# Exercise sheet 1 Elliptic Curves 

Kay Rülling

Exercise 1.1. Let $k$ be a field and $A$ a local $k$-algebra and write $\mathbb{P}_{k}^{2}=$ $\operatorname{Proj} k[X, Y, Z]$. Show that the $A$-rational points over $k$ of $\mathbb{P}_{k}^{2}$ are given by

$$
\mathbb{P}_{k}^{2}(A)=\left\{(a, b, c) \in A^{3} \mid A=a A+b A+c A\right\} / \sim,
$$

where $(a, b, c) \sim\left(a^{\prime}, b^{\prime}, c^{\prime}\right): \Longleftrightarrow a=u a^{\prime}, b=u b^{\prime}, c=u c^{\prime}$ for some unit $u \in A^{\times}$.

Challenge: Show that if $X$ is any $k$-scheme, then
$\mathbb{P}_{k}^{n}(X)=\left\{\right.$ surjections of $\mathcal{O}_{X}$-modules $\mathcal{O}_{X}^{n+1} \xrightarrow{\varphi} \mathcal{L}$ with $\mathcal{L}$ invertible $\} / \sim$, where $\varphi \sim \varphi^{\prime} \Longleftrightarrow$ there exists an isomorphism $\alpha: \mathcal{L} \xrightarrow{\simeq} \mathcal{L}^{\prime}$ such that $\alpha \circ \varphi=\varphi^{\prime}$.

Exercise 1.2. Let $k$ be a field and $A$ a local $k$-algebra.
(1) Let $F \in k[X, Y, Z]$ be a homogenous polynomial and set $C=$ $\operatorname{Proj} k[X, Y, Z] /(F)$. Show

$$
C(A)=\left\{(a: b: c) \in \mathbb{P}_{k}^{2}(A) \mid F(a, b, c)=0\right\},
$$

where we denote by $(a: b: c) \in \mathbb{P}_{k}^{2}(A)$, the image of $(a, b, c)$, with $a A+b A+c A=A$, in $\mathbb{P}_{k}^{2}(A)$ under the identification from Exercise 1.1.
(2) For $F \in k[X, Y, Z]$ homogeneous of degree $n$ define $f(x, y) \in$ $k[x, y]$ by $f\left(\frac{X}{Z}, \frac{Y}{Z}\right)=\frac{1}{Z^{n}} F(X, Y, Z)$. Similar define $f_{\infty}(x) \in k[x]$ by $f_{\infty}\left(\frac{X}{Y}\right)=\frac{1}{Y^{n}} F(X, Y, 0)$. Define $C$ as above. Show

$$
C(k)=
$$

$\left\{(a, b) \in k^{2} \mid f(a, b)=0\right\} \sqcup\left\{a^{\prime} \in k \mid f_{\infty}\left(a^{\prime}\right)=0\right\} \sqcup \begin{cases}\emptyset & \text { if } F(X, 0,0)=0 \\ \{*\} & \text { else } .\end{cases}$

[^0]Exercise 1.3. Set $f(x, y)=y^{2}-x^{3}+x \in \mathbb{Q}[x, y]$ and $U=\operatorname{Spec} \mathbb{Q}[x, y] /(f)$. In this exercise we want to show

