Reciprocity sheaves and their cohomology

Kay Rülling 22.09.2020

Bergische Universität Wuppertal

```
Reciprocity sheaves (following Kahn-Saito-Yamazaki)
```

De Rham-Witt sheaves as reciprocity sheaves

Computation of the modulus (Saito-R)

Tensor products and twists

Cohomology of reciprocity sheaves (Binda-R-Saito)

Applications (BRS)

Reciprocity sheaves

(following Kahn-Saito-Yamazaki)

complete understanding of general properties of the cohomology of A¹-invariant sheaves with transfers:

· projective bundle formula

- projective bundle formula
- · blow-up formula

- · projective bundle formula
- · blow-up formula
- · Gysin sequence

- · projective bundle formula
- · blow-up formula
- · Gysin sequence
- Gersten resolution

- · projective bundle formula
- · blow-up formula
- · Gysin sequence
- Gersten resolution
- action of proper Chow correspondences
- · etc.

1. many non A¹-invariant sheaves have some of the above properties, such as

- 1. many non A¹-invariant sheaves have some of the above properties, such as
 - · Kähler differentials

- 1. many non A¹-invariant sheaves have some of the above properties, such as
 - · Kähler differentials
 - smooth commutative unipotent groups

- 1. many non A¹-invariant sheaves have some of the above properties, such as
 - · Kähler differentials
 - smooth commutative unipotent groups
 - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p>0

- 1. many non A¹-invariant sheaves have some of the above properties, such as
 - · Kähler differentials
 - · smooth commutative unipotent groups
 - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p>0

- 1. many non A¹-invariant sheaves have some of the above properties, such as
 - · Kähler differentials
 - · smooth commutative unipotent groups
 - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p > 0

Why?

2. A¹-invariant theory only sees

- 1. many non A¹-invariant sheaves have some of the above properties, such as
 - · Kähler differentials
 - · smooth commutative unipotent groups
 - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p > 0

- 2. A¹-invariant theory only sees
 - log poles

- 1. many non A¹-invariant sheaves have some of the above properties, such as
 - · Kähler differentials
 - · smooth commutative unipotent groups
 - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p>0

- 2. A¹-invariant theory only sees
 - log poles
 - · regular singularities

- 1. many non A¹-invariant sheaves have some of the above properties, such as
 - · Kähler differentials
 - · smooth commutative unipotent groups
 - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p>0

- 2. A¹-invariant theory only sees
 - · log poles
 - regular singularities
 - · tame ramification, etc.

- 1. many non A¹-invariant sheaves have some of the above properties, such as
 - · Kähler differentials
 - · smooth commutative unipotent groups
 - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p > 0

Why?

- 2. A¹-invariant theory only sees
 - log poles
 - regular singularities
 - · tame ramification, etc.

What a pitty!

•
$$A^1 \leftrightarrow \Box^{\log} = (P^1, \text{ log-structure } \infty \hookrightarrow P^1)$$

• $A^1 \leftrightarrow \Box^{\log} = (P^1, \log\text{-structure} \infty \hookrightarrow P^1)$ work consequently with smooth log schemes everywhere + dNis

• $A^1 \leftrightarrow \Box^{\log} = (P^1, \log\text{-structure} \ \infty \hookrightarrow P^1)$ work consequently with smooth log schemes everywhere + dNis $\leftrightarrow \log DM^{eff}(k)$

- $A^1 \leftrightarrow \Box^{\log} = (P^1, \log\text{-structure} \infty \hookrightarrow P^1)$ work consequently with smooth log schemes everywhere + dNis
 - $\rightsquigarrow logDM^{eff}(k)$
- a cohomology theory representable in $logDM^{eff}(k)$ has nice properties as above

- $A^1 \leftrightarrow \Box^{\log} = (P^1, \log\text{-structure} \infty \hookrightarrow P^1)$ work consequently with smooth log schemes everywhere + dNis $\rightarrow \log DM^{eff}(k)$
 - a cohomology theory representable in logDM^{eff}(k) has nice properties as above
 - e.g. cohomology of log-Kähler differentials is representable

- $A^1 \leftrightarrow \Box^{\log} = (P^1, \log\text{-structure} \ \infty \hookrightarrow P^1)$ work consequently with smooth log schemes everywhere + dNis $\hookrightarrow \log DM^{eff}(R)$
 - a cohomology theory representable in logDM^{eff}(k) has nice properties as above
 - e.g. cohomology of log-Kähler differentials is representable
 - · so far no pole order/ ramification filtration

The idea of reciprocity sheaves is to consider only sheaves whose sections behave in a controlled way at infinity \leadsto

Idea (Kahn 1990's)

Replace A¹-invariance by a modulus condition as the one used by Rosenlicht-Serre to define the generalized Jacobian for curves

k perfect field

- C sm proj curve/k, D eff. divisor, $U = C \setminus |D|$
- G sm k-group (always commutative)

k perfect field

- C sm proj curve/k, D eff. divisor, $U = C \setminus |D|$
- *G* sm *k*-group (always commutative)

Definition

 $a:U\to G$ has modulus $D\Longleftrightarrow$

$$\sum_{x\in U} v_x(f)\cdot \mathsf{Tr}_{x/k}(a(x))=0,$$

for all $f \in k(C)^{\times}$ with $f \equiv 1 \mod D$

k perfect field

- C sm proj curve/k, D eff. divisor, $U = C \setminus |D|$
- G sm k-group (always commutative)

Definition

 $a:U\to G$ has modulus $D\Longleftrightarrow$

$$\sum_{x\in U} v_x(f)\cdot \mathsf{Tr}_{x/k}(a(x))=0,$$

for all $f \in k(C)^{\times}$ with $f \equiv 1 \mod D$

 \rightsquigarrow a factors via $U \rightarrow \text{Alb}(C, D)$ (dep. on $x \in U(k)$ with a(x)=0)

Reformulation

 $a \in G(U)$ has modulus $D \Longleftrightarrow \gamma^* a = 0$, all γ as below

Reformulation

 $a \in G(U)$ has modulus $D \iff \gamma^* a = 0$, all γ as below

• $\Gamma \in Cor(P^1 \setminus \{1\}, U)$ prime correspondence, such that

$$\{1\}_{\mid \Gamma^N} \geq D_{\mid \Gamma^N}$$

where $\Gamma^N \to \mathbf{P}^1 \times C$ normalization of closure of Γ

•
$$\gamma := i_0^* \Gamma - i_\infty^* \Gamma \in \mathsf{Cor}(\mathsf{Spec}\,k, U)$$

Fix perfect field k

• modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$

Fix perfect field k

- modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$
- · (\overline{X}, D) proper $\iff \overline{X}$ proper

Fix perfect field k

- modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$
- · (\overline{X}, D) proper $\iff \overline{X}$ proper
- $\underline{\mathsf{M}}\mathsf{Cor}((X,D),(Y,E)) = \mathsf{generated}$ by finite prime correspondences $V \subset X \setminus |D| \times Y \setminus |E|$ with

where $V^N \to X \times Y$ normal. of closure of V

Fix perfect field *k*

- modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$
- · (\overline{X}, D) proper $\iff \overline{X}$ proper
- $\underline{\mathsf{MCor}}((X,D),(Y,E)) = \text{generated by finite prime correspondences} V \subset X \setminus |D| \times Y \setminus |E| \text{ with}$
 - $V^N \to X$ proper

where $V^N \to X \times Y$ normal. of closure of V

Fix perfect field k

- modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$
- · (\overline{X}, D) proper $\iff \overline{X}$ proper
- $\underline{\mathsf{MCor}}((X,D),(Y,E)) = \text{generated by finite prime correspondences}$ $V \subset X \setminus |D| \times Y \setminus |E| \text{ with}$
 - $V^N \to X$ proper
 - $\cdot \ D_{|V^N} \geq E_{|V^N}$

where $V^N \to X \times Y$ normal. of closure of V

Fix perfect field k

- modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$
- · (\overline{X}, D) proper $\iff \overline{X}$ proper
- $\underline{\mathbf{M}}\mathbf{Cor}((X, D), (Y, E)) = \text{generated by finite prime correspondences}$ $V \subset X \setminus |D| \times Y \setminus |E| \text{ with}$
 - $V^N \to X$ proper
 - $D_{|V^N} \geq E_{|V^N}$

where $V^N \to X \times Y$ normal. of closure of V

→ MCor category of modulus pairs

Fix perfect field k

- modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$
- · (\overline{X}, D) proper $\iff \overline{X}$ proper
- $\underline{\mathsf{M}}\mathsf{Cor}((X,D),(Y,E)) = \mathsf{generated}$ by finite prime correspondences $V \subset X \setminus |D| \times Y \setminus |E|$ with
 - $V^N \to X$ proper
 - $\cdot \ D_{|V^N} \geq E_{|V^N}$

where $V^N \to X \times Y$ normal. of closure of V

- → MCor category of modulus pairs
 - monoidal structure: $(X, D) \otimes (Y, E) = (X \times Y, p_X^*D + p_Y^*E)$

 \leadsto MPST presheaves on MCor with monoidal structure \otimes_{MPST}

- \rightarrow MPST presheaves on MCor with monoidal structure \otimes_{MPST}
 - adjoint pair $\underline{\omega}_!$: $\underline{\mathsf{M}}\mathsf{PST} \rightleftarrows \mathsf{PST} : \underline{\omega}^*$

$$\underline{\omega}_! G(X) = G(X, \emptyset)$$
 $\underline{\omega}^* F(X, D) = F(X \setminus |D|)$

- \rightsquigarrow MPST presheaves on MCor with monoidal structure \otimes_{MPST}
 - adjoint pair $\underline{\omega}_!$: $\underline{\mathsf{M}}\mathsf{PST} \rightleftarrows \mathsf{PST} : \underline{\omega}^*$

$$\underline{\omega}_! G(X) = G(X, \emptyset) \qquad \underline{\omega}^* F(X, D) = F(X \setminus |D|)$$

• $\mathbb{Z}_{\mathsf{tr}}(\overline{X}, D) = \underline{\mathsf{M}}\mathsf{Cor}(-, (\overline{X}, D)) \in \underline{\mathsf{M}}\mathsf{PST}$

- \rightsquigarrow MPST presheaves on MCor with monoidal structure \otimes_{MPST}
 - adjoint pair $\underline{\omega}_!$: $\underline{\mathsf{M}}\mathsf{PST} \rightleftarrows \mathsf{PST} : \underline{\omega}^*$

$$\underline{\omega}_! G(X) = G(X, \emptyset)$$
 $\underline{\omega}^* F(X, D) = F(X \setminus |D|)$

- $\mathbb{Z}_{\mathsf{tr}}(\overline{X}, D) = \underline{\mathsf{M}}\mathsf{Cor}(-, (\overline{X}, D)) \in \underline{\mathsf{M}}\mathsf{PST}$
- set $\overline{\square} = (P^1, \infty)$

- \rightsquigarrow MPST presheaves on MCor with monoidal structure \otimes_{MPST}
 - · adjoint pair $\underline{\omega}_!: \underline{\mathsf{M}}\mathsf{PST} \rightleftarrows \mathsf{PST}: \underline{\omega}^*$

$$\underline{\omega}_! G(X) = G(X, \emptyset) \qquad \underline{\omega}^* F(X, D) = F(X \setminus |D|)$$

$$\cdot \ \mathbb{Z}_{\mathsf{tr}}(\overline{X}, D) = \underline{\mathsf{M}}\mathsf{Cor}(-, (\overline{X}, D)) \in \underline{\mathsf{M}}\mathsf{PST}$$

• set
$$\overline{\square} = (P^1, \infty)$$

 $h_0^{\overline{\square}}(\overline{X},D) = \mathsf{Coker}(\mathbb{Z}_\mathsf{tr}(\overline{X},D)(-\otimes \overline{\square}) \xrightarrow{i_0^* - i_1^*} \mathbb{Z}_\mathsf{tr}(\overline{X},D))$

- → MPST presheaves on MCor with monoidal structure ⊗MPST
 - adjoint pair $\underline{\omega}_!: \underline{\mathsf{M}}\mathsf{PST} \rightleftarrows \mathsf{PST}: \underline{\omega}^*$

$$\underline{\omega}_! G(X) = G(X, \emptyset) \qquad \underline{\omega}^* F(X, D) = F(X \setminus |D|)$$

- $\mathbb{Z}_{\mathsf{tr}}(\overline{X}, D) = \underline{\mathsf{M}}\mathsf{Cor}(-, (\overline{X}, D)) \in \underline{\mathsf{M}}\mathsf{PST}$
- set $\overline{\square} = (P^1, \infty)$

$$h_0^{\overline{\square}}(\overline{X},D) = \mathsf{Coker}(\mathbb{Z}_{\mathsf{tr}}(\overline{X},D)(-\otimes \overline{\square}) \xrightarrow{i_0^*-i_1^*} \mathbb{Z}_{\mathsf{tr}}(\overline{X},D))$$

· Note: $\mathbb{Z}_{\operatorname{tr}}(\overline{X}\setminus |D|) \twoheadrightarrow \underline{\omega}_! h_0^{\square}(\overline{X}, D) \twoheadrightarrow h_0^{\mathbf{A}^1}(X\setminus |D|)$

$$F \in PST$$
, $a \in F(X)$, (\overline{X}, D) proper modulus pair, $X = \overline{X} \setminus |D|$

$$F \in \mathbf{PST}$$
, $a \in F(X)$, (\overline{X}, D) proper modulus pair, $X = \overline{X} \setminus |D|$

$$F \in \mathbf{PST}, a \in F(X), (\overline{X}, D)$$
 proper modulus pair, $X = \overline{X} \setminus |D|$

- a has modulus $(\overline{X}, D) \iff \mathbb{Z}_{tr}(X) \xrightarrow{q \text{ Yoneda}} F$ $\underbrace{\omega_! h_0^{\square}(\overline{X}, D)}$
- F is a reciprocity presheaf iff any a has a modulus

$$F \in \mathsf{PST}, \, a \in F(X), \, (\overline{X}, D)$$
 proper modulus pair, $X = \overline{X} \setminus |D|$

- a has modulus $(\bar{X}, D) \iff \mathbb{Z}_{tr}(X) \xrightarrow{a \text{ Yoneda}} F$ $\underbrace{\omega_! h_0^{\square}(\bar{X}, D)}$
- F is a reciprocity presheaf iff any a has a modulus
- \leadsto RSC \subset PST

$$F \in \mathsf{PST}, \, a \in F(X), \, (\overline{X}, D)$$
 proper modulus pair, $X = \overline{X} \setminus |D|$

- a has modulus $(\bar{X}, D) \iff \mathbb{Z}_{tr}(X) \xrightarrow{a \text{ Yoneda}} F$ $\underbrace{\omega_! h_0^{\square}(\bar{X}, D)}$
- F is a reciprocity presheaf iff any a has a modulus
- \leadsto RSC \subset PST
 - · Set $RSC_{Nis} = RSC \cap NST =$ category of reciprocity sheaves

smooth k-groups

- smooth k-groups
- $\cdot \ \mathsf{HI}_{\mathsf{Nis}} \subset \mathsf{RSC}_{\mathsf{Nis}}$

- smooth k-groups
- $\cdot \ \mathsf{HI}_{\mathsf{Nis}} \subset \mathsf{RSC}_{\mathsf{Nis}}$
- · Kähler differentials:

- smooth k-groups
- $\cdot \ \mathsf{HI}_{\mathsf{Nis}} \subset \mathsf{RSC}_{\mathsf{Nis}}$
- · Kähler differentials:
 - $\Omega^j \in \mathsf{NST}$

- smooth k-groups
- $\cdot HI_{Nis} \subset RSC_{Nis}$
- · Kähler differentials:
 - $\Omega^j \in \mathsf{NST}$
 - modulus condition: $a \in \Omega^{j}(X)$

- smooth k-groups
- \cdot $HI_{Nis} \subset RSC_{Nis}$
- · Kähler differentials:
 - $\Omega^j \in \mathsf{NST}$
 - modulus condition: $a \in \Omega^{j}(X)$
 - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$

- smooth k-groups
- \cdot $HI_{Nis} \subset RSC_{Nis}$
- · Kähler differentials:
 - $\Omega^j \in \mathsf{NST}$
 - modulus condition: $a \in \Omega^{j}(X)$
 - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$
 - take $C \longrightarrow \overline{X}$ C reg proj curve/K, K function field/k \downarrow $\mathbf{Spec}\ K$

- smooth k-groups
- $\cdot HI_{Nis} \subset RSC_{Nis}$
- · Kähler differentials:
 - $\Omega^j \in \mathsf{NST}$
 - modulus condition: $a \in \Omega^{j}(X)$
 - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$
 - take $C \longrightarrow \overline{X}$ C reg proj curve/K, K function field/kSpec K
 - $K(C) \ni f \equiv 1 \mod 2D_{|C} \Longrightarrow \operatorname{Res}_{x}(a \operatorname{dlog}(f)) = 0 \text{ for } x \in |D_{|C}|$

- smooth k-groups
- \cdot $HI_{Nis} \subset RSC_{Nis}$
- · Kähler differentials:
 - $\Omega^j \in \mathsf{NST}$
 - modulus condition: $a \in \Omega^{j}(X)$
 - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$
 - take $C \longrightarrow \overline{X}$ C reg proj curve/K, K function field/kSpec K
 - $K(C) \ni f \equiv 1 \mod 2D_{|C} \Longrightarrow \operatorname{Res}_{x}(a \operatorname{dlog}(f)) = 0 \text{ for } x \in |D_{|C}|$ $\Rightarrow 0 = \sum_{x \in C} \operatorname{Res}_{x}(a \operatorname{dlog}(f)) = \sum_{x \in C \setminus |D_{|C}|} v_{x}(f) \cdot \operatorname{Tr}_{x/K}(a_{|C}(x))$

- smooth k-groups
- \cdot $HI_{Nis} \subset RSC_{Nis}$
- · Kähler differentials:
 - $\Omega^j \in \mathsf{NST}$
 - modulus condition: $a \in \Omega^{j}(X)$
 - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$
 - take $C \longrightarrow \overline{X}$ C reg proj curve/K, K function field/kSpec K
 - $K(C) \ni f \equiv 1 \mod 2D_{|C} \Longrightarrow \operatorname{Res}_{x}(a \operatorname{dlog}(f)) = 0 \text{ for } x \in |D_{|C}|$
 - $\Rightarrow 0 = \sum_{x \in C} \mathsf{Res}_X(a \operatorname{dlog}(f)) = \sum_{x \in C \setminus |D|_C|} \mathsf{v}_X(f) \cdot \mathsf{Tr}_{x/K}(a_{|C}(x))$
 - \Rightarrow (\overline{X} , 2D) modulus of a.

