Exercise sheet Elliptic Curves

Kay Rülling

Exercise 3.1. (1) Let C be a smooth projective curve of genus 0 over a field and assume that $C(k) \neq \emptyset$. Show that there is an isomorphism of k-schemes $C \cong \mathbb{P}_{k}^{1}$. (Hint: Take $P \in C(k)$ and use Riemann-Roch to show that there exists a function $f \in$ $k(C)^{\times}$which is not algebraic over k and lies in $H^{0}(C, \mathcal{O}(P))$. Then use Exercise 3.3, (6) to conclude.)
(2) Let \mathbb{R} be the field of real numbers. Show that the scheme $C:=$ $\operatorname{Proj} \mathbb{R}[X, Y, Z] /\left(X^{2}+Y^{2}+Z^{2}\right)$ is a smooth projective curve which is geometrically connected but is not isomorphic to $\mathbb{P}_{\mathbb{R}}^{1}$.

Exercise 3.2. Let k be an algebraically closed field and E an elliptic curve over k. Choose a point $O \in E(k)$.
(1) Show that the map (of sets) $E(k) \rightarrow \operatorname{Pic}^{0}(E), P \mapsto \mathcal{O}_{E}([P]-$ $[O])$ is injective. (Hint: Else there exists a function $f \in k(E)$ with $\operatorname{div}(f)=[P]-[O]$. Use Exercise 3.3, (6) to get a contradiction.)
(2) Let D be a non-zero divisor of degree 0 on E. Show that there exists a function $f \in k(E)^{\times}$such that $\operatorname{div}(f)+D+[O] \geq 0$
(3) Conclude that there exists a point $P \in E$ such that $\operatorname{div}(f)+$ $D+[O]=[P]$.
(4) Show that the map from (11) is bijective.

Exercise 3.3. Let k be a field and $F:(\text { schemes } / k)^{\text {op }} \rightarrow($ sets $)$ be a contravariant functor. Show that the following are equivalent:
(1) There exits a scheme X over k and an isomorphism of functors $\operatorname{Hom}_{k}(-, X) \rightarrow F$ (i.e. X represents F).
(2) There exists an element $\xi \in F(X)$ such that for all S / k and all $a \in F(S)$ there exists a unique k-morphisms $f: S \rightarrow X$ with $a=f^{*} \xi$, where we write $f^{*}=F(f)$.

[^0]Exercise 3.4. Let X be a k-scheme. Show that X is a group scheme over k if and only if there exist k-morphisms

$$
\mu: X \times_{k} X \rightarrow X, \quad i: X \rightarrow X, \quad e: \operatorname{Spec} k \rightarrow X
$$

such that

$$
\mu \circ\left(\operatorname{id}_{X} \times i\right)=e \circ \pi=\mu \circ\left(i \times \operatorname{id}_{X}\right),
$$

where $\pi: X \rightarrow \operatorname{Spec} k$ is the structure map, and

$$
\mu \circ\left(e \times \operatorname{id}_{X}\right)=\operatorname{id}_{X}=\mu \circ\left(\operatorname{id}_{X} \times e\right), \quad \mu \circ\left(\operatorname{id}_{X} \times \mu\right)=\mu \circ\left(\mu \times \mathrm{id}_{X}\right) .
$$

[^0]: ${ }^{1}$ This exercise sheet will be discussed on November 11. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or l.zhang@fu-berlin.de