$$
U(\mathbb{Q})=\{(0,0),( \pm 1,0)\} \subset \mathbb{Q}^{2}
$$

For this proceed as follows: For $a \in \mathbb{Q} \backslash\{0\}$ define its height by $H(a)=$ $\max \{|m|,|n|\}$, where $m, n \in \mathbb{Z} \backslash\{0\}$ with $a=m / n$ and $(m, n)=1$; set $H(0)=1$. Now we assume $S:=U(\mathbb{Q}) \backslash\{(0,0),( \pm 1,0)\}$ is not empty. Choose a point $\left(x_{0}, y_{0}\right) \in S$ with $H\left(x_{0}\right)$ minimal. The aim is to construct a point $\left(x_{1}, y_{1}\right) \in S$ with $H\left(x_{1}\right)<H\left(x_{0}\right)$ therefore leading to a contradiction:
(1) Show that we can assume $x_{0}>1$. (Hint: If $(a, b) \in U(\mathbb{Q}) \backslash$ $\{(0,0)\}$, then also $\left(-\frac{1}{a}, \frac{b}{a^{2}}\right) \in U(\mathbb{Q})$.)
(2) By 1 we can write $x_{0}=m / n$ with natural numbers $m>n>0$. Show that either $m$ or $n$ is even. (Hint: Else $\left(\frac{x_{0}+1}{x_{0}-1}, \frac{2 y_{0}}{\left(x_{0}-1\right)^{2}}\right) \in S$ and $H\left(\frac{x_{0}+1}{x_{0}-1}\right)<H\left(x_{0}\right)$.)
(3) Use the above and $\left(x_{0}-1\right) x_{0}\left(x_{0}+1\right)=y_{0}^{2}$ to show that $x_{0}$ and $x_{0} \pm 1$ are squares of rational numbers.
(4) Set

$$
T:=\left\{(c, d, e) \in \mathbb{Q}^{3} \mid c^{2}+1=d^{2}=e^{2}-1\right\} .
$$

Then there are mutually inverse maps $f: T \rightarrow S$ and $g: S \rightarrow T$ given by
$f(c, d, e)=\left(c^{2}+1+c d+c e+d e,(c+d)(c+e)(d+e)\right)$
and
$g(a, b)=\left(\frac{1}{2 b}\left((a-1)^{2}-2\right), \frac{1}{2 b}\left(a^{2}+1\right), \frac{1}{2 b}\left((a+1)^{2}-2\right)\right)$.
(5) There is a map $h: T \rightarrow U(\mathbb{Q})$ given by $h(c, d, e)=\left(c^{2}+1, c d e\right)$.
(6) The composition $h \circ g: S \rightarrow U(\mathbb{Q})$ has image $\{(a, b) \in U(\mathbb{Q}) \mid a, a \pm$ 1 are squares in $\mathbb{Q}\}$.
(7) Putting 3 and 6 together show that there exists $\left(x_{1}, y_{1}\right) \in S$ with $h\left(g\left(x_{1}, y_{1}\right)\right)=\left(x_{0}, y_{0}\right)$.
(8) Show that $H\left(x_{1}\right)<H\left(x_{0}\right)$. This yields a contradiction.

Remark 1. The map $h \circ g: S \rightarrow U(\mathbb{Q})$ is induced from the multiplication-with-2 map on the elliptic curve defined by $f$.
Exercise 1.4. Let $E \subset \mathbb{P}_{\mathbb{Q}}^{2}$ be the elliptic curve given by $y^{2}=x^{3}-x$ (i.e. $E=\operatorname{Proj} \mathbb{Q}[X, Y, Z] /\left(Z Y^{2}-X^{3}+Z^{2} X\right)$ ). Given two points $P, Q \in E(\mathbb{Q})$ there is a unique line $L=V_{+}(a X+b Y+c Z), a, b, c \in \mathbb{Q}$, passing through this points (if $P=Q$ take $L$ to be the tangent line) and $L(\mathbb{Q})$ intersects $E(\mathbb{Q})$ in a third point $R_{0}$. (This is a bit imprecise, since it can happen for example that $R$ is equal to $P$. It is part of
the exercise to make this more precise.) Then there is a unique line $L_{1}$ passing through $R_{0}$ and the point at infinity (given by the prime ideal $(X, Z)$ ) which intersects $E(\mathbb{Q})$ in a third point $R$. Show that $E(\mathbb{Q}) \times E(\mathbb{Q}) \rightarrow E(\mathbb{Q}),(P, Q) \mapsto P+Q:=R$ defines a group structure on $E(\mathbb{Q})$ so that $E(\mathbb{Q}) \cong \mathbb{Z} / 2 \oplus \mathbb{Z} / 2$. Which point of $E(\mathbb{Q})$ is the neutral element? (Hint: Use Exercise 1.3.)


[^0]:    ${ }^{1}$ This exercise sheet will be discussed on October 21. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or l.zhang@fu-berlin.de