- smooth k-groups
- \cdot $HI_{Nis} \subset RSC_{Nis}$
- · Kähler differentials:
 - $\Omega^j \in \mathsf{NST}$
 - modulus condition: $a \in \Omega^{j}(X)$
 - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$

• take
$$C \longrightarrow \overline{X}$$
 C reg proj curve/ K , K function field/ k Spec K

- $\begin{array}{c} \cdot \ \, \mathit{K}(\mathit{C}) \ni \mathit{f} \equiv 1 \, \mathsf{mod} \, 2\mathit{D}_{|\mathit{C}} \Longrightarrow \mathsf{Res}_{\mathsf{x}}(\mathit{a} \, \mathsf{dlog}(\mathit{f})) = 0 \, \mathsf{for} \, \mathit{x} \in |\mathit{D}_{|\mathit{C}}| \\ \Rightarrow \ \, 0 = \sum_{\mathsf{x} \in \mathit{C}} \mathsf{Res}_{\mathsf{x}}(\mathit{a} \, \mathsf{dlog}(\mathit{f})) = \sum_{\mathsf{x} \in \mathit{C} \setminus |\mathit{D}_{|\mathit{C}}|} \mathit{v}_{\mathsf{x}}(\mathit{f}) \cdot \mathsf{Tr}_{\mathsf{x}/\mathit{K}}(\mathit{a}_{|\mathit{C}}(\mathit{x})) \end{aligned}$
- \Rightarrow (\overline{X} , 2D) modulus of a.
- $W_n\Omega^j$ (see second lecture for this and more examples)

$$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$

$$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus} \underbrace{(\overline{X}, \overline{D} + N \cdot B)}_{\text{comp. of } (X, D)}, N \gg 0 \}$$

Then $\widetilde{F} \in \underline{M}PST$ and

• (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$

$$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$

Then $\widetilde{F} \in \underline{M}PST$ and

- (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$
- (M-reciprocity) $\widetilde{F}(X, D) = \varinjlim_{N} \widetilde{F}(\overline{X}, \overline{D} + N \cdot B)$

$$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$

Then $\widetilde{F} \in \underline{M}PST$ and

- (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$
- (M-reciprocity) $\widetilde{F}(X, D) = \varinjlim_{N} \widetilde{F}(\overline{X}, \overline{D} + N \cdot B)$
- (semi-purity) $\widetilde{F}(X, D) \subset \widetilde{F}(X \setminus |D|, \emptyset)$

$$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$

Then $\widetilde{F} \in \underline{M}PST$ and

- (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$
- (M-reciprocity) $\widetilde{F}(X, D) = \varinjlim_{N} \widetilde{F}(\overline{X}, \overline{D} + N \cdot B)$
- (semi-purity) $\widetilde{F}(X, D) \subset \widetilde{F}(X \setminus |D|, \emptyset)$

Definition

 $CI^{\tau} = \text{cat of } G \in \underline{MPST}$ with cube-invariance and M-reciprocity $CI^{\tau,sp}$ subcat of semi-pure objects

$$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$

Then $\widetilde{F} \in \mathbf{MPST}$ and

- (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$
- (M-reciprocity) $\widetilde{F}(X, D) = \varinjlim_{N} \widetilde{F}(\overline{X}, \overline{D} + N \cdot B)$
- (semi-purity) $\widetilde{F}(X, D) \subset \widetilde{F}(X \setminus |D|, \emptyset)$

Definition

 ${\bf CI}^{\tau}={\bf cat}\ {\bf of}\ G\in {\bf \underline{M}PST}\ {\bf with}\ {\bf cube-invariance}\ {\bf and}\ {\bf M-reciprocity}$ ${\bf CI}^{\tau,sp}\ {\bf subcat}\ {\bf of}\ {\bf semi-pure}\ {\bf objects}$

 \rightarrow adjoint pair $\underline{\omega}_1 : \mathbf{CI}^{\tau} \rightleftarrows \mathbf{RSC} : \underline{\omega}^{\mathbf{CI}}$ with $\underline{\omega}^{\mathbf{CI}}(F) = \widetilde{F} \in \mathbf{CI}^{\tau,sp}$

$$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$

Then $\widetilde{F} \in \underline{MPST}$ and

- · (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$
- (M-reciprocity) $\widetilde{F}(X, D) = \varinjlim_{N} \widetilde{F}(\overline{X}, \overline{D} + N \cdot B)$
- (semi-purity) $\widetilde{F}(X, D) \subset \widetilde{F}(X \setminus |D|, \emptyset)$

Definition

 ${\bf CI}^{\tau}={\bf cat}\ {\bf of}\ G\in {\bf \underline{M}PST}\ {\bf with}\ {\bf cube-invariance}\ {\bf and}\ {\bf M-reciprocity}$ ${\bf CI}^{\tau,sp}\ {\bf subcat}\ {\bf of}\ {\bf semi-pure}\ {\bf objects}$

$$ightharpoonup$$
 adjoint pair $\underline{\omega}_! : \mathbf{CI}^{\tau} \rightleftarrows \mathbf{RSC} : \underline{\omega}^{\mathbf{CI}}$ with $\underline{\omega}^{\mathbf{CI}}(F) = \widetilde{F} \in \mathbf{CI}^{\tau,sp}$ $ightharpoonup \underline{\omega}_! h_0^{\square}(\mathcal{X}) \in \mathbf{RSC}$ (\mathcal{X} proper)

Modulus sheaves

Definition

 $G \in \underline{\mathsf{M}}\mathsf{PST}$ is a (Nisnevich) sheaf \iff

$$(U \xrightarrow{\operatorname{\acute{e}t}} X) \mapsto G(U, D_{|U}) =: G_{\mathcal{X}}(U)$$

is a Nisnevich sheaf on X, all $\mathcal{X} = (X, D)$.

Modulus sheaves

Definition

 $G \in \underline{MPST}$ is a (Nisnevich) sheaf \iff

$$(U \xrightarrow{\operatorname{\acute{e}t}} X) \mapsto G(U, D_{|U}) =: G_{\mathcal{X}}(U)$$

is a Nisnevich sheaf on X, all $\mathcal{X} = (X, D)$.

Remark: There is a site with a Grothendieck topoloy generated by a regular and complete cd-structure, such that $G \in \underline{M}PST$ is a sheaf in the above sense if it is a sheaf on this site.

Modulus sheaves

Definition

 $G \in \underline{MPST}$ is a (Nisnevich) sheaf \iff

$$(U \xrightarrow{\operatorname{\acute{e}t}} X) \mapsto G(U, D_{|U}) =: G_{\mathcal{X}}(U)$$

is a Nisnevich sheaf on X, all $\mathcal{X} = (X, D)$.

Remark: There is a site with a Grothendieck topoloy generated by a regular and complete cd-structure, such that $G \in \underline{M}PST$ is a sheaf in the above sense if it is a sheaf on this site.

 $\rightsquigarrow \underline{\mathsf{M}}\mathsf{NST}$

Note: $\underline{\omega}_!$ restricts to $\underline{\omega}_!$: $\underline{\mathsf{M}}\mathsf{NST} \to \mathsf{NST}$

Theorem (Kahn-Miyazaki-Saito-Yamazaki) There exists a sheafification functor $\underline{a}_{Nis} : \underline{M}PST \to \underline{M}NST$.

There exists a sneapproachon junction $\underline{a}_{Nis} : \underline{m}_{FS1} \to \underline{m}_{NS1}$.

It sends presheaves with M-reciprocity to sheaves with M-reciprocity.

The second part of the Theorem is the hard one.

Theorem (Kahn-Miyazaki-Saito-Yamazaki)

There exists a sheafification functor $\underline{a}_{Nis}: \underline{M}PST \to \underline{M}NST$.

It sends presheaves with M-reciprocity to sheaves with M-reciprocity.

The second part of the Theorem is the hard one.

We have

•
$$\underline{a}_{\mathsf{Nis}}(G)_{(X,D)} = \varinjlim f_*(G_{(Y,f^*D),\mathsf{Nis}}),$$
 colimit over directed set: $f: Y \to X$ proper with $Y \setminus |f^*D| \cong X \setminus |D|$

Theorem (Kahn-Miyazaki-Saito-Yamazaki)

There exists a sheafification functor $\underline{a}_{Nis}: \underline{MPST} \to \underline{MNST}$.

It sends presheaves with M-reciprocity to sheaves with M-reciprocity.

The second part of the Theorem is the hard one.

We have

•
$$\underline{a}_{Nis}(G)_{(X,D)} = \varinjlim f_*(G_{(Y,f^*D),Nis}),$$
 colimit over directed set: $f: Y \to X$ proper with $Y \setminus |f^*D| \cong X \setminus |D|$

collinit over directed set.
$$j: r \to x$$
 proper with $r \setminus |j| |D| = x \setminus |D|$
 $\Rightarrow \underline{\omega}_1(a_{\text{Nis}}(G)) = (\underline{\omega}_1 G)_{\text{Nis}}$

Theorem (Kahn-Miyazaki-Saito-Yamazaki)

There exists a sheafification functor $\underline{a}_{Nis} : \underline{M}PST \to \underline{M}NST$.

It sends presheaves with M-reciprocity to sheaves with M-reciprocity.

The second part of the Theorem is the hard one.

We have

•
$$\underline{a}_{\mathsf{Nis}}(G)_{(\mathsf{X},D)} = \varinjlim f_*(G_{(\mathsf{Y},f^*D),\mathsf{Nis}}),$$
 colimit over directed set: $f: \mathsf{Y} \to \mathsf{X}$ proper with $\mathsf{Y} \setminus |f^*D| \cong \mathsf{X} \setminus |D|$ $\leadsto \underline{\omega}_\mathsf{I}(a_{\mathsf{Nis}}(G)) = (\underline{\omega}_\mathsf{I}G)_{\mathsf{Nis}}$

$$(\underline{\omega}_{i} \circ)$$

(*)
$$\operatorname{Ext}_{\operatorname{\underline{M}NST}}^{i}(\mathbb{Z}_{\operatorname{tr}}(X,D),G) = \varinjlim H^{i}(Y_{\operatorname{Nis}},G_{(Y,f^{*}D)})$$

Theorem (Kahn-Miyazaki-Saito-Yamazaki)

There exists a sheafification functor $\underline{a}_{Nis} : \underline{M}PST \to \underline{M}NST$.

It sends presheaves with M-reciprocity to sheaves with M-reciprocity.

The second part of the Theorem is the hard one.

We have

$$\begin{array}{l} \cdot \ \underline{a}_{\mathsf{Nis}}(G)_{(X,D)} = \varinjlim f_*(G_{(Y,f^*D),\mathsf{Nis}}), \\ \text{colimit over directed set: } f:Y \to X \text{ proper with } Y \setminus |f^*D| \cong X \setminus |D| \\ \\ \leadsto \ \underline{\omega}_!(\underline{a}_{\mathsf{Nis}}(G)) = (\underline{\omega}_!G)_{\mathsf{Nis}} \\ \cdot \end{array}$$

(*)
$$\operatorname{Ext}_{\operatorname{\underline{M}NST}}^{i}(\mathbb{Z}_{\operatorname{tr}}(X,D),G) = \varinjlim H^{i}(Y_{\operatorname{Nis}},G_{(Y,f^{*}D)})$$

Question

Does (*) stabilize for $G \in \mathbf{CI}^{\tau,sp}$?

Theorem (S. Saito)

$$\underline{a}_{\mathsf{Nis}}(\mathsf{CI}^{\tau,\mathsf{sp}}) \subset \mathsf{CI}^{\tau,\mathsf{sp}} \cap \underline{\mathsf{M}} \mathsf{NST} =: \mathsf{CI}^{\tau,\mathsf{sp}}_{\mathsf{Nis}}$$

Generalization of: $(HI)_{Nis} \subset HI$ (Voevodsky)

Theorem (S. Saito)

$$\underline{a}_{\mathsf{Nis}}(\mathsf{CI}^{\tau,\mathsf{SP}}) \subset \mathsf{CI}^{\tau,\mathsf{SP}} \cap \underline{\mathsf{M}} \mathsf{NST} =: \mathsf{CI}^{\tau,\mathsf{SP}}_{\mathsf{Nis}}$$

Generalization of: $(HI)_{Nis} \subset HI$ (Voevodsky)

Corollary

$$F \in \mathsf{RSC} \Longrightarrow F_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$

In particular $RSC_{Nis} \subset NST$ full abelian subcategory

Theorem (S. Saito)

$$\underline{a}_{\mathsf{Nis}}(\mathsf{CI}^{\tau,\mathsf{Sp}}) \subset \mathsf{CI}^{\tau,\mathsf{Sp}} \cap \underline{\mathsf{M}}\mathsf{NST} =: \mathsf{CI}^{\tau,\mathsf{Sp}}_{\mathsf{Nis}}$$

Generalization of: $(HI)_{Nis} \subset HI$ (Voevodsky)

Corollary

$$F \in \mathsf{RSC} \Longrightarrow F_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$

In particular $RSC_{Nis} \subset NST$ full abelian subcategory

Proof (Cor):

$$\mathsf{Thm} \Rightarrow G := \underline{a}_{\mathsf{Nis}}(\widetilde{F}) \in \mathsf{CI}^{\tau,\mathsf{sp}}_{\mathsf{Nis}} \Rightarrow F_{\mathsf{Nis}} = \underline{\omega}_!(G) \in \underline{\omega}_!(\mathsf{CI}^{\tau,\mathsf{sp}}_{\mathsf{Nis}}) = \mathsf{RSC}_{\mathsf{Nis}}$$

Theorem (S. Saito)

$$\textit{F} \in RSC_{Nis} \Longrightarrow$$

$$H_X^i(X,F)=0, \quad X\in X^{(c)}, i\neq c$$

and

$$H_{x}^{c}(X,F) \simeq F_{-c}(X) := \frac{F((A^{1} \setminus \{0\})^{c} \times X)}{\sum_{i=1}^{n} F((A^{1} \setminus \{0\})^{i-1} \times A^{1} \times (A^{1} \setminus \{0\})^{c-i} \times X)}$$

Theorem (S. Saito)

$$F \in \mathsf{RSC}_{\mathsf{Nis}} \Longrightarrow H_{\mathsf{x}}^{i}(X,F) = 0, \quad \mathsf{x} \in \mathsf{X}^{(c)}, i \neq c$$
and
$$H_{\mathsf{x}}^{c}(X,F) \simeq F_{-c}(\mathsf{x}) := \frac{F((\mathsf{A}^{1} \setminus \{0\})^{c} \times \mathsf{x})}{\sum_{i=1}^{n} F((\mathsf{A}^{1} \setminus \{0\})^{i-1} \times \mathsf{A}^{1} \times (\mathsf{A}^{1} \setminus \{0\})^{c-i} \times \mathsf{x})}$$

Depends on a choice of $k(x)\{t_1,\ldots,t_c\} \stackrel{\simeq}{\to} \mathcal{O}_{X,x}^h$

