zhang@fu-berlin.de

