Exercise sheet 3 Elliptic Curves ${ }^{11}$

Kay Rülling

Exercise 3.1. Let k be a field and C a smooth projective and geometrically connected curve with function field K. Let $D=\sum_{i} n_{i}\left[x_{i}\right]$, $x_{i} \in C$, be a divisor on C and define a presheaf $\mathcal{O}_{C}(D)$ on C via

$$
C \supset U \mapsto \mathcal{O}_{C}(D)(U):=\left\{f \in K^{\times} \mid \operatorname{div}(f)_{\mid U} \geq-D_{\mid U}\right\}
$$

where the restriction maps are induced by the identity map on K. Here we use the following notation: If $E=\sum_{j} m_{j}\left[y_{j}\right]$ is a divisor on C, then we set $E_{\mid U}:=\sum_{j \text { with } y_{j} \in U} m_{j}\left[y_{j}\right]$; it is a divisor on U. Show:
(1) $\mathcal{O}_{C}(D)$ is a sheaf of \mathcal{O}_{C}-modules.
(2) There is an open cover $C=\cup_{j} U_{j}$ and functions $f_{j} \in K^{\times}$such that $D_{\mid U_{j}}=\operatorname{div}\left(f_{j}\right)_{\mid U_{j}}$ and $f_{i} / f_{j} \in \mathcal{O}\left(U_{i} \cap U_{j}\right)^{\times}$.
(3) Let $\left\{\left(U_{j}, f_{j}\right)\right\}$ be as above. Then $\mathcal{O}_{C}(D)_{\mid U_{j}}=\mathcal{O}_{U_{j}} \cdot \frac{1}{f_{j}}$. In particular $\mathcal{O}_{C}(D)$ is a locally free sheaf of rank 1 .
(4) Let 0_{C} be the zero-divisor. Then $\mathcal{O}_{C}\left(0_{C}\right)=\mathcal{O}_{C}$.
(5) Let D^{\prime} be another divisor on C. Then $\mathcal{O}_{C}(D) \otimes_{\mathcal{O}_{C}} \mathcal{O}_{C}\left(D^{\prime}\right) \cong$ $\mathcal{O}_{C}\left(D+D^{\prime}\right)$.
(6) If $D^{\prime}=D+\operatorname{div}(f)$, for some $f \in K^{\times}$. Then $\mathcal{O}_{C}\left(D^{\prime}\right) \cong \mathcal{O}_{C}(D)$.
(7) $\mathcal{H o m}_{\mathcal{O}_{C}}\left(\mathcal{O}_{C}(D), \mathcal{O}_{C}\right) \cong \mathcal{O}_{C}(-D)$.
(8) Assume $D \geq 0$, i.e. D is effective, i.e. $n_{i} \geq 0$ for all i. Set $\underline{D}:=\operatorname{Spec}\left(\prod_{i} \mathcal{O}_{C, x_{i}} / \mathfrak{m}_{i}^{n_{i}}\right)$, where the $\mathfrak{m}_{i} \subset \mathcal{O}_{C, x_{i}}$ is the maximal ideal. Then we can define a closed immersion $i: \underline{D} \hookrightarrow C$ such that the following sequence is exact

$$
0 \rightarrow \mathcal{O}_{C}(-D) \rightarrow \mathcal{O}_{C} \xrightarrow{i^{*}} i_{*} \mathcal{O}_{\underline{D}} \rightarrow 0
$$

\underline{D} is called the subscheme associated to D and is often simply denoted by D again.
(9) Assume $\operatorname{deg}(D):=\sum_{i} n_{i}\left[k\left(x_{i}\right): k\right]<0$. Then $\Gamma\left(C, \mathcal{O}_{C}(D)\right)=$ 0 . (Hint: We will prove in the lecture that $\operatorname{deg}(\operatorname{div}(f))=0$. You can use it.)