Theorem (S. Saito)

$$F \in \mathsf{RSC}_{\mathsf{Nis}} \Longrightarrow H_{\mathsf{X}}^{i}(X,F) = 0, \quad X \in \mathsf{X}^{(c)}, i \neq c$$
and
$$H_{\mathsf{X}}^{c}(X,F) \simeq F_{-c}(X) := \frac{F((\mathsf{A}^{1} \setminus \{0\})^{c} \times X)}{\sum_{i=1}^{n} F((\mathsf{A}^{1} \setminus \{0\})^{i-1} \times \mathsf{A}^{1} \times (\mathsf{A}^{1} \setminus \{0\})^{c-i} \times X)}$$

- Depends on a choice of $k(x)\{t_1,\ldots,t_c\} \xrightarrow{\simeq} \mathcal{O}_{X,x}^h$
 - · Generalizes A¹-invariant case (Voevodsky)

Theorem (S. Saito)

 $\textit{F} \in RSC_{Nis} \Longrightarrow$

$$H_X^i(X,F) = 0, \quad X \in X^{(c)}, i \neq c$$

and

$$H_{X}^{c}(X,F) \simeq F_{-c}(X) := \frac{F((\mathbf{A}^{1} \setminus \{0\})^{c} \times X)}{\sum_{i=1}^{n} F((\mathbf{A}^{1} \setminus \{0\})^{i-1} \times \mathbf{A}^{1} \times (\mathbf{A}^{1} \setminus \{0\})^{c-i} \times X)}$$

Depends on a choice of $k(x)\{t_1,\ldots,t_c\} \xrightarrow{\simeq} \mathcal{O}_{X,x}^h$

- · Generalizes A¹-invariant case (Voevodsky)
- $\cdot \rightsquigarrow$ Cousin resolution (\leftrightarrow Gersten)

$$0 \to F \to \bigoplus_{x \in X^{(0)}} i_{x*} H_x^0(F) \to \ldots \to \bigoplus_{x \in X^{(c)}} i_{x*} H_x^c(F) \to \ldots$$

Theorem (S. Saito)

$$\textit{F} \in RSC_{Nis} \Longrightarrow$$

$$H_X^i(X,F)=0, \quad X\in X^{(c)}, i\neq c$$

and

$$H_{X}^{c}(X,F) \simeq F_{-c}(X) := \frac{F((\mathbf{A}^{1} \setminus \{0\})^{c} \times X)}{\sum_{i=1}^{n} F((\mathbf{A}^{1} \setminus \{0\})^{i-1} \times \mathbf{A}^{1} \times (\mathbf{A}^{1} \setminus \{0\})^{c-i} \times X)}$$

Depends on a choice of $k(x)\{t_1,\ldots,t_c\} \xrightarrow{\simeq} \mathcal{O}_{X,X}^h$

- · Generalizes A¹-invariant case (Voevodsky)
- → Cousin resolution (↔ Gersten)

$$0 \to F \to \bigoplus_{x \in X^{(0)}} i_{x*} H_x^0(F) \to \ldots \to \bigoplus_{x \in X^{(c)}} i_{x*} H_x^c(F) \to \ldots$$

Injectivity also proved before by Kahn-Saito-Yamazaki

- Denote by $\textbf{Shv}_{\rm dNis}^{ltr}$ the category of dividing Nisnevich sheaves with log-transfers on $\textit{l}\,\textbf{Sm}$

- Denote by $\textbf{Shv}_{\rm dNis}^{ltr}$ the category of dividing Nisnevich sheaves with log-transfers on $\textit{l}\,\textbf{Sm}$
- $F \in \mathsf{RSC}_{\mathsf{Nis}}$. For $(X, \mathcal{M}_X) \in l \, \mathsf{Sm}$ define

$$F^{log}(X,\mathcal{M}_X)=\varinjlim_f \widetilde{F}(Y,\operatorname{supp}(\mathcal{M}_Y)),$$

where f runs through log-modifications $f:(Y, \mathcal{M}_Y) \to (X, \mathcal{M}_X)$ with $(Y, \operatorname{supp}(\mathcal{M}_Y)) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls}$

- Denote by $\textbf{Shv}_{\rm dNis}^{ltr}$ the category of dividing Nisnevich sheaves with log-transfers on $\textit{l}\,\textbf{Sm}$
- $F \in \mathsf{RSC}_{\mathsf{Nis}}$. For $(X, \mathcal{M}_X) \in l \, \mathsf{Sm}$ define

$$F^{log}(X,\mathcal{M}_X)=\varinjlim_f \widetilde{F}(Y,\operatorname{supp}(\mathcal{M}_Y)),$$

where f runs through log-modifications $f: (Y, \mathcal{M}_Y) \to (X, \mathcal{M}_X)$ with $(Y, \operatorname{supp}(\mathcal{M}_Y)) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls}$

Theorem (S. Saito)

 \cdot RSC $_{
m Nis}
ightarrow$ Sh $v_{
m dNis}^{
m ltr}$, F \mapsto F $^{
m log}$ exact, fully faithful functor

- Denote by $\textbf{Shv}_{\rm dNis}^{ltr}$ the category of dividing Nisnevich sheaves with log-transfers on $l\,\textbf{Sm}$
- $F \in \mathsf{RSC}_{\mathsf{Nis}}$. For $(X, \mathcal{M}_X) \in l \, \mathsf{Sm}$ define

$$F^{\mathsf{log}}(X,\mathcal{M}_X) = \varinjlim_{f} \widetilde{F}(Y, \mathrm{supp}(\mathcal{M}_Y)),$$

where f runs through log-modifications $f:(Y, \mathcal{M}_Y) \to (X, \mathcal{M}_X)$ with $(Y, \operatorname{supp}(\mathcal{M}_Y)) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls}$

Theorem (S. Saito)

- \cdot RSC $_{
 m Nis}
 ightarrow$ Sh $v_{
 m dNis}^{
 m ltr}$, F \mapsto F $^{
 m log}$ exact, fully faithful functor
- $\cdot \ H^i_{\mathrm{dNis}}((X,\mathcal{M}_X),F^{log}) = H^i_{\mathrm{dNis}}((X,\mathcal{M}_X)\times \square^{log},F^{log})$

- Denote by $\textbf{Shv}_{\rm dNis}^{tr}$ the category of dividing Nisnevich sheaves with log-transfers on $\textit{l}\,\textbf{Sm}$
- $F \in \mathsf{RSC}_{\mathsf{Nis}}$. For $(X, \mathcal{M}_X) \in l \, \mathsf{Sm}$ define

$$F^{\mathrm{log}}(X,\mathcal{M}_X) = \varinjlim_f \widetilde{F}(Y, \mathrm{supp}(\mathcal{M}_Y)),$$

where f runs through log-modifications $f:(Y, \mathcal{M}_Y) \to (X, \mathcal{M}_X)$ with $(Y, \operatorname{supp}(\mathcal{M}_Y)) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls}$

Theorem (S. Saito)

- \cdot RSC_{Nis} o Shv $_{
 m dNis}^{ltr}$, F \mapsto F log exact, fully faithful functor
- $\cdot \ H^i_{\mathrm{dNis}}((X,\mathcal{M}_X),F^{log}) = H^i_{\mathrm{dNis}}((X,\mathcal{M}_X)\times \square^{log},F^{log})$
- $\cdot \ H^i(X,F_X) \cong \mathsf{Hom}_{\mathsf{logDM}^{\mathrm{eff}}(k)}(M(X,\mathcal{O}_X^\times),F^{\mathrm{log}}[i])$

De Rham-Witt sheaves as

reciprocity sheaves

 $X ext{ sm proj}/\mathbf{F}_{p^n}$

$$X \quad \text{sm proj/} F_{p^n}$$

$$\rightsquigarrow H^i := H^i_{\operatorname{crys}}(X/W(F_{p^n}))[\tfrac{1}{p}] \text{ is an } F := (F_X^n)^*\text{-crystal}$$

```
X sm proj/\mathbf{F}_{p^n}

\leadsto H^i := H^i_{\operatorname{crys}}(X/W(\mathbf{F}_{p^n}))[\frac{1}{p}] is an F := (F_X^n)^*-crystal

\leadsto slope decomposition H^i = \bigoplus H^i_{\lambda}
```

$$X ext{ sm proj/}\mathbf{F}_{p^n}$$

 $\Rightarrow H^i := H^i_{\operatorname{crys}}(X/W(\mathbf{F}_{p^n}))[\frac{1}{p}] ext{ is an } F := (F_X^n)^* - \operatorname{crystal}$
 $\Rightarrow ext{ slope decomposition } H^i = \bigoplus H^i_{\lambda}$

Bloch, Deligne-Illusie ↔

The de Rham-Witt complex computes crystalline cohomology and gives a cohomological description of the slopes, i.e.,

$$X ext{ sm proj/}\mathbf{F}_{p^n}$$

 $\Rightarrow H^i := H^i_{\operatorname{crys}}(X/W(\mathbf{F}_{p^n}))[\frac{1}{p}] ext{ is an } F := (F_X^n)^* - \operatorname{crystal}$
 $\Rightarrow ext{ slope decomposition } H^i = \bigoplus H^i_{\lambda}$

Bloch, Deligne-Illusie ↔

The de Rham-Witt complex computes crystalline cohomology and gives a cohomological description of the slopes, i.e.,

•
$$H^i = H^i(X_{Zar}, W\Omega^*)[\frac{1}{p}]$$

$$X$$
 sm proj/ F_{p^n}
 $Arr H^i := H^i_{\operatorname{crys}}(X/W(F_{p^n}))[\frac{1}{p}]$ is an $F := (F_X^n)^*$ -crystal
 $Arr \operatorname{slope}$ decomposition $H^i = \bigoplus H^i_{\lambda}$

Bloch, Deligne-Illusie ↔

The de Rham-Witt complex computes crystalline cohomology and gives a cohomological description of the slopes, i.e.,

•
$$H^i = H^i(X_{Zar}, W\Omega^*)[\frac{1}{p}]$$

•
$$E_1^{j,i} = H^i(X, W\Omega^j)[\frac{1}{p}] \Rightarrow H^*$$
 degenerates to give

$$\bigoplus_{j \leq \lambda < j+1} H^i_{\lambda} = H^{i-j}(X, W\Omega^j)[\tfrac{1}{p}]$$

 $A = \mathbf{F}_p$ -algebra

 $W_n(A)$, $n \ge 1$, family of rings with

• $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set)

 $A = \mathbf{F}_p$ -algebra

- $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set)
- $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map)

 $A = \mathbf{F}_p$ -algebra

- $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set)
- $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map)
- $F: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0^p, ..., a_{n-1}^p)$ (ring map)

 $A = \mathbf{F}_p$ -algebra

- $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set)
- $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map)
- $F: W_{n+1}(A) \to W_n(A), (a_0, \dots, a_n) \mapsto (a_0^p, \dots, a_{n-1}^p)$ (ring map)
- · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a}) \text{ (group map)}$

 $A = \mathbf{F}_p$ -algebra

- $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set)
- $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map)
- $F: W_{n+1}(A) \to W_n(A), (a_0, \dots, a_n) \mapsto (a_0^p, \dots, a_{n-1}^p)$ (ring map)
- · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a}) \text{ (group map)}$
- $[-]: A \rightarrow W_n(A), a \mapsto [a] = (a, 0, \dots, 0)$ (multiplicative)

 $A = \mathbf{F}_p$ -algebra

 $W_n(A)$, $n \ge 1$, family of rings with

- $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set)
- $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map)
- $F: W_{n+1}(A) \to W_n(A), (a_0, \dots, a_n) \mapsto (a_0^p, \dots, a_{n-1}^p)$ (ring map)
- · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a}) \text{ (group map)}$
- $[-]: A \to W_n(A), a \mapsto [a] = (a, 0, \dots, 0)$ (multiplicative)

satisfying

• $W_1(A) = A$ (as ring)

 $A = \mathbf{F}_p$ -algebra

 $W_n(A)$, $n \ge 1$, family of rings with

- $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set)
- $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map)
- $F: W_{n+1}(A) \to W_n(A), (a_0, \dots, a_n) \mapsto (a_0^p, \dots, a_{n-1}^p)$ (ring map)
- · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a})$ (group map)
- $[-]: A \to W_n(A), a \mapsto [a] = (a, 0, \dots, 0)$ (multiplicative)

satisfying

- $W_1(A) = A$ (as ring)
- $\cdot (a_0,\ldots,a_{n-1}) = \sum_{i=0}^{n-1} V^i([a_i])$

 $A = \mathbf{F}_p$ -algebra

 $W_n(A)$, $n \ge 1$, family of rings with

- $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set)
- $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map)
- $F: W_{n+1}(A) \to W_n(A), (a_0, \dots, a_n) \mapsto (a_0^p, \dots, a_{n-1}^p)$ (ring map)
- · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a})$ (group map)
- $[-]: A \to W_n(A), a \mapsto [a] = (a, 0, \dots, 0)$ (multiplicative)

satisfying

- $W_1(A) = A$ (as ring)
- $(a_0,\ldots,a_{n-1})=\sum_{i=0}^{n-1}V^i([a_i])$
- FV = VF = p

 $A = \mathbf{F}_p$ -algebra

 $W_n(A)$, $n \ge 1$, family of rings with

- $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set)
- $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map)
- $F: W_{n+1}(A) \to W_n(A), (a_0, \ldots, a_n) \mapsto (a_0^p, \ldots, a_{n-1}^p)$ (ring map)
- · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a})$ (group map)
- $[-]: A \to W_n(A), a \mapsto [a] = (a, 0, \dots, 0)$ (multiplicative)

satisfying

- $W_1(A) = A$ (as ring)
- $(a_0,\ldots,a_{n-1})=\sum_{i=0}^{n-1}V^i([a_i])$
- FV = VF = p
- $V(a) \cdot b = V(a \cdot F(b))$

•
$$W(F_p) := \varprojlim W_n(F_p) = \mathbb{Z}_p$$

•
$$W(F_p) := \varprojlim W_n(F_p) = \mathbb{Z}_p$$

• A perfect $\rightsquigarrow W_n(A) = \text{the unique flat } \mathbb{Z}/p^n\mathbb{Z}\text{-lift of } A/F_p$

•
$$W(F_p) := \underline{\lim} W_n(F_p) = \mathbb{Z}_p$$

- A perfect $\rightsquigarrow W_n(A)$ = the unique flat $\mathbb{Z}/p^n\mathbb{Z}$ -lift of A/\mathbf{F}_p
- $\operatorname{Sch}/\mathsf{F}_p \ni X \mapsto H^0(X, W_n \mathcal{O}_X)$ is represented by a ring scheme $\rightsquigarrow W_n$

- · $W(F_p) := \underline{\lim} W_n(F_p) = \mathbb{Z}_p$
- A perfect $\rightsquigarrow W_n(A)$ = the unique flat $\mathbb{Z}/p^n\mathbb{Z}$ -lift of A/\mathbf{F}_p
- $\operatorname{Sch}/\mathsf{F}_p \ni X \mapsto H^0(X, W_n \mathcal{O}_X)$ is represented by a ring scheme $\rightsquigarrow W_n$
- Any commutative unipotent \mathbf{F}_p -group scheme $\subset \oplus_{n_i} W_{n_i}$

The de Rham-Witt complex over an F_p -scheme X is a pro-dga

$$((W_n\Omega^*,d)_{n\geq 1},R)$$

The de Rham-Witt complex over an F_p -scheme X is a pro-dga

$$((W_n\Omega^*,d)_{n\geq 1},R)$$

•
$$W_n\Omega^0 = W_n\mathcal{O}_X$$

The de Rham-Witt complex over an F_p -scheme X is a pro-dga

$$((W_n\Omega^*,d)_{n\geq 1},R)$$

- · $W_n\Omega^0 = W_n\mathcal{O}_X$
- $F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$ (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$)

The de Rham-Witt complex over an \mathbf{F}_p -scheme X is a pro-dga

$$((W_n\Omega^*,d)_{n\geq 1},R)$$

- $W_n\Omega^0 = W_n\mathcal{O}_X$
- $F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$ (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$)
- $V:W_{ullet}\Omega_X^* \to W_{ullet+1}\Omega_X^*$ (map of pro-gr-groups, ext. V on $W_{ullet}\mathcal{O}_X$)

The de Rham-Witt complex over an \mathbf{F}_p -scheme X is a pro-dga

$$((W_n\Omega^*,d)_{n\geq 1},R)$$

with

·
$$W_n\Omega^0 = W_n\mathcal{O}_X$$

•
$$F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$$
 (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$)

