14. October 2015

Exercise sheet 1 Elliptic Curves

Kay Rülling

Exercise 1.1. Let k be a field and A a *local* k-algebra and write $\mathbb{P}_k^2 = \operatorname{Proj} k[X, Y, Z]$. Show that the A-rational points over k of \mathbb{P}_k^2 are given by

$$\mathbb{P}^{2}_{k}(A) = \{(a, b, c) \in A^{3} \, | \, A = aA + bA + cA\} / \sim,$$

where $(a, b, c) \sim (a', b', c') :\iff a = ua', b = ub', c = uc'$ for some unit $u \in A^{\times}$.

Challenge: Show that if X is any k-scheme, then

 $\mathbb{P}_k^n(X) = \{ \text{surjections of } \mathcal{O}_X \text{-modules } \mathcal{O}_X^{n+1} \xrightarrow{\varphi} \mathcal{L} \text{ with } \mathcal{L} \text{ invertible } \} / \sim,$

where $\varphi \sim \varphi' \iff$ there exists an isomorphism $\alpha : \mathcal{L} \xrightarrow{\simeq} \mathcal{L}'$ such that $\alpha \circ \varphi = \varphi'$.

Exercise 1.2. Let k be a field and A a local k-algebra.

(1) Let $F \in k[X, Y, Z]$ be a homogenous polynomial and set $C = \operatorname{Proj} k[X, Y, Z]/(F)$. Show

 $C(A) = \{ (a:b:c) \in \mathbb{P}_{k}^{2}(A) \mid F(a,b,c) = 0 \},\$

where we denote by $(a : b : c) \in \mathbb{P}_k^2(A)$, the image of (a, b, c), with aA + bA + cA = A, in $\mathbb{P}_k^2(A)$ under the identification from Exercise 1.1.

(2) For $F \in k[X, Y, Z]$ homogeneous of degree *n* define $f(x, y) \in k[x, y]$ by $f(\frac{X}{Z}, \frac{Y}{Z}) = \frac{1}{Z^n} F(X, Y, Z)$. Similar define $f_{\infty}(x) \in k[x]$ by $f_{\infty}(\frac{X}{Y}) = \frac{1}{Y^n} F(X, Y, 0)$. Define *C* as above. Show

$$C(k) =$$

$$\{(a,b) \in k^2 \mid f(a,b) = 0\} \sqcup \{a' \in k \mid f_{\infty}(a') = 0\} \sqcup \begin{cases} \emptyset & \text{if } F(X,0,0) = 0\\ \{*\} & \text{else.} \end{cases}$$

¹This exercise sheet will be discussed on October 21. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or l.zhang@fu-berlin.de

Exercise 1.3. Set $f(x, y) = y^2 - x^3 + x \in \mathbb{Q}[x, y]$ and $U = \operatorname{Spec} \mathbb{Q}[x, y]/(f)$. In this exercise we want to show

$$U(\mathbb{Q}) = \{(0,0), (\pm 1,0)\} \subset \mathbb{Q}^2$$

For this proceed as follows: For $a \in \mathbb{Q} \setminus \{0\}$ define its height by $H(a) = \max\{|m|, |n|\}$, where $m, n \in \mathbb{Z} \setminus \{0\}$ with a = m/n and (m, n) = 1; set H(0) = 1. Now we assume $S := U(\mathbb{Q}) \setminus \{(0, 0), (\pm 1, 0)\}$ is not empty. Choose a point $(x_0, y_0) \in S$ with $H(x_0)$ minimal. The aim is to construct a point $(x_1, y_1) \in S$ with $H(x_1) < H(x_0)$ therefore leading to a contradiction:

- (1) Show that we can assume $x_0 > 1$. (*Hint:* If $(a, b) \in U(\mathbb{Q}) \setminus \{(0,0)\}$, then also $(-\frac{1}{a}, \frac{b}{a^2}) \in U(\mathbb{Q})$.)
- (2) By 1 we can write $x_0 = m/n$ with natural numbers m > n > 0. Show that either *m* or *n* is even. (*Hint:* Else $(\frac{x_0+1}{x_0-1}, \frac{2y_0}{(x_0-1)^2}) \in S$ and $H(\frac{x_0+1}{x_0-1}) < H(x_0)$.)
- (3) Use the above and $(x_0 1)x_0(x_0 + 1) = y_0^2$ to show that x_0 and $x_0 \pm 1$ are squares of rational numbers.
- (4) Set

$$T := \{ (c, d, e) \in \mathbb{Q}^3 \, | \, c^2 + 1 = d^2 = e^2 - 1 \}.$$

Then there are mutually inverse maps $f: T \to S$ and $g: S \to T$ given by

$$f(c,d,e) = (c^2 + 1 + cd + ce + de, (c+d)(c+e)(d+e))$$
 and

$$g(a,b) = \left(\frac{1}{2b}((a-1)^2 - 2), \frac{1}{2b}(a^2 + 1), \frac{1}{2b}((a+1)^2 - 2)\right).$$

- (5) There is a map $h: T \to U(\mathbb{Q})$ given by $h(c, d, e) = (c^2 + 1, cde)$.
- (6) The composition $h \circ g : S \to U(\mathbb{Q})$ has image $\{(a, b) \in U(\mathbb{Q}) \mid a, a \pm 1 \text{ are squares in } \mathbb{Q}\}.$
- (7) Putting 3 and 6 together show that there exists $(x_1, y_1) \in S$ with $h(g(x_1, y_1)) = (x_0, y_0)$.
- (8) Show that $H(x_1) < H(x_0)$. This yields a contradiction.

Remark 1. The map $h \circ g : S \to U(\mathbb{Q})$ is induced from the multiplicationwith-2 map on the elliptic curve defined by f.

Exercise 1.4. Let $E \subset \mathbb{P}^2_{\mathbb{Q}}$ be the elliptic curve given by $y^2 = x^3 - x$ (i.e. $E = \operatorname{Proj} \mathbb{Q}[X, Y, Z]/(ZY^2 - X^3 + Z^2X))$. Given two points $P, Q \in E(\mathbb{Q})$ there is a unique line $L = V_+(aX + bY + cZ)$, $a, b, c \in \mathbb{Q}$, passing through this points (if P = Q take L to be the tangent line) and $L(\mathbb{Q})$ intersects $E(\mathbb{Q})$ in a third point R_0 . (This is a bit imprecise, since it can happen for example that R is equal to P. It is part of the exercise to make this more precise.) Then there is a unique line L_1 passing through R_0 and the point at infinity (given by the prime ideal (X, Z)) which intersects $E(\mathbb{Q})$ in a third point R. Show that $E(\mathbb{Q}) \times E(\mathbb{Q}) \to E(\mathbb{Q}), (P, Q) \mapsto P + Q := R$ defines a group structure on $E(\mathbb{Q})$ so that $E(\mathbb{Q}) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$. Which point of $E(\mathbb{Q})$ is the neutral element? (*Hint:* Use Exercise 1.3.)