[^0]Recall: Let X be a noetherian integral scheme with function field K. Denote by $X^{(1)}$ the set of all points $x \in X$ of codimension 1, i.e. the closure \bar{x} of x in X has codimension 1. We assume that for all $x \in X^{(1)}$ the local ring $\mathcal{O}_{X, x}$ is a $D V R$ (e.g. X normal or smooth over a field); we denote by $v_{x}: K^{\times} \rightarrow \mathbb{Z}$ the corresponding normalized discrete valuation. Then by definition

$$
\mathrm{CH}^{1}(X):=\operatorname{coker}\left(K^{\times} \xrightarrow{\mathrm{div}} \bigoplus_{x \in X^{(1)}} \mathbb{Z} \cdot \bar{x}\right)
$$

where $\operatorname{div}(f)=\sum_{x \in X^{(1)}} v_{x}(f) \cdot \bar{x}$ (it is a finite sum as we saw in the lecture).

Exercise 3.2. Let k be a field. Show:
(1) If $X=\operatorname{Spec} A$ and A is a unique factorization domain, then $\mathrm{CH}^{1}(X)=0$. In particular $\mathrm{CH}^{1}\left(\mathbb{A}_{k}^{n}\right)=0$.
(2) Let $H \subset \mathbb{P}_{k}^{n}$ be a hyperplane (i.e. given by the vanishing of a linear homogenous polynomial in $\left.k\left[x_{0}, \ldots, x_{n}\right]\right)$. Then the map $\mathbb{Z} \rightarrow \mathrm{CH}^{1}\left(\mathbb{P}_{k}^{n}\right), d \mapsto$ class of $d \cdot H$, is an isomorphism.

Exercise 3.3. Let C be a smooth projective curve over a field k with function field K. Let $f \in K$ be a function.
(1) Show that there is a unique k-morphism $\varphi_{f}: C \rightarrow \mathbb{P}_{k}^{1}$ such that on any open affine $U=\operatorname{Spec} A \subset C$ on which f is regular (i.e. $f \in A)$ the restriction $\varphi_{f \mid U}$ factors as $U \rightarrow \mathbb{A}_{k}^{1} \hookrightarrow \mathbb{P}_{k}^{1}$, where $U \rightarrow \mathbb{A}_{k}^{1}$ is induced by $k[t] \rightarrow A, t \mapsto f$.
(2) Show that the image of φ_{f} is a point if and only if $f \in K$ is algebraic over k.
(3) Show that φ_{f} is dominant (i.e. φ_{f} maps the generic point on C to the generic point on \mathbb{P}_{k}^{1}) if and only if f is transcendental over k.
(4) Assume f is transcendental over k. Show that φ_{f} is finite and surjective. (Hint: We proved the finiteness in the lecture.)
(5) Assume f is transcendental over k. There are unique effective divisors $\operatorname{div}_{+}(f), \operatorname{div}_{-}(f) \geq 0$ on C such that $\operatorname{div}(f)=$ $\operatorname{div}_{+}(f)-\operatorname{div}_{-}(f)$. Set $n:=\operatorname{deg}\left(\operatorname{div}_{+}(f)\right)$. Show that $n \geq 1$ and that the field extension $k(t)=k\left(\mathbb{P}_{k}^{1}\right) \hookrightarrow K$ induced by φ_{f} has degree $[K: k(t)]=n$. (Hint: By 4 above $\varphi_{f}^{-1}\left(\mathbb{A}^{1}\right)=\operatorname{Spec} B$ with B finite over $k[t]$. Then B is a free $k[t]$-module of rank $=\operatorname{dim}_{k} B /(f)$.)
(6) Conclude that if there exists a function $f \in K$ with $\operatorname{deg}\left(\operatorname{div}_{+}(f)\right)=$ 1 , then $\varphi_{f}: C \rightarrow \mathbb{P}_{k}^{1}$ is an isomorphism.

[^0]: ${ }^{1}$ This exercise sheet will be discussed on November 4. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or l.zhang@fu-berlin.de