•
$$V:W_{\bullet}\Omega_{\chi}^* \to W_{\bullet+1}\Omega_{\chi}^*$$
 (map of pro-gr-groups, ext. V on $W_{\bullet}\mathcal{O}_X$)

such that

•
$$FV = p$$
, $V(\alpha) \cdot \beta = V(\alpha \cdot F(\beta))$

The de Rham-Witt complex over an \mathbf{F}_p -scheme X is a pro-dga

$$((W_n\Omega^*,d)_{n\geq 1},R)$$

with

- $W_n\Omega^0 = W_n\mathcal{O}_X$
- $F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$ (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$)
- $V:W_{\bullet}\Omega_{\chi}^* \to W_{\bullet+1}\Omega_{\chi}^*$ (map of pro-gr-groups, ext. V on $W_{\bullet}\mathcal{O}_{\chi}$)

such that

- FV = p, $V(\alpha) \cdot \beta = V(\alpha \cdot F(\beta))$
- FdV = d

The de Rham-Witt complex over an F_p -scheme X is a pro-dga

$$((W_n\Omega^*,d)_{n\geq 1},R)$$

with

•
$$W_n\Omega^0 = W_n\mathcal{O}_X$$

•
$$F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$$
 (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$)

•
$$V:W_{\bullet}\Omega_{\chi}^* \to W_{\bullet+1}\Omega_{\chi}^*$$
 (map of pro-gr-groups, ext. V on $W_{\bullet}\mathcal{O}_{\chi}$)

such that

•
$$FV = p$$
, $V(\alpha) \cdot \beta = V(\alpha \cdot F(\beta))$

•
$$FdV = d$$

•
$$Fd[a] = [a]^{p-1}d[a]$$

The de Rham-Witt complex over an F_p -scheme X is a pro-dga

$$((W_n\Omega^*,d)_{n\geq 1},R)$$

with

·
$$W_n\Omega^0 = W_n\mathcal{O}_X$$

•
$$F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$$
 (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$)

•
$$V:W_{ullet}\Omega_X^* \to W_{ullet+1}\Omega_X^*$$
 (map of pro-gr-groups, ext. V on $W_{ullet}\mathcal{O}_X$)

such that

•
$$FV = p$$
, $V(\alpha) \cdot \beta = V(\alpha \cdot F(\beta))$

•
$$FdV = d$$

•
$$Fd[a] = [a]^{p-1}d[a]$$

 $W_ullet \Omega_\chi^* = \text{initial object in the category of pro-dga's as above}$

Properties

•
$$W_1\Omega_X^* = \Omega_{X/F_p}^*$$

Properties

$$\begin{array}{c} \cdot \ W_1\Omega_X^* = \Omega_{X/\mathbb{F}_p}^* \\ \cdot \\ & W_{n+1}\Omega_X^j \stackrel{F}{\longrightarrow} W_n\Omega_X^j \\ & \downarrow \qquad \qquad \downarrow \\ & \Omega_X^j \stackrel{C^{-1}}{\longrightarrow} \Omega_X^j/d\Omega_X^{j-1} \qquad a\,\mathrm{dlog}\,b \longmapsto a^p\,\mathrm{dlog}\,b \end{array}$$

F lifts the inverse Cartier operator

· Bloch, Kato

· Bloch, Kato

$$W_{\bullet}\Omega_R^q \cong \mathsf{T} \overset{\mathsf{S}}{\longrightarrow} \mathsf{Ker}\left(K_{q+1}(R[T]/T^{\bullet}) \xrightarrow{T \mapsto 0} K_{q+1}(R)\right)$$
 as pro-object p -typical part symbolic part

• Illusie: quotient of $\Omega^q_{W_n\mathcal{O}_X/W_n(\mathbf{F}_p)}$ s.t. V exits $(\Rightarrow F$ exists)

· Bloch, Kato

$$W_{\bullet}\Omega_R^q \cong T \underset{\text{symbolic part}}{\text{S Ker}} \left(K_{q+1}(R[T]/T^{\bullet}) \xrightarrow{T \mapsto 0} K_{q+1}(R) \right)$$
 as pro-object

- Illusie: quotient of $\Omega^q_{W_n\mathcal{O}_X/W_n(\mathbf{F}_n)}$ s.t. V exits $(\Rightarrow F$ exists)
- Katz, Illusie-Raynaud: X/k smooth with smooth lift $X_n/W_n(k)$

$$W_n\Omega_X^q \cong \mathcal{H}^q(\Omega_{X_n/W_n(k)}^*)$$

Bloch, Kato

$$W_{\bullet}\Omega_R^q \cong \mathsf{T} \overset{\mathsf{S}}{\longrightarrow} \mathsf{Ker}\left(K_{q+1}(R[T]/T^{\bullet}) \xrightarrow{T\mapsto 0} K_{q+1}(R)\right)$$
 as pro-object p -typical part symbolic part

- Illusie: quotient of $\Omega^q_{W_n\mathcal{O}_X/W_n(\mathbf{F}_n)}$ s.t. V exits $(\Rightarrow F$ exists)
- Katz, Illusie-Raynaud: X/k smooth with smooth lift $X_n/W_n(k)$

$$W_n\Omega_X^q \cong \mathcal{H}^q(\Omega_{X_n/W_n(k)}^*)$$

 many more... (Hesselholt-Madsen, Cuntz-Deninger, Bhatt-Lurie-Mathew...)

Theorem (Bloch, Illusie)

$$X/k \text{ sm}$$
 $u: (X/W_n(k))_{\text{crys}} \to X_{\text{Zar}}$ $\Longrightarrow Ru_* \mathcal{O}_{X/W_n(k),\text{crys}} \cong W_n \Omega_X^*$

Theorem (Bloch, Illusie)

$$X/k \text{ sm}$$
 $u: (X/W_n(k))_{\text{crys}} \to X_{\text{Zar}}$ $\Longrightarrow Ru_* \mathcal{O}_{X/W_n(k),\text{crys}} \cong W_n \Omega_X^*$

X/k sm $\pi_n: W_n X = (|X|, W_n \mathcal{O}_X) \to \text{Spec } W_n(k) \text{ (not smooth/flat)}$

Theorem (Ekedahl)

X/k sm $u: (X/W_n(k))_{\text{crys}} \to X_{\text{Zar}}$

Theorem (Bloch, Illusie)

$$\Longrightarrow Ru_*\mathcal{O}_{X/W_n(k),\operatorname{crys}} \cong W_n\Omega_X^*$$

 $\pi_n^! W_n(k) \cong W_n \Omega_x^{\dim X} [\dim X],$

Theorem (Ekedahl)

$$X/k \text{ sm}$$
 $\pi_n: W_n X = (|X|, W_n \mathcal{O}_X) \to \text{Spec } W_n(k) \text{ (not smooth/flat)}$

 $X/R SM \quad \pi_n : W_n X =$

X/k sm $u: (X/W_n(k))_{crvs} \to X_{Zar}$

Theorem (Bloch, Illusie)

$$\Longrightarrow Ru_*\mathcal{O}_{X/W_n(R),\operatorname{crys}} \cong W_n\Omega_X^*$$

Theorem (Ekedahl)

$$X/k \text{ sm}$$
 $\pi_n: W_n X = (|X|, W_n \mathcal{O}_X) \to \text{Spec } W_n(k) \text{ (not smooth/flat)}$

 $\pi_n^! W_n(k) \cong W_n \Omega_{\mathsf{v}}^{\mathsf{dim} \, \mathsf{X}} [\mathsf{dim} \, \mathsf{X}],$

 $W_n\Omega_X^j \xrightarrow{\simeq} R\mathcal{H}om_{W_n\mathcal{O}_X}(W_n\Omega_X^{\dim X-j}, W_n\Omega_X^{\dim X})$

Theorem (Bloch, Illusie)

$$X/k \text{ sm}$$
 $u: (X/W_n(k))_{\text{crys}} \to X_{\text{Zar}}$
 $\Longrightarrow Ru_* \mathcal{O}_{X/W_n(k),\text{crys}} \cong W_n \Omega_X^*$

Theorem (Ekedahl)

$$X/k \text{ sm}$$
 $\pi_n: W_n X = (|X|, W_n \mathcal{O}_X) \to \operatorname{Spec} W_n(k) \text{ (not smooth/flat)}$

$$\pi_n^! W_n(k) \cong W_n \Omega_X^{\dim X} [\dim X],$$

$$W_n\Omega_X^j \xrightarrow{\simeq} R\mathcal{H}om_{W_n\mathcal{O}_X}(W_n\Omega_X^{\dim X-j}, W_n\Omega_X^{\dim X})$$

$$\leadsto$$
 proper pushforward (Gros): for $f: Y \to X$ proper in Sm $f_*: Rf_*W_n\Omega_Y^{j} \to W_n\Omega_X^{j-r}[-r], \quad r = \text{rel-dim}(f)$

$\leadsto W_n\Omega^j \in \mathsf{RSC}_{\mathsf{Nis}}$

$\rightsquigarrow W_n\Omega^j \in \mathsf{RSC}_{\mathsf{Nis}}$

indeed

• $W_n\Omega^j \in \mathbf{NST}$ (Chatzistamatiou-R): $Z \in \mathbf{Cor}(X, Y)$

$$Z^*: W_n\Omega^j(Y) \xrightarrow{p_Y^*} W_n\Omega^j(X \times Y)$$

$$\xrightarrow{\bigcup Cl_Z} H_Z^{\dim Y}(X \times Y, W_n\Omega^{j+\dim Y})$$

$$\xrightarrow{p_{X*}} W_n\Omega^j(X)$$

$$\rightsquigarrow W_n\Omega^j \in \mathsf{RSC}_{\mathsf{Nis}}$$

indeed

• $W_n\Omega^j \in \mathbf{NST}$ (Chatzistamatiou-R): $Z \in \mathbf{Cor}(X, Y)$

$$Z^*: W_n\Omega^j(Y) \xrightarrow{p_Y^*} W_n\Omega^j(X \times Y)$$

$$\xrightarrow{\bigcup Cl_Z} H_Z^{\dim Y}(X \times Y, W_n\Omega^{j+\dim Y})$$

$$\xrightarrow{p_{X*}} W_n\Omega^j(X)$$

• any $a \in W_n\Omega^j(X)$ has a modulus: similar as in case of Kähler differentials in char 0

$$\rightsquigarrow W_n\Omega^j \in \mathsf{RSC}_{\mathsf{Nis}}$$

indeed

• $W_n\Omega^j \in \mathbf{NST}$ (Chatzistamatiou-R): $Z \in \mathbf{Cor}(X, Y)$

$$Z^*: W_n\Omega^j(Y) \xrightarrow{p_*^*} W_n\Omega^j(X \times Y)$$

$$\xrightarrow{\bigcup cl_Z} H_Z^{\dim Y}(X \times Y, W_n\Omega^{j+\dim Y})$$

$$\xrightarrow{p_{X*}} W_n\Omega^j(X)$$

• any $a \in W_n\Omega^j(X)$ has a modulus: similar as in case of Kähler differentials in char 0

Remark: F, V, R, d are morphisms in RSC_{Nis}

• $W_n\Omega^*\in \operatorname{Comp}^+(\operatorname{RSC}_{\operatorname{Nis}})$ represents $\operatorname{Sm}\ni X\mapsto Ru_*\mathcal{O}_{X/W_n,\operatorname{crys}}$

- $W_n\Omega^* \in \operatorname{Comp}^+(\operatorname{RSC}_{\operatorname{Nis}})$ represents $\operatorname{Sm} \ni X \mapsto Ru_*\mathcal{O}_{X/W_n,\operatorname{crys}}$
- $B_{\infty}W_{n}\Omega^{j}:=\bigcup_{r\geq 0}F^{r}dW_{n+r}\Omega^{j-1}\in \mathsf{RSC}_{\mathsf{Nis}}$

- $W_n\Omega^* \in \operatorname{Comp}^+(\mathsf{RSC}_\mathsf{Nis})$ represents $\mathsf{Sm} \ni X \mapsto Ru_*\mathcal{O}_{X/W_n,\operatorname{crys}}$
- $B_{\infty}W_{n}\Omega^{j}:=\bigcup_{r\geq 0}F^{r}dW_{n+r}\Omega^{j-1}\in \mathsf{RSC}_{\mathsf{Nis}}$
- · generalized Artin-Schreier-Witt on Xét

$$0 \to W_n \Omega_{X, \log}^j \to W_n \Omega_X^j / B_\infty \xrightarrow{\overline{F} - 1} W_n \Omega_X^j / B_\infty \to 0$$

 \Longrightarrow

- $W_n\Omega^* \in \operatorname{Comp}^+(\mathsf{RSC}_\mathsf{Nis})$ represents $\mathsf{Sm} \ni X \mapsto Ru_*\mathcal{O}_{X/W_n,\operatorname{crys}}$
- $B_{\infty}W_{n}\Omega^{j}:=\bigcup_{r\geq 0}F^{r}dW_{n+r}\Omega^{j-1}\in \mathsf{RSC}_{\mathsf{Nis}}$
- generalized Artin-Schreier-Witt on X_{ét}

$$0 \to W_n \Omega_{X,\log}^j \to W_n \Omega_X^j / B_\infty \xrightarrow{\bar{F}-1} W_n \Omega_X^j / B_\infty \to 0$$

+ Geisser-Levine ⇒

$$R\varepsilon_*\mathbb{Z}/p^n(j)\cong (W_n\Omega^j/B_\infty\xrightarrow{\bar{F}-1}W_n\Omega^j/B_\infty)[-j]\in \mathrm{Comp}^b(\mathsf{RSC}_\mathsf{Nis})$$

where $\varepsilon: \mathsf{Sm}_{\mathsf{\acute{e}t}} o \mathsf{Sm}_{\mathsf{Nis}}$,

$$\Longrightarrow$$

- $W_n\Omega^* \in \operatorname{Comp}^+(\mathsf{RSC}_\mathsf{Nis})$ represents $\mathsf{Sm} \ni X \mapsto Ru_*\mathcal{O}_{X/W_n,\operatorname{crys}}$
- $B_{\infty}W_{n}\Omega^{j}:=\bigcup_{r\geq 0}F^{r}dW_{n+r}\Omega^{j-1}\in \mathsf{RSC}_{\mathsf{Nis}}$
- generalized Artin-Schreier-Witt on X_{ét}

$$0 \to W_n \Omega_{X,\log}^j \to W_n \Omega_X^j / B_\infty \xrightarrow{\bar{F}-1} W_n \Omega_X^j / B_\infty \to 0$$

+ Geisser-Levine ⇒

$$R\varepsilon_*\mathbb{Z}/p^n(j)\cong (W_n\Omega^j/B_\infty\xrightarrow{\bar{F}-1}W_n\Omega^j/B_\infty)[-j]\in \mathrm{Comp}^b(\mathsf{RSC}_\mathsf{Nis})$$

where $\varepsilon: \mathsf{Sm}_{\mathsf{\acute{e}t}} \to \mathsf{Sm}_{\mathsf{Nis}}$,

+ Voevodsky $\Rightarrow R^i \varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) \in \mathsf{RSC}_\mathsf{Nis}$ (all i,j) In particular $X \mapsto \mathrm{Br}(X) = H^0(X, R^2 \varepsilon_*(\mathbb{Q}/\mathbb{Z}(1))) \in \mathsf{RSC}_\mathsf{Nis}$

Computation of the modulus

(Saito-R)

· L henselian dvf of geometric type/k, i.e.,

$$L = \operatorname{Frac} \mathcal{O}_{U,x}^h \quad \big(U \in \mathsf{Sm}, \, x \in U^{(1)}\big)$$

· L henselian dvf of geometric type/k, i.e.,

$$L = \operatorname{Frac} \mathcal{O}_{U,x}^h \quad (U \in \operatorname{Sm}, x \in U^{(1)})$$

• For $F \in \mathbf{RSC}_{Nis}$ set

$$F(L) := F(\operatorname{Spec} L), \quad \widetilde{F}(\mathcal{O}_L, \mathfrak{m}^{-n}) := \widetilde{F}(\operatorname{Spec} \mathcal{O}_L, n \cdot \{\operatorname{closed pt}\})$$

L henselian dvf of geometric type/k, i.e.,

$$L = \operatorname{Frac} \mathcal{O}_{U,x}^h \quad (U \in \operatorname{Sm}, x \in U^{(1)})$$

• For $F \in \mathbf{RSC}_{Nis}$ set

$$F(L) := F(\operatorname{Spec} L), \quad \widetilde{F}(\mathcal{O}_L, \mathfrak{m}^{-n}) := \widetilde{F}(\operatorname{Spec} \mathcal{O}_L, n \cdot \{\operatorname{closed} \operatorname{pt}\})$$

· Have:

$$\widetilde{F}(\overline{X}, D) = \left\{ a \in F(\overline{X} \setminus |D|) \middle| \begin{array}{l} \rho^* a \in \widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-\mathsf{v}_L(\rho^*D)}), \\ \forall \rho \in (\overline{X} \setminus |D|)(L) \end{array} \right\}$$

· L henselian dvf of geometric type/k, i.e.,

$$L = \operatorname{Frac} \mathcal{O}_{U,x}^h \quad (U \in \operatorname{Sm}, x \in U^{(1)})$$

• For $F \in \mathbf{RSC}_{\mathsf{Nis}}$ set

$$F(L) := F(\operatorname{Spec} L), \quad \widetilde{F}(\mathcal{O}_L, \mathfrak{m}^{-n}) := \widetilde{F}(\operatorname{Spec} \mathcal{O}_L, n \cdot \{\operatorname{closed} \operatorname{pt}\})$$

· Have:

$$\widetilde{F}(\overline{X}, D) = \left\{ a \in F(\overline{X} \setminus |D|) \, \middle| \, \begin{array}{l} \rho^* a \in \widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-\mathsf{v}_L(\rho^*D)}), \\ \forall \rho \in (\overline{X} \setminus |D|)(L) \end{array} \right\}$$

→ suffices to understand for all L the filtration

$$F(\mathcal{O}_L) \subset \widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-1}) \subset \ldots \subset \widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-n}) \subset \ldots \subset F(L)$$

• F has level $n \Leftrightarrow \text{it suffices to consider } \operatorname{trdeg}(L/k) \leq n$

• F has level
$$n \Leftrightarrow$$
 it suffices to consider $\operatorname{trdeg}(L/k) \leq n$

• (Criterion for level *n*)

F has level
$$n \Longleftrightarrow$$
 for all $X \in \mathbf{Sm}$
$$\left\{ a \in F(\mathbf{A}_X^1) \middle| \begin{array}{l} \rho_X^* a \in \widetilde{F}(\mathcal{O}_{\mathbf{p}_X^1,\infty}^h,\mathfrak{m}_\infty^{-1}), \\ \forall x \in X_{\leq n-1} \end{array} \right\} = F(X)$$

where ρ_X : Spec Frac $(\mathcal{O}^h_{\mathsf{P}^1} _{\infty}) \to \mathsf{A}^1_X \hookrightarrow \mathsf{A}^1_X$

F has level
$$n \iff$$
 for all $X \in \mathbf{Sm}$

char(k) = 0

Theorem

$$\cdot \ \widetilde{\Omega^{j}}_{/\mathbb{Z}}$$
 has level $j+1$ and

$$\widehat{\Omega^j_{/\mathbb{Z}}}(\mathcal{O}_L,\mathfrak{m}_L^{-n}) = \tfrac{1}{t^{n-1}} \cdot \Omega^j_{\mathcal{O}_L/\mathbb{Z}}(\log t), \quad \mathfrak{m}_L = (t)$$

char(k) = 0

Theorem

• $\widetilde{\Omega^{j}}_{/\mathbb{Z}}$ has level j+1 and

$$\widehat{\Omega^j_{/\mathbb{Z}}}(\mathcal{O}_L,\mathfrak{m}_L^{-n}) = \tfrac{1}{t^{n-1}} \cdot \Omega^j_{\mathcal{O}_L/\mathbb{Z}}(\log t), \quad \mathfrak{m}_L = (t)$$

• $\operatorname{Conn}^1_{int}(X) := iso\text{-}classes integrable rank 1 connections on X}$

char(k) = 0

Theorem

• $\widetilde{\Omega^{j}}_{/\mathbb{Z}}$ has level j+1 and

$$\widehat{\Omega^j_{/\mathbb{Z}}}(\mathcal{O}_L,\mathfrak{m}_L^{-n}) = \tfrac{1}{t^{n-1}} \cdot \Omega^j_{\mathcal{O}_L/\mathbb{Z}}(\log t), \quad \mathfrak{m}_L = (t)$$

- $\operatorname{Conn}^1_{int}(X) := iso\text{-classes integrable rank 1 connections on } X$
 - · $\operatorname{Conn}_{int}^1 \in RSC_{Nis}$ has level 2 (resp. 1)
 - $\cdot \ \widetilde{\operatorname{Conn}^1_{int}}(\overline{X},D) = \underset{X \ whose \ non-log \ irregularity \ is \ bounded \ by \ D }{\text{iso-classes of integrable rank 1 connections on}}$

In order to define the Albanese with modulus in higher dimension Kato-Russell (building on work of Brylinski, Kato, Matsuda) define

$$\mathsf{fil}_r^F W_n(L) := \sum_{j \geq 0} F^j \left(\mathsf{fil}_{r-1}^{\log} W_n(L) + V^{n-s} (\mathsf{fil}_r^{\log} W_s(L)) \right)$$

- $\operatorname{fil}_r^{\log} W_n(L) = \{(a_0, \dots, a_{n-1}) \mid p^{n-1-i} v_L(a_i) \ge -r \ \forall i\}$
- $S = \min\{n, \operatorname{ord}_p(r)\}$

In order to define the Albanese with modulus in higher dimension Kato-Russell (building on work of Brylinski, Kato, Matsuda) define

$$\mathsf{fil}_r^F W_n(L) := \sum_{j \geq 0} F^j \left(\mathsf{fil}_{r-1}^{\log} W_n(L) + V^{n-s} (\mathsf{fil}_r^{\log} W_s(L)) \right)$$

- $fil_r^{\log}W_n(L) = \{(a_0, \dots, a_{n-1}) \mid p^{n-1-i}v_L(a_i) \ge -r \ \forall i\}$
- $S = \min\{n, \operatorname{ord}_p(r)\}$

Theorem

W_n has level 1 and

$$\widetilde{W_n}(\mathcal{O}_L, \mathfrak{m}_L^{-r}) = \operatorname{fil}_r^F W_n(L)$$

In order to define the Albanese with modulus in higher dimension Kato-Russell (building on work of Brylinski, Kato, Matsuda) define

$$\mathsf{fil}_r^F W_n(L) := \sum_{j \geq 0} F^j \left(\mathsf{fil}_{r-1}^{\log} W_n(L) + V^{n-s} (\mathsf{fil}_r^{\log} W_s(L)) \right)$$

- $fil_r^{\log}W_n(L) = \{(a_0, \dots, a_{n-1}) \mid p^{n-1-i}v_L(a_i) \ge -r \ \forall i\}$
- $s = \min\{n, \operatorname{ord}_p(r)\}$

Theorem

 W_n has level 1 and

$$\widetilde{W}_n(\mathcal{O}_L, \mathfrak{m}_L^{-r}) = \operatorname{fil}_r^F W_n(L)$$

In particular
$$\widetilde{\mathbb{G}}_{a}(\mathcal{O}_{L}, \mathfrak{m}_{L}^{-r}) = \begin{cases} \mathcal{O}_{L} & r \leq 1\\ \sum_{j} F^{j}(\frac{1}{t^{r-1}}\mathcal{O}_{L}) & (p, r) = 1\\ \sum_{j} F^{j}(\frac{1}{t^{r}}\mathcal{O}_{L}) & p|r \end{cases}$$

Brylinski-Kato-Matsuda filtration on $H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z})$ defined by $(r\geq 1)$

$$\mathsf{fil}_r H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z}) := \bigoplus_{\ell \neq n} H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}_\ell/\mathbb{Z}_\ell) \oplus \bigcup_n \mathsf{Im}(\mathsf{fil}_r^F W_n(L) \to H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z}))$$

Brylinski-Kato-Matsuda filtration on $H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z})$ defined by $(r\geq 1)$

$$\mathsf{fil}_r H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z}) := \bigoplus_{\ell \neq p} H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}_\ell/\mathbb{Z}_\ell) \oplus \bigcup_n \mathsf{Im}(\mathsf{fil}_r^F W_n(L) \to H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z}))$$

Theorem

$$\varepsilon: \mathsf{Sm}_{\mathsf{\acute{e}t}} o \mathsf{Sm}_{\mathsf{Nis}} \Longrightarrow$$

 $R^1 \varepsilon_* \mathbb{Q}/\mathbb{Z} \in \mathbf{RSC_{Nis}}$ has level 1 and

$$\widetilde{R^1\varepsilon_*\mathbb{Q}/\mathbb{Z}}(\mathcal{O}_L,\mathfrak{m}_L^{-r})=\mathrm{fil}_rH^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z})$$

Brylinski-Kato-Matsuda filtration on $H^1_{\operatorname{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z})$ defined by $(r\geq 1)$

$$\mathsf{fil}_r H^1_{\text{\'et}}(L,\mathbb{Q}/\mathbb{Z}) := \bigoplus_{\ell \neq p} H^1_{\text{\'et}}(L,\mathbb{Q}_\ell/\mathbb{Z}_\ell) \oplus \bigcup_n \mathsf{Im}(\mathsf{fil}_r^F W_n(L) \to H^1_{\text{\'et}}(L,\mathbb{Q}/\mathbb{Z}))$$

Theorem

$$\varepsilon: \mathsf{Sm}_{\mathsf{\acute{e}t}} o \mathsf{Sm}_{\mathsf{Nis}} \Longrightarrow$$

 $R^1 \varepsilon_* \mathbb{Q}/\mathbb{Z} \in \mathbf{RSC_{Nis}}$ has level 1 and

$$\widetilde{R^1\varepsilon_*\mathbb{Q}/\mathbb{Z}}(\mathcal{O}_L,\mathfrak{m}_L^{-r})=fil_rH^1_{\text{\'et}}(L,\mathbb{Q}/\mathbb{Z})$$

Remark: We have $H^1_{\text{\'et}}(L, \mathbb{Q}/\mathbb{Z}) = \text{Hom}_{\text{cts}}(G_L, \mathbb{Q}/\mathbb{Z})$

Yatagawa ⇒

$$\operatorname{fil}_{r}H^{1}_{\operatorname{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z})=\operatorname{\mathsf{Hom}}_{\operatorname{cts}}(G_{L}/G_{L}^{r+},\mathbb{Q}/\mathbb{Z})$$

where $\{G_L^j\}_{j\in\mathbb{Q}_{\geq 0}}=$ Abbes-T. Saito ramification filtration of G_L (decreasing) and $G_L^{r+}=\overline{\bigcup_{S>r}G_L^S}$

in progress, char(k) = p > 0

 ${\tt Voevodsky+Geisser-Levine} \Longrightarrow$

•
$$R^i \varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) \in \mathsf{HI}_{\mathsf{Nis}}$$
 for $i \neq j+1$

in progress, char(k) = p > 0

 $Voevodsky + Geisser-Levine \Longrightarrow$

•
$$R^i \varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) \in \mathsf{HI}_{\mathsf{Nis}}$$
 for $i \neq j+1$

$$\cdot \ R^{j+1}\varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) = \underbrace{R^{j+1}\varepsilon_*(\mathbb{Q}/\mathbb{Z}(j))'}_{\in \mathsf{HI}_{\mathsf{Nis}}} \oplus \underbrace{R^{j+1}\varepsilon_*(\mathbb{Q}_p/\mathbb{Z}_p(j))}_{:=H^{j+1}\in \mathsf{RSC}_{\mathsf{Nis}}}$$

in progress, char(k) = p > 0

Voevodsky + Geisser-Levine \Longrightarrow

•
$$R^i \varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) \in \mathsf{HI}_{\mathsf{Nis}}$$
 for $i \neq j+1$

$$\cdot \ R^{j+1}\varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) = \underbrace{R^{j+1}\varepsilon_*(\mathbb{Q}/\mathbb{Z}(j))'}_{\in \mathsf{HI}_{\mathsf{Nis}}} \oplus \underbrace{R^{j+1}\varepsilon_*(\mathbb{Q}_p/\mathbb{Z}_p(j))}_{:=H^{j+1}\in \mathsf{RSC}_{\mathsf{Nis}}}$$

→ filtration which measures the difference to A¹-invariance

$$H^j(\mathcal{O}_L) \subset \widetilde{H}^j(\mathcal{O}_L,\mathfrak{m}_L^{-1}) \subset \ldots \subset \widetilde{H}^j(\mathcal{O}_L,\mathfrak{m}_L^{-r}) \subset \ldots \subset H^j(L)$$

Above we determined $\widetilde{H}^1(\mathcal{O}_L, \mathfrak{m}_L^{-r})$

$$\begin{split} \cdot & r, n \geq 1, \, \text{set s} = \min\{n, \operatorname{ord}_{p}(r)\} \\ & \quad \text{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) := \\ & \quad \text{Im} \left(\text{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\text{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty} \right) \end{split}$$

$$\begin{split} \cdot & r, n \geq 1, \text{ set } s = \min\{n, \operatorname{ord}_{\rho}(r)\} \\ & \text{ fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) := \\ & \text{ Im} \left(\text{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\text{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty} \right) \end{split}$$

•
$$\operatorname{fil}_r H^j(L) = \varinjlim_n \operatorname{Im}(\operatorname{fil}_r(W_n\Omega_L^{j-1}/B_\infty) \to H^j(L))$$

$$\begin{aligned} \cdot & r, n \geq 1, \, \text{set } s = \min\{n, \operatorname{ord}_{p}(r)\} \\ & \quad \text{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) := \\ & \quad \text{Im} \left(\operatorname{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\operatorname{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty} \right) \\ & \quad \cdot & \quad \text{fil}_{r}H^{j}(L) = \varinjlim_{n} \operatorname{Im}(\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) \to H^{j}(L)) \\ & \quad \cdot & \quad \cdot \\ & \quad \hat{H^{j}}(\overline{X}, D) := \left\{ a \in H^{j}(\overline{X} \setminus |D|) \middle| \begin{array}{c} \rho^{*}a \in \operatorname{fil}_{r}H^{j}(L), \\ \forall \, o \in (\overline{X} \setminus |D|)(I) \end{array} \right\} \end{aligned}$$

$$\begin{aligned} \cdot & r, n \geq 1, \, \text{set } s = \min\{n, \operatorname{ord}_{p}(r)\} \\ & \quad \text{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) := \\ & \quad \text{Im} \left(\operatorname{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\operatorname{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty} \right) \\ & \quad \cdot & \quad \text{fil}_{r}H^{j}(L) = \varinjlim_{n} \operatorname{Im}(\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) \to H^{j}(L)) \\ & \quad \cdot & \quad \cdot \\ & \quad \hat{H^{j}}(\overline{X}, D) := \left\{ a \in H^{j}(\overline{X} \setminus |D|) \middle| \begin{array}{c} \rho^{*}a \in \operatorname{fil}_{r}H^{j}(L), \\ \forall a \in (\overline{X} \setminus |D|)(L) \end{array} \right\} \end{aligned}$$

Proposition

• $\widehat{H}^{j} \in \mathbf{Cl}_{\mathsf{Nis}}^{\tau,\mathsf{Sp}}$

$$\cdot r, n \geq 1, \text{ set } s = \min\{n, \operatorname{ord}_{p}(r)\}$$

$$\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) :=$$

$$\operatorname{Im}\left(\operatorname{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\operatorname{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty}\right)$$

$$\cdot \operatorname{fil}_{r}H^{j}(L) = \underline{\lim}_{n} \operatorname{Im}(\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) \to H^{j}(L))$$

$$\cdot \widehat{H^{j}}(\overline{X}, D) := \left\{a \in H^{j}(\overline{X} \setminus |D|) \middle| \begin{array}{c} \rho^{*}a \in \operatorname{fil}_{r}H^{j}(L), \\ \forall a \in (\overline{X} \setminus |D|)(L) \end{array}\right\}$$

Proposition

•
$$\widehat{H}^{j} \in \mathsf{CI}_{\mathsf{Nis}}^{\tau,\mathsf{sp}}$$
 • $\underline{\omega}_{!}\widehat{H}^{j} = H^{j}$

$$\cdot r, n \geq 1, \operatorname{set} s = \min\{n, \operatorname{ord}_{\rho}(r)\}$$

$$\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) :=$$

$$\operatorname{Im}\left(\operatorname{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\operatorname{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty}\right)$$

$$\cdot \operatorname{fil}_{r}H^{j}(L) = \underline{\lim}_{n} \operatorname{Im}(\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) \to H^{j}(L))$$

$$\cdot \widehat{H^{j}}(\overline{X}, D) := \left\{a \in H^{j}(\overline{X} \setminus |D|) \middle| \begin{array}{c} \rho^{*}a \in \operatorname{fil}_{r}H^{j}(L), \\ \forall \alpha \in (\overline{X} \setminus |D|)(L) \end{array}\right\}$$

Proposition

$$\bullet \ \ \widehat{H^{j}} \in \mathbf{CI}^{\tau,sp}_{\mathbf{Nis}} \qquad \bullet \ \ \underline{\omega}_{!} \widehat{H^{j}} = H^{j} \qquad \bullet \ \ \widehat{H^{j}} \subset \widetilde{H}^{j}$$

$$\begin{aligned} \cdot & r, n \geq 1, \, \text{set } s = \min\{n, \operatorname{ord}_{\rho}(r)\} \\ & \quad \text{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) := \\ & \quad \text{Im} \left(\operatorname{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\operatorname{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty} \right) \\ & \quad \cdot & \quad \text{fil}_{r}H^{j}(L) = \varinjlim_{n} \operatorname{Im}(\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) \to H^{j}(L)) \\ & \quad \cdot & \quad \\ & \quad \cdot & \quad \hat{H^{j}}(\overline{X}, D) := \left\{ a \in H^{j}(\overline{X} \setminus |D|) \middle| \begin{array}{c} \rho^{*}a \in \operatorname{fil}_{r}H^{j}(L), \\ \forall a \in (\overline{X} \setminus |D|)(L) \end{array} \right\} \end{aligned}$$

Proposition

•
$$\widehat{H}^{j} \in \mathbf{CI}_{\mathbf{Nis}}^{\tau,sp}$$
 • $\underline{\omega}_{!}\widehat{H}^{j} = H^{j}$ • $\widehat{H}^{j} \subset \widetilde{H}^{j}$

Remark: Kato defined a filtration $\operatorname{fil}_r^K H^j(L)$, which satisfies

$$\operatorname{fil}_{r-1}^K H^j(L) \subset \operatorname{fil}_r H^j(L) \subset \operatorname{fil}_r^K H^j(L)$$

• G finite k-group

- G finite k-group
- We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$)

- G finite k-group
- We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$)
- $\cdot X \mapsto H^1(G)(X) := H^1_{\mathrm{fppf}}(X,G)$

- G finite k-group
- We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$)
- $X \mapsto H^1(G)(X) := H^1_{\mathrm{fppf}}(X,G)$

Theorem

• $H^1(G) \in \mathsf{RSC}_{\mathsf{Nis}}$

- G finite k-group
- We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$)
- $X \mapsto H^1(G)(X) := H^1_{\text{fppf}}(X, G)$

Theorem

- $H^1(G) \in \mathsf{RSC}_{\mathsf{Nis}}$
- $H^1(G)$ has level 2 and if $G_{iu}=0$ it has level 1

- G finite k-group
- We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$)
- $X \mapsto H^1(G)(X) := H^1_{\text{fppf}}(X, G)$

Theorem

- $H^1(G) \in \mathsf{RSC}_{\mathsf{Nis}}$
- $H^1(G)$ has level 2 and if $G_{\rm iu}=0$ it has level 1
- $H^1(G_{\mathrm{em}} \times G_{\mathrm{im}}) \in \mathsf{HI}_{\mathsf{Nis}}$

- G finite k-group
- We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$)
- $X \mapsto H^1(G)(X) := H^1_{\text{fppf}}(X, G)$

Theorem

- $H^1(G) \in \mathsf{RSC}_{\mathsf{Nis}}$
- $H^1(G)$ has level 2 and if $G_{\rm iu}=0$ it has level 1
- · $H^1(G_{\mathrm{em}} \times G_{\mathrm{im}}) \in \mathsf{HI}_{\mathsf{Nis}}$
- $H^1(\mathbb{Z}/p\mathbb{Z})(\mathcal{O}_L, \mathfrak{m}_L^{-r})$ and $H^1(\bar{\alpha}_p)(\mathcal{O}_L, \mathfrak{m}_L^{-r})$ are induced by $\widehat{\mathbb{G}}_a(\mathcal{O}_L, \mathfrak{m}_L^{-r})$

Tensor products and twists

• $F,G \in \mathsf{RSC}_\mathsf{Nis} \leadsto \mathsf{define}$

$$(F,G)_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! (h_0^{\overline{\square}}(\widetilde{F} \otimes_{\operatorname{\underline{M}PST}} \widetilde{G}))_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$

• $F, G \in \mathsf{RSC}_\mathsf{Nis} \leadsto \mathsf{define}$

$$(\mathit{F},\mathit{G})_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! \big(\mathit{h}_0^{\overline{\square}} \big(\widetilde{\mathit{F}} \otimes_{\underline{\mathsf{M}} \mathsf{PST}} \widetilde{\mathit{G}} \big) \big)_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$

monoidal structure? (associativity is not clear)

• $F,G \in \mathsf{RSC}_\mathsf{Nis} \leadsto \mathsf{define}$

$$(\mathit{F},\mathit{G})_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! (\mathit{h}_0^{\overline{\square}}(\widetilde{\mathit{F}} \otimes_{\operatorname{\underline{M}PST}} \widetilde{\mathit{G}}))_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$

- monoidal structure? (associativity is not clear)
- · right exact? (not clear since $\underline{\omega}^{\text{CI}}$ is not right exact)

• $F,G \in \mathsf{RSC}_\mathsf{Nis} \leadsto \mathsf{define}$

$$(\mathit{F},\mathit{G})_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! (\mathit{h}_0^{\overline{\square}}(\widetilde{\mathit{F}} \otimes_{\operatorname{\underline{M}PST}} \widetilde{\mathit{G}}))_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$

- · monoidal structure? (associativity is not clear)
- · right exact? (not clear since $\underline{\omega}^{\text{CI}}$ is not right exact)

Theorem (R-Sugiyama-Yamazaki)

• $F, G \in \mathsf{HI}_{\mathsf{Nis}} \Rightarrow (F, G)_{\mathsf{RSC}_{\mathsf{Nis}}} = F \otimes_{\mathsf{HI}_{\mathsf{Nis}}} G$

• $F, G \in \mathsf{RSC}_{\mathsf{Nis}} \leadsto \mathsf{define}$

$$(F,G)_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! (h_0^{\overline{\square}}(\widetilde{F} \otimes_{\operatorname{\underline{M}PST}} \widetilde{G}))_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$

- monoidal structure? (associativity is not clear)
- · right exact? (not clear since $\underline{\omega}^{\text{CI}}$ is not right exact)

Theorem (R-Sugiyama-Yamazaki)

- $F, G \in \mathsf{HI}_{\mathsf{Nis}} \Rightarrow (F, G)_{\mathsf{RSC}_{\mathsf{Nis}}} = F \otimes_{\mathsf{HI}_{\mathsf{Nis}}} G$
- char(k) = 0
 - · G unipotent, A abelian variety \Rightarrow $(G, A)_{RSC_{Nis}} = 0$

• $F, G \in \mathsf{RSC}_{\mathsf{Nis}} \leadsto \mathsf{define}$

$$(\mathit{F},\mathit{G})_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! \big(\mathit{h}_0^{\overline{\square}} \big(\widetilde{\mathit{F}} \otimes_{\underline{\mathsf{M}} \mathsf{PST}} \widetilde{\mathit{G}} \big) \big)_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$

- monoidal structure? (associativity is not clear)
- · right exact? (not clear since $\underline{\omega}^{\text{CI}}$ is not right exact)

Theorem (R-Sugiyama-Yamazaki)

- $F, G \in \mathsf{HI}_{\mathsf{Nis}} \Rightarrow (F, G)_{\mathsf{RSC}_{\mathsf{Nis}}} = F \otimes_{\mathsf{HI}_{\mathsf{Nis}}} G$
- char(k) = 0
 - G unipotent, A abelian variety \Rightarrow $(G, A)_{RSC_{Nis}} = 0$
 - $\cdot \ (\mathbb{G}_a,\mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}} = \Omega^1_{/\mathbb{Z}}$

• $F, G \in \mathsf{RSC}_{\mathsf{Nis}} \leadsto \mathsf{define}$

$$(\mathit{F},\mathit{G})_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! \big(h_0^{\overline{\square}} \big(\widetilde{\mathit{F}} \otimes_{\underline{\mathsf{M}} \mathsf{PST}} \widetilde{\mathit{G}} \big) \big)_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$

- monoidal structure? (associativity is not clear)
- · right exact? (not clear since $\underline{\omega}^{\text{CI}}$ is not right exact)

Theorem (R-Sugiyama-Yamazaki)

- $F, G \in \mathsf{HI}_{\mathsf{Nis}} \Rightarrow (F, G)_{\mathsf{RSC}_{\mathsf{Nis}}} = F \otimes_{\mathsf{HI}_{\mathsf{Nis}}} G$
- char(k) = 0
 - G unipotent, A abelian variety \Rightarrow $(G, A)_{RSC_{Nis}} = 0$
 - $\cdot \ (\mathbb{G}_a,\mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}} = \Omega^1_{/\mathbb{Z}}$
 - $\cdot \ (\mathbb{G}_a, \mathbb{G}_a)_{\mathsf{RSC}_{\mathsf{Nis}}}(X) = H^0(X, \mathcal{O}_{X \times_{\mathbb{Z}} X} / I_{\Delta_X}^2)$

Twists

• $G \in \mathbf{CI}^{\tau,sp}_{\mathbf{Nis}}$ define

$$\cdot G(n) := h_0^{\overline{\square}}(G \otimes_{\underline{MPST}} \widetilde{K_n^M})_{Nis}^{sp} \in Cl_{Nis}^{\tau,sp}$$

Twists

- $G \in \mathbf{CI}_{Nis}^{\tau,Sp}$ define
 - $\cdot G(n) := h_0^{\overline{\square}} (G \otimes_{\underline{M}PST} \widetilde{K_n^M})_{Nis}^{\operatorname{sp}} \in \mathbf{Cl}_{Nis}^{\tau,sp}$
 - $\cdot \ \gamma^{n} \mathsf{G} := \underline{\mathsf{Hom}}_{\underline{\mathsf{M}}\mathsf{PST}}(\widetilde{\mathsf{K}_{n}^{\mathsf{M}}},\mathsf{G}) \in \mathsf{CI}_{\mathsf{Nis}}^{\tau,\mathsf{Sp}}$

Twists

- $G \in \mathbf{CI}_{\mathbf{Nis}}^{\tau, \mathsf{Sp}}$ define
 - $\cdot G(n) := h_0^{\overline{\square}} (G \otimes_{\underline{MPST}} \widetilde{K_n^M})_{Nis}^{sp} \in \mathbf{CI}_{Nis}^{\tau,sp}$
 - $\boldsymbol{\cdot}\ \boldsymbol{\gamma}^{\boldsymbol{n}}\boldsymbol{G}:=\underline{\mathrm{Hom}}_{\underline{\mathrm{M}}\mathrm{PST}}(\widetilde{K_{\boldsymbol{n}}^{\mathrm{M}}},\boldsymbol{G})\in\mathbf{CI}_{\mathrm{Nis}}^{\tau,\mathrm{sp}}$
- $F \in \mathbf{RSC}_{Nis}$ define
 - $\cdot \ \, F\langle 1 \rangle := (F, \mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}}, \, F\langle n \rangle := (F\langle n-1 \rangle) \langle 1 \rangle \in \mathsf{RSC}_{\mathsf{Nis}}$

Twists

- $G \in \mathbf{CI}_{\mathbf{Nis}}^{\tau, \mathsf{Sp}}$ define
 - $\boldsymbol{\cdot} \ \ G(n) := h_0^{\overline{\square}} (G \otimes_{\operatorname{\underline{MPST}}} \widetilde{K_n^M})_{\operatorname{Nis}}^{\operatorname{sp}} \in \mathbf{CI}_{\operatorname{Nis}}^{\tau,\operatorname{sp}}$
 - $\cdot \ \gamma^n G := \underline{\mathsf{Hom}}_{\underline{\mathsf{M}}\mathsf{PST}}(\widetilde{K_n^\mathsf{M}},G) \in \mathsf{CI}^{\tau,\mathsf{Sp}}_{\mathsf{Nis}}$
- $F \in \mathbf{RSC}_{Nis}$ define
 - $\cdot \ \, F\langle 1 \rangle := (F, \mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}}, \, F\langle n \rangle := (F\langle n-1 \rangle) \langle 1 \rangle \in \mathsf{RSC}_{\mathsf{Nis}}$
 - $\cdot \ \gamma^n F := \underline{\mathsf{Hom}}_{\mathsf{PST}}(K^{\mathsf{M}}_n, F) \in \mathsf{RSC}_{\mathsf{Nis}}$

Twists

- $G \in \mathbf{CI}_{\mathbf{Nis}}^{\tau, \mathsf{Sp}}$ define
 - $G(n) := h_0^{\overline{\square}} (G \otimes_{\underline{M}PST} \widetilde{K_n^M})_{Nis}^{sp} \in Cl_{Nis}^{\tau,sp}$
 - $\boldsymbol{\cdot} \ \gamma^n \mathbf{G} := \underline{\mathbf{Hom}}_{\underline{\mathbf{M}}\mathbf{PST}}(\widetilde{\mathbf{K}_n^{\mathbf{M}}}, \mathbf{G}) \in \mathbf{CI}_{\mathbf{Nis}}^{\tau, \mathrm{sp}}$
- $F \in \mathbf{RSC}_{Nis}$ define
 - $\cdot \ \, F\langle 1 \rangle := (F,\mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}}, \, F\langle n \rangle := (F\langle n-1 \rangle) \langle 1 \rangle \in \mathsf{RSC}_{\mathsf{Nis}}$
 - $\cdot \ \gamma^n F := \underline{\mathsf{Hom}}_{\mathsf{PST}}(\mathit{K}^{\mathsf{M}}_n, \mathit{F}) \in \mathsf{RSC}_{\mathsf{Nis}}$

Theorem (Merici-Saito)

$$F \in \mathsf{RSC}_\mathsf{Nis} \Longrightarrow$$

$$\gamma^n(\widetilde{F}(n)) \cong \widetilde{F}$$
 and $\gamma^n(F\langle n \rangle) = F$

Twists

- $G \in \mathbf{CI}^{\tau,sp}_{\mathbf{Nis}}$ define
 - $G(n) := h_0^{\overline{\square}} (G \otimes_{\underline{M}PST} \widetilde{K_n^M})_{Nis}^{sp} \in Cl_{Nis}^{\tau,sp}$
 - $\boldsymbol{\cdot} \ \gamma^{n} \mathbf{G} := \underline{\mathbf{Hom}}_{\underline{\mathbf{M}}\mathbf{PST}}(\widetilde{\mathbf{K}_{n}^{\mathbf{M}}}, \mathbf{G}) \in \mathbf{CI}_{\mathbf{Nis}}^{\tau, \mathrm{sp}}$
- $F \in \mathbf{RSC}_{Nis}$ define
 - $\cdot \ \, F\langle 1 \rangle := (F,\mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}}, \, F\langle n \rangle := (F\langle n-1 \rangle) \langle 1 \rangle \in \mathsf{RSC}_{\mathsf{Nis}}$
 - $\cdot \ \gamma^n F := \underline{\mathsf{Hom}}_{\mathsf{PST}}(K^{\mathsf{M}}_n, F) \in \mathsf{RSC}_{\mathsf{Nis}}$

Theorem (Merici-Saito)

$$F \in \mathsf{RSC}_\mathsf{Nis} \Longrightarrow$$

$$\gamma^n(\widetilde{F}(n)) \cong \widetilde{F}$$
 and $\gamma^n(F\langle n \rangle) = F$

Generalizes part of Voevodsky's cancellation theorem

.

$$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* K_n^M \text{ in } \mathrm{CI}_{\mathrm{Nis}}^{\tau, sp}, \qquad \mathbb{Z}\langle n \rangle = K_n^M \text{ in } \mathrm{RSC}_{\mathrm{Nis}}$$

.

$$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{CI}_{\mathsf{Nis}}^{\tau, sp}, \qquad \mathbb{Z}\langle n \rangle = \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{RSC}_{\mathsf{Nis}}$$

•
$$(char(k) = 0)$$

$$\widetilde{\mathbb{G}_{a}}(n) = \widetilde{\Omega_{/\mathbb{Z}}^{n}} \text{ in } \operatorname{Cl}_{\operatorname{Nis}}^{\tau,\operatorname{Sp}}, \qquad \mathbb{G}_{a}\langle n \rangle = \Omega_{/\mathbb{Z}}^{n} \text{ in } \operatorname{RSC}_{\operatorname{Nis}}$$

.

$$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{CI}_{\mathsf{Nis}}^{ au, \mathit{SP}}, \qquad \mathbb{Z}\langle n \rangle = \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathsf{RSC}_{\mathsf{Nis}}$$

 $\cdot (\operatorname{char}(k) = 0)$

$$\widetilde{\mathbb{G}_a}(n) = \widetilde{\Omega^n_{/\mathbb{Z}}} \text{ in } \operatorname{Cl}_{\operatorname{Nis}}^{\tau,\operatorname{Sp}}, \qquad \mathbb{G}_a\langle n \rangle = \Omega^n_{/\mathbb{Z}} \text{ in } \operatorname{RSC}_{\operatorname{Nis}}$$

• $(char(k) = p \neq 0, 2, 3, 5)$

$$\mathbb{G}_a\langle n\rangle=\Omega^n/B_\infty$$
 in $\mathsf{RSC}_\mathsf{Nis}$

.

$$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{CI}_{\mathsf{Nis}}^{ au, \mathit{SP}}, \qquad \mathbb{Z}\langle n \rangle = \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathsf{RSC}_{\mathsf{Nis}}$$

• (char(k) = 0)

$$\widetilde{\mathbb{G}_a}(n) = \widetilde{\Omega^n_{/\mathbb{Z}}} \ \text{in} \ \operatorname{Cl}_{\operatorname{Nis}}^{\tau,\operatorname{Sp}}, \qquad \mathbb{G}_a\langle n \rangle = \Omega^n_{/\mathbb{Z}} \ \text{in} \ \operatorname{RSC}_{\operatorname{Nis}}$$

• $(char(k) = p \neq 0, 2, 3, 5)$

$$\mathbb{G}_a\langle n\rangle = \Omega^n/B_{\infty}$$
 in RSC_{Nis}

Proofs use computation of $\widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-r})$ for various F

.

$$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{CI}_{\mathsf{Nis}}^{ au, \mathit{SP}}, \qquad \mathbb{Z}\langle n \rangle = \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathsf{RSC}_{\mathsf{Nis}}$$

• (char(k) = 0)

$$\widetilde{\mathbb{G}_a}(n) = \widetilde{\Omega^n_{/\mathbb{Z}}} \ \text{in} \ \operatorname{Cl}_{\operatorname{Nis}}^{\tau,\operatorname{Sp}}, \qquad \mathbb{G}_a\langle n \rangle = \Omega^n_{/\mathbb{Z}} \ \text{in} \ \operatorname{RSC}_{\operatorname{Nis}}$$

• $(char(k) = p \neq 0, 2, 3, 5)$

$$\mathbb{G}_a\langle n\rangle = \Omega^n/B_{\infty}$$
 in RSC_{Nis}

Proofs use computation of $\widetilde{F}(\mathcal{O}_L,\mathfrak{m}_L^{-r})$ for various FFurthermore

$$\cdot \gamma^n(W_r\Omega^q) = W_r\Omega^{q-n}$$

.

$$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{CI}_{\mathsf{Nis}}^{ au, \mathit{SP}}, \qquad \mathbb{Z}\langle n \rangle = \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathsf{RSC}_{\mathsf{Nis}}$$

• (char(k) = 0)

$$\widetilde{\mathbb{G}_a}(n) = \widetilde{\Omega^n_{/\mathbb{Z}}}$$
 in $\mathsf{Cl}_{\mathsf{Nis}}^{ au,\mathsf{sp}}, \qquad \mathbb{G}_a\langle n \rangle = \Omega^n_{/\mathbb{Z}}$ in $\mathsf{RSC}_{\mathsf{Nis}}$

• $(char(k) = p \neq 0, 2, 3, 5)$

$$\mathbb{G}_a\langle n\rangle = \Omega^n/B_{\infty}$$
 in RSC_{Nis}

Proofs use computation of $\widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-r})$ for various FFurthermore

•
$$\gamma^n(W_r\Omega^q) = W_r\Omega^{q-n} \ (\Leftarrow R^1\pi_*F_{X\times P^1} = (\gamma^1F)_X$$
, where $\pi: P_X^1 \to X$)

Cohomology of reciprocity sheaves

(Binda-R-Saito)

Nice pairs

We say

• $\mathcal{X} = (X, D)$ is an ls modulus pair or write $\mathcal{X} \in \underline{\mathsf{M}}\mathsf{Cor}_{ls}$ $\iff X \in \mathsf{Sm} \text{ and } |D| \mathsf{SNCD}$

Nice pairs

We say

- $\mathcal{X} = (X, D)$ is an ls modulus pair or write $\mathcal{X} \in \underline{\mathbf{M}}\mathbf{Cor}_{ls}$ $\iff X \in \mathbf{Sm} \text{ and } |D| \text{ SNCD}$
- $f: Y \to X$ in **Sm** is transversal to $D \iff f^{-1}(D_1 \cap \ldots \cap D_r) \hookrightarrow Y$ regular, closed, codim r, for all irred cpts D_1, \ldots, D_r of |D|.

Projective bundle formula

Theorem

$$G \in \mathbf{CI}_{\mathsf{Nis}}^{\tau,\mathsf{SP}}$$
 $\mathcal{X} = (\mathsf{X},\mathsf{D}) \in \underline{\mathsf{M}}\mathbf{Cor}_{\mathsf{ls}}$ $\pi : \mathsf{P} \to \mathsf{X}$ proj bdle, rk n $\mathcal{P} = (\mathsf{P},\mathsf{D}_{|\mathsf{P}})$

$$\Longrightarrow$$

$$R\pi_*G_{\mathcal{P}} \cong \bigoplus_{i=0}^n (\gamma^i G)_{\mathcal{X}}[-i] \quad in \ D(X_{\mathsf{Nis}})$$

Projective bundle formula

Theorem

$$G \in \mathbf{CI}_{\mathsf{Nis}}^{\tau,\mathsf{SP}}$$
 $\mathcal{X} = (\mathsf{X},\mathsf{D}) \in \underline{\mathsf{M}}\mathbf{Cor}_{\mathsf{ls}}$ $\pi : \mathsf{P} \to \mathsf{X}$ proj bdle, rk n $\mathcal{P} = (\mathsf{P},\mathsf{D}_{|\mathsf{P}})$

 \Longrightarrow

$$R\pi_*G_{\mathcal{P}} \cong \bigoplus_{i=0}^n (\gamma^i G)_{\mathcal{X}}[-i] \quad in \ D(X_{\mathsf{Nis}})$$

Example

•
$$(char(k) = 0)$$

$$R\pi_*\Omega^{j}_{P/\mathbb{Z}}(\log D_{|P})(D_{|P}-|D_{|P}|) = \bigoplus_{i=0}^{n} \Omega^{j-i}_{X/\mathbb{Z}}(\log D)(D-|D|)[-i]$$

Projective bundle formula

Theorem

$$G \in \mathbf{CI}^{ au,\mathrm{SP}}_{\mathsf{Nis}}$$
 $\mathcal{X} = (X,D) \in \underline{\mathsf{M}} \mathsf{Cor}_{\mathsf{ls}}$ $\pi: P \to X$ proj bdle, rk n $\mathcal{P} = (P,D_{|P})$

 \Longrightarrow

$$R\pi_*G_{\mathcal{P}}\cong\bigoplus_{i=0}^n(\gamma^iG)_{\mathcal{X}}[-i]$$
 in $D(X_{\mathsf{Nis}})$

Example

•
$$(\operatorname{char}(k) = 0)$$

$$R\pi_*\Omega^{j}_{P/\mathbb{Z}}(\log D_{|P})(D_{|P}-|D_{|P}|) = \bigoplus_{i=0}^{n} \Omega^{j-i}_{X/\mathbb{Z}}(\log D)(D-|D|)[-i]$$

• (char(
$$k$$
) = $p > 0$, $D = \emptyset$, (also Gros))

$$R\pi_* \left(R^{j+1} \varepsilon_* \mathbb{Z}/p^r(j) \right)_p = \bigoplus_{i=1}^n \left(R^{j-i+1} \varepsilon_* \mathbb{Z}/p^r(j-i) \right)_X [-i]$$

Blow-up formula

Theorem

$$G \in Cl_{\mathsf{Nis}}^{ au, \mathit{Sp}} \ \mathcal{X} = (\mathit{X}, \mathit{D}) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls} \ i : \mathit{Z} \hookrightarrow \mathit{X} \ codim \ \mathit{c}, \ transversal \ to \ \mathit{D}$$

$$\rho: \tilde{X} \to X \text{ blow-up in } Z \quad \tilde{\mathcal{X}} = (\tilde{X}, D_{|\tilde{X}}) \quad \mathcal{Z} = (Z, D_{|Z})$$

Blow-up formula

Theorem

$$G \in Cl_{\mathsf{Nis}}^{\tau,sp} \quad \mathcal{X} = (X,D) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls} \quad i:Z \hookrightarrow X \ codim \ c, \ transversal \ to \ D$$

$$\rho: \tilde{X} \to X \text{ blow-up in } Z \quad \tilde{\mathcal{X}} = (\tilde{X}, D_{|\tilde{X}}) \quad \mathcal{Z} = (Z, D_{|Z}) \implies$$

$$R\rho_*G_{\tilde{\mathcal{X}}} \cong G_{\mathcal{X}} \oplus \bigoplus_{i=1}^{c-1} i_*\gamma^i G_{\mathcal{Z}}[-i]$$

Blow-up formula

Theorem

$$G \in Cl_{\mathsf{Nis}}^{ au, \mathit{Sp}} \ \mathcal{X} = (\mathit{X}, \mathit{D}) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls} \ i : \mathit{Z} \hookrightarrow \mathit{X} \ codim \ \mathit{c}, \ transversal \ to \ \mathit{D}$$

$$\rho: \tilde{X} \to X \text{ blow-up in } Z \quad \tilde{\mathcal{X}} = (\tilde{X}, D_{|\tilde{X}}) \quad \mathcal{Z} = (Z, D_{|Z}) \implies$$

$$R\rho_*G_{\tilde{\mathcal{X}}} \cong G_{\mathcal{X}} \oplus \bigoplus_{i=1}^{c-1} i_*\gamma^i G_{\mathcal{Z}}[-i]$$

Examples

as above ...

proofs of pbf and buf are enmeshed

- proofs of pbf and buf are enmeshed
- main point: $L \subset A^2$ line through 0, $Y \to A^2$ blow-up in 0, $\pi: Y \to P^1_s$ paramterizes lines through $0 \in A^2$

to show
$$H^{1}(\mathbf{P}_{s}^{1}, \pi_{*}G_{(Y, \rho^{*}L)}) = 0$$

- proofs of pbf and buf are enmeshed
- main point: $L \subset A^2$ line through 0, $Y \to A^2$ blow-up in 0, $\pi: Y \to P^1_s$ paramterizes lines through $0 \in A^2$

to show
$$H^1(\mathbf{P}_s^1, \pi_* G_{(Y, \rho^* L)}) = 0$$

• this relies on the following: set $\overline{\Box}^{(n)} = (\mathbf{P}^1, n \cdot \{0\} + n \cdot \{\infty\})$

- proofs of pbf and buf are enmeshed
- main point: $L \subset A^2$ line through 0, $Y \to A^2$ blow-up in 0, $\pi: Y \to P^1_s$ paramterizes lines through $0 \in A^2$

to show
$$H^{1}(\mathbf{P}_{s}^{1}, \pi_{*}G_{(Y, \rho^{*}L)}) = 0$$

• this relies on the following: set $\overline{\Box}^{(n)} = (\mathbf{P}^1, n \cdot \{0\} + n \cdot \{\infty\})$

$$h_{0,\mathsf{Nis}}^{\overline{\square},\mathrm{sp}}(\overline{\square}_{y}^{(1)} \otimes \overline{\square}_{s}^{(1)})$$

$$\uparrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$\longleftarrow \underline{\omega}_! h_{0,\mathsf{Nis}}^{\overline{\square},\mathrm{sp}} (\overline{\square}_{\mathsf{X}}^{(1)} \otimes \overline{\square}_{\mathsf{S}}^{(1)}) = K_2^{\mathsf{M}} \oplus \mathbb{G}_m \oplus \mathbb{G}_m \oplus \mathbb{Z} \in \mathsf{HI}_{\mathsf{Nis}} \tag{RSY}$$

- proofs of pbf and buf are enmeshed
- main point: $L \subset A^2$ line through 0, $Y \to A^2$ blow-up in 0, $\pi: Y \to P_S^1$ paramterizes lines through $0 \in A^2$

to show
$$H^{1}(\mathbf{P}_{s}^{1}, \pi_{*}G_{(Y, \rho^{*}L)}) = 0$$

• this relies on the following: set $\overline{\Box}^{(n)} = (\mathbf{P}^1, n \cdot \{0\} + n \cdot \{\infty\})$

$$h_{0,\mathsf{Nis}}^{\square,\mathrm{sp}}(\square_{y}^{(1)} \otimes \square_{s}^{(1)})$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad$$

$$\longleftarrow \qquad \underline{\omega}_! h_{0,\operatorname{Nis}}^{\overline{\square},\operatorname{sp}} (\overline{\square}_{\mathsf{x}}^{(1)} \otimes \overline{\square}_{\mathsf{s}}^{(1)}) = \mathit{K}_2^{\mathsf{M}} \oplus \mathbb{G}_m \oplus \mathbb{G}_m \oplus \mathbb{Z} \in \mathsf{HI}_{\mathsf{Nis}} \qquad (\mathsf{RSY})$$

splitting in blow-up sequence constructed as by Voevodsky

Gysin sequence

 \leadsto define a Gysin map similarly as Voevodsky \leadsto

Gysin sequence

→ define a Gysin map similarly as Voevodsky →

Theorem

$$G \in Cl_{Nis}^{\tau,sp}$$
 $\mathcal{X} = (X,D) \in \underline{M}Cor_{ls}$ $i: Z \hookrightarrow X$ codim c, transversal to D

$$\mathcal{Z} = (Z, D_{|Z}) \quad \rho : \tilde{X} \to X \text{ blow-up in } Z \quad E = \rho^{-1}(Z)$$

Gysin sequence

→ define a Gysin map similarly as Voevodsky →

Theorem

$$G \in \mathbf{Cl}_{\mathsf{Nis}}^{\tau,sp} \quad \mathcal{X} = (\mathsf{X},\mathsf{D}) \in \underline{\mathsf{M}} \mathsf{Cor}_{ls} \quad i : \mathsf{Z} \hookrightarrow \mathsf{X} \ codim \ c, \ transversal \ to \ \mathsf{D}$$

$$\mathcal{Z} = (Z, D_{|Z})$$
 $\rho : \tilde{X} \to X$ blow-up in Z $E = \rho^{-1}(Z)$

 \Rightarrow exact triangle

$$i_*\gamma^c G_{\mathcal{Z}}[-c] \xrightarrow{g_{\mathcal{Z}/\mathcal{X}}} G_{\mathcal{X}} \xrightarrow{\rho^*} R\rho_* G_{(\tilde{X},D_{|\tilde{X}}+E)} \xrightarrow{\partial} i_*\gamma^c G_{\mathcal{Z}}[-c+1]$$

• (char(k) = 0)

$$\cdot$$
 (char(k) = 0)

$$\cdot \ \, c = 1$$

$$0 \to \widetilde{\operatorname{Conn}}^1(X,D) \to \widetilde{\operatorname{Conn}}^1(X,D+Z) \to H^0(Z,\mathcal{O}_Z(i^*D-|i^*D|))/\mathbb{Z}$$

$$\xrightarrow{g_{\mathcal{Z}/\mathcal{X}}} H^1\left(X, \frac{\Omega^1_{X/k}(\log D)(D-|D|)}{\operatorname{dlog}(j_*\mathcal{O}_{X\setminus |D|}^X)}\right) \to H^1\left(X, \frac{\Omega^1_{X/k}(\log D+Z)(D-|D|)}{\operatorname{dlog}(j_*\mathcal{O}_{X\setminus |D+Z|}^X)}\right) \to \dots$$

$$\cdot$$
 (char(k) = 0)

•
$$c = 1$$

$$0 \to \operatorname{Conn}^{1}(X, D) \to \operatorname{Conn}^{1}(X, D + Z) \to H^{0}(Z, \mathcal{O}_{Z}(i^{*}D - |i^{*}D|))/\mathbb{Z}$$

$$\xrightarrow{g_{Z/X}} H^{1}\left(X, \frac{\Omega_{X/k}^{1}(\log D)(D - |D|)}{\operatorname{dlog}(j_{*}\mathcal{O}_{X\setminus D|D}^{\times})}\right) \to H^{1}\left(X, \frac{\Omega_{X/k}^{1}(\log D + Z)(D - |D|)}{\operatorname{dlog}(j_{*}\mathcal{O}_{X\setminus D|D + Z}^{\times})}\right) \to \dots$$

•
$$c > 2$$

$$\operatorname{Conn}^1(X, D) \cong \operatorname{Conn}^1(\tilde{X}, \rho^*D + E)$$

$$\cdot (\operatorname{char}(k) = 0)$$
$$\cdot c = 1$$

• c > 2

$$0 \to \operatorname{Conn}^{1}(X, D) \to \operatorname{Conn}^{1}(X, D + Z) \to H^{0}(Z, \mathcal{O}_{Z}(i^{*}D - |i^{*}D|))/\mathbb{Z}$$

$$\xrightarrow{g_{\mathcal{Z}/\mathcal{X}}} H^{1}\left(X, \frac{\Omega_{X/k}^{1}(\log D)(D - |D|)}{\operatorname{dlog}(j_{*}\mathcal{O}_{X \setminus D|D}^{\times})}\right) \to H^{1}\left(X, \frac{\Omega_{X/k}^{1}(\log D + Z)(D - |D|)}{\operatorname{dlog}(j_{*}\mathcal{O}_{X \setminus D|D + Z}^{\times})}\right) \to \dots$$

 $\operatorname{Conn}^1(X, D) \cong \operatorname{Conn}^1(\tilde{X}, \rho^*D + E)$

• (char(k) = p > 0, $\ell \neq p$, $c \ge 2$) Lisse¹ $\in \mathbf{RSC_{Nis}}$ sheaf whose sections over X are the lisse \mathbb{Q}_{ℓ} sheaves of rank 1.

$$\widetilde{\mathrm{Lisse}^1}(X,D) = \frac{\mathsf{lisse}\,\bar{\mathbb{Q}}_\ell\text{-sheaves of rank 1 on } X \setminus |D|}{\mathsf{with Artin conductor} \leq D}$$

and

$$\widetilde{\mathrm{Lisse}^1}(X,D)\cong\widetilde{\mathrm{Lisse}^1}(\tilde{X},\rho^*D+E)$$

• S finite type, sep/k

- S finite type, sep/k
- C_S=category of proper (Chow) correspondences with

- S finite type, sep/k
- C_S=category of proper (Chow) correspondences with

• obj(
$$C_S$$
): $\underbrace{(f: X \to S)}_{\cong X}$, X quasi-proj, sm/k, f finite type

- S finite type, sep/k
- C_S=category of proper (Chow) correspondences with
 - obj (C_S) : $\underbrace{(f: X \to S)}_{S,X}$, X quasi-proj, sm/k, f finite type
 - · $C_S(X,Y) = \mathbf{CH}_{\dim X}(\operatorname{closed} \subset X \times_S Y, \operatorname{proper}/X), \text{ (for } X, Y \operatorname{conn)}$

- S finite type, sep/k
- C_S=category of proper (Chow) correspondences with
 - obj(C_S): $\underbrace{(f: X \to S)}_{=X}$, X quasi-proj, sm/k, f finite type
 - · $C_S(X,Y) = CH_{dim X}(closed \subset X \times_S Y, proper/X), (for X, Y conn)$
 - Fulton refined intersection \leadsto composition

- S finite type, sep/k
- C_S=category of proper (Chow) correspondences with

• obj
$$(C_S)$$
: $\underbrace{(f: X \to S)}_{S,X}$, X quasi-proj, sm/k, f finite type

- · $C_S(X,Y) = CH_{dim X}(closed \subset X \times_S Y, proper/X), (for X, Y conn)$
- Fulton refined intersection \leadsto composition

Definition

$$F \in \mathbf{RSC}_{\mathsf{Nis}}$$
, $(f: X \to S)$, $(g: Y \to S) \in C_S$, $\alpha \in C_S(X, Y)$

define

$$\alpha^*: Rg_*F_Y \to Rf_*F_X \quad \text{in } D(S_{Nis})$$

by

proper correspondence action on reciprocity sheaves

- S finite type, sep/k
- · C_S=category of proper (Chow) correspondences with

· obj(
$$C_S$$
): $\underbrace{(f: X \to S)}_{\subseteq Y}$, X quasi-proj, sm/k, f finite type

- · $C_S(X,Y) = CH_{dim X}(closed \subset X \times_S Y, proper/X), (for X, Y conn)$
- Fulton refined intersection \leadsto composition

Definition

$$F \in \mathsf{RSC}_{\mathsf{Nis}}, \quad (f: X \to S), (g: Y \to S) \in C_S, \quad \alpha \in C_S(X, Y)$$

define

$$\alpha^*: Rg_*F_Y \to Rf_*F_X \quad \text{in } D(S_{Nis})$$

by

• pullback to $X \times Y$

proper correspondence action on reciprocity sheaves

- S finite type, sep/k
- C_S=category of proper (Chow) correspondences with

· obj(
$$C_S$$
): $\underbrace{(f: X \to S)}_{\subseteq Y}$, X quasi-proj, sm/k, f finite type

- · $C_S(X,Y) = CH_{dim X}(closed \subset X \times_S Y, proper/X), (for X, Y conn)$
- Fulton refined intersection \leadsto composition

Definition

$$F \in \mathsf{RSC}_{\mathsf{Nis}}, \quad (f: X \to S), (g: Y \to S) \in C_S, \quad \alpha \in C_S(X, Y)$$

define

$$\alpha^*: Rg_*F_Y \to Rf_*F_X \quad \text{in } D(S_{Nis})$$

by

- pullback to $X \times Y$
- cup with α (minding the support)

proper correspondence action on reciprocity sheaves

- S finite type, sep/k
- · C_S=category of proper (Chow) correspondences with

• obj
$$(C_S)$$
: $\underbrace{(f: X \to S)}_{S,X}$, X quasi-proj, sm/k, f finite type

- $C_S(X,Y) = CH_{\dim X}(\operatorname{closed} \subset X \times_S Y, \operatorname{proper}/X), \text{ (for } X, Y \operatorname{conn)}$
- Fulton refined intersection → composition

Definition

$$F \in \mathsf{RSC}_{\mathsf{Nis}}, \quad (f: X \to S), (g: Y \to S) \in C_S, \quad \alpha \in C_S(X, Y)$$

define

$$\alpha^* : Rg_*F_Y \to Rf_*F_X$$
 in $D(S_{Nis})$

by

- pullback to $X \times Y$
- cup with α (minding the support)
- pushforward to X (using the propernesss of support over X)

$$\cdot \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = \mathsf{H}^{e}_{\mathsf{V}}(\mathsf{X} \times \mathsf{Y}, \mathsf{K}^{\mathsf{M}}_{e}), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_{\mathsf{S}} \mathsf{Y} \ \mathsf{proper}/\mathsf{X}$$

$$\begin{array}{l} \cdot \ \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = \mathit{H}^{e}_{\mathsf{V}}(\mathsf{X} \times \mathsf{Y}, \mathit{K}^{\mathsf{M}}_{e}), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_{\mathsf{S}}\,\mathsf{Y}\,\mathsf{proper}/\mathsf{X} \\ \rightsquigarrow \ \alpha : \mathbb{Z}[-e] \to \mathit{R}\underline{\Gamma}_{\mathsf{V}}(\mathit{K}^{\mathsf{M}}_{e}) \end{array}$$

$$\alpha \in \mathsf{CH}_{\mathsf{dim}\,X}(V) = H_V^e(X \times Y, K_e^M), \ e = \mathsf{dim}\,Y, \ V \subset X \times_S Y \ \mathsf{proper}/X$$

$$\alpha : \mathbb{Z}[-e] \to R\underline{\Gamma}_V(K_e^M)$$

$$\alpha : \mathbb{Z}[-e] \to R\underline{\Gamma}_V(K_e^M)$$

$$\begin{split} \gamma^e F[-e] &\xrightarrow{\alpha} \gamma^e F \otimes_{\mathbb{Z}}^L R\underline{\Gamma}_V(K_e^M) \to R\underline{\Gamma}_V(\gamma^e F \otimes_{\underline{M}PST} K_e^M) \\ &= R\underline{\Gamma}_V \left(\underline{\mathsf{Hom}}_{\underline{M}PST}(K_e^M, F) \otimes_{\underline{M}PST} K_e^M \right) \xrightarrow{\mathrm{adj.}} R\underline{\Gamma}_V F \end{split}$$

· Ad cup:

$$\begin{array}{l} \cdot \ \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = H^e_\mathsf{V}(\mathsf{X} \times \mathsf{Y}, \mathsf{K}^\mathsf{M}_e), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_\mathsf{S} \mathsf{Y} \ \mathsf{proper}/\mathsf{X} \\ \\ \rightsquigarrow \ \alpha : \mathbb{Z}[-e] \to R\underline{\Gamma}_\mathsf{V}(\mathsf{K}^\mathsf{M}_e) \\ \\ \rightsquigarrow \end{array}$$

$$\begin{split} \gamma^e F[-e] &\xrightarrow{\alpha} \gamma^e F \otimes_{\mathbb{Z}}^{L} R\underline{\Gamma}_{V}(K_e^{M}) \to R\underline{\Gamma}_{V}(\gamma^e F \otimes_{\underline{M}PST} K_e^{M}) \\ &= R\underline{\Gamma}_{V} \left(\underline{\mathsf{Hom}_{\underline{M}PST}}(K_e^{M}, F) \otimes_{\underline{M}PST} K_e^{M} \right) \xrightarrow{\mathrm{adj.}} R\underline{\Gamma}_{V} F \end{split}$$

Ad pushforward(classical):

$$\begin{array}{l} \cdot \ \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = \mathit{H}^{e}_{\mathsf{V}}(\mathsf{X} \times \mathsf{Y}, \mathit{K}^{\mathsf{M}}_{e}), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_{\mathsf{S}}\,\mathsf{Y}\,\mathsf{proper}/\mathsf{X} \\ \\ \rightsquigarrow \ \alpha : \mathbb{Z}[-e] \to \mathit{R}\underline{\Gamma}_{\mathsf{V}}(\mathit{K}^{\mathsf{M}}_{e}) \\ \\ \rightsquigarrow \end{array}$$

$$\gamma^{e}F[-e] \xrightarrow{\alpha} \gamma^{e}F \otimes_{\mathbb{Z}}^{L} R\underline{\Gamma}_{V}(K_{e}^{M}) \to R\underline{\Gamma}_{V}(\gamma^{e}F \otimes_{\underline{M}PST} K_{e}^{M})$$

$$= R\underline{\Gamma}_{V} \left(\underline{\mathsf{Hom}}_{\underline{M}PST}(K_{e}^{M}, F) \otimes_{\underline{M}PST} K_{e}^{M} \right) \xrightarrow{\mathrm{adj.}} R\underline{\Gamma}_{V}F$$

- · Ad pushforward(classical):
 - · uses Gysin map + projective bundle formula + cancellation

$$\begin{array}{l} \cdot \ \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = \mathit{H}^{e}_{\mathsf{V}}(\mathsf{X} \times \mathsf{Y}, \mathit{K}^{\mathsf{M}}_{e}), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_{\mathsf{S}}\,\mathsf{Y}\,\mathsf{proper}/\mathsf{X} \\ \\ \rightsquigarrow \ \alpha : \mathbb{Z}[-e] \to \mathit{R}\underline{\Gamma}_{\mathsf{V}}(\mathit{K}^{\mathsf{M}}_{e}) \\ \\ \rightsquigarrow \end{array}$$

$$\gamma^{e}F[-e] \xrightarrow{\alpha} \gamma^{e}F \otimes_{\mathbb{Z}}^{L} R\underline{\Gamma}_{V}(K_{e}^{M}) \to R\underline{\Gamma}_{V}(\gamma^{e}F \otimes_{\underline{M}PST} K_{e}^{M})$$

$$= R\underline{\Gamma}_{V} \left(\underline{\mathsf{Hom}}_{\underline{M}PST}(K_{e}^{M}, F) \otimes_{\underline{M}PST} K_{e}^{M} \right) \xrightarrow{\mathrm{adj.}} R\underline{\Gamma}_{V}F$$

- · Ad pushforward(classical):
 - · uses Gysin map + projective bundle formula + cancellation
 - + work carefully with supports

$$\begin{array}{l} \cdot \ \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = H^e_{\mathsf{V}}(\mathsf{X} \times \mathsf{Y}, \mathsf{K}^\mathsf{M}_e), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_{\mathsf{S}} \mathsf{Y} \ \mathsf{proper}/\mathsf{X} \\ \rightsquigarrow \ \alpha : \mathbb{Z}[-e] \to \mathsf{R}\underline{\Gamma}_{\mathsf{V}}(\mathsf{K}^\mathsf{M}_e) \\ \rightsquigarrow \end{array}$$

$$\gamma^{e}F[-e] \xrightarrow{\alpha} \gamma^{e}F \otimes_{\mathbb{Z}}^{L} R\underline{\Gamma}_{V}(K_{e}^{M}) \to R\underline{\Gamma}_{V}(\gamma^{e}F \otimes_{\underline{M}PST} K_{e}^{M})$$

$$= R\underline{\Gamma}_{V} \left(\underline{\mathsf{Hom}}_{\underline{M}PST}(K_{e}^{M}, F) \otimes_{\underline{M}PST} K_{e}^{M} \right) \xrightarrow{\mathrm{adj.}} R\underline{\Gamma}_{V}F$$

- · Ad pushforward(classical):
 - · uses Gysin map + projective bundle formula + cancellation
 - + work carefully with supports

$$\rightsquigarrow$$
 functor $C_S \rightarrow D(S_{Nis}), \quad (f: X \rightarrow S) \mapsto Rf_*F$

Applications (BRS)

Obstructions for existence of zero cycles of degree 1

Theorem

$$F \in \mathbf{RSC}_{\mathsf{Nis}}$$
 $f: X \to S$ proj, dom in Sm , $K = k(S)$

Assume
$$\exists \xi \in CH_0(X_K)^{deg1}$$

$$\Longrightarrow f^*: H^i(S, F_S) \to H^i(X, F_X)$$
 is split-injective.

Obstructions for existence of zero cycles of degree 1

Theorem

$$F \in \mathbf{RSC}_{\mathsf{Nis}}$$
 $f: X \to S$ proj, dom in Sm , $K = k(S)$

Assume
$$\exists \xi \in CH_0(X_K)^{\text{deg1}}$$

$$\Longrightarrow f^*: H^i(S, F_S) \to H^i(X, F_X)$$
 is split-injective.

Proof:

Take $\overline{\xi}$ lift of ξ under

$$C_S(S,X) = CH_{dim S}(S \times_S X) \rightarrow CH_0(X_K)$$

Obstructions for existence of zero cycles of degree 1

Theorem

$$F \in \mathbf{RSC_{Nis}}$$
 $f: X \to S$ proj, dom in Sm, $K = k(S)$

Assume $\exists \xi \in CH_0(X_K)^{\text{deg1}}$

$$\Longrightarrow f^*: H^i(S, F_S) \to H^i(X, F_X)$$
 is split-injective.

Proof:

Take $\overline{\xi}$ lift of ξ under

$$C_S(S,X) = CH_{dim S}(S \times_S X) \rightarrow CH_0(X_K)$$

and use

$$\overline{\xi}^* \circ f^* = (\underbrace{f_* \overline{\xi}}_{=S \in \mathsf{CH}_{\mathsf{dim}\,S}(S)})^* = \mathsf{id} : H^i(S,F) \to H^i(X,F) \to H^i(S,F)$$

• S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$

- S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$
- $\boldsymbol{\cdot} \ \alpha_{v} \in \mathsf{CH}_{0}\big(X_{K_{v}}\big) \ \mathsf{with} \ \mathsf{lift} \ \overline{\alpha}_{v} \in \mathsf{CH}_{1}\big(X_{S_{v}}\big) \qquad (K_{v},\, S_{v} \ \mathsf{hen} \ \mathsf{in} \ v)$

- S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$
- $\cdot \ \alpha_{v} \in CH_{0}(X_{K_{v}}) \text{ with lift } \overline{\alpha}_{v} \in CH_{1}(X_{S_{v}})$ $(K_{v}, S_{v} \text{ hen in } v)$

$$\rightsquigarrow \Phi(\alpha_{\mathsf{v}}) = \overline{\alpha}_{\mathsf{v}}^* : f_* F_{\mathsf{X}_{\mathsf{S}_{\mathsf{v}}}} \to F_{\mathsf{S}_{\mathsf{v}}}$$

- S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$
- $\cdot \ \alpha_{v} \in CH_{0}(X_{K_{v}}) \text{ with lift } \overline{\alpha}_{v} \in CH_{1}(X_{S_{v}})$ $(K_{v}, S_{v} \text{ hen in } v)$

$$\leadsto \Phi(\alpha_{\mathsf{V}}) = \overline{\alpha}_{\mathsf{V}}^* : f_* F_{\mathsf{X}_{\mathsf{S}_{\mathsf{V}}}} \to F_{\mathsf{S}_{\mathsf{V}}}$$

$$\rightsquigarrow H^1_{V}(S, f_*F_X) \xrightarrow{\Phi(\alpha_V)} H^1_{V}(S, F) \rightarrow H^1(S, F)$$

- S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$
- $\alpha_{v} \in CH_{0}(X_{K_{v}})$ with lift $\overline{\alpha}_{v} \in CH_{1}(X_{S_{v}})$ $(K_{v}, S_{v} \text{ hen in } v)$

$$\rightsquigarrow \Phi(\alpha_{\mathsf{v}}) = \overline{\alpha}_{\mathsf{v}}^* : f_* F_{\mathsf{X}_{\mathsf{S}_{\mathsf{v}}}} \to F_{\mathsf{S}_{\mathsf{v}}}$$

$$\longrightarrow H^1_{\mathcal{V}}(S, f_*F_X) \xrightarrow{\Phi(\alpha_{\mathcal{V}})} H^1_{\mathcal{V}}(S, F) \longrightarrow H^1(S, F)$$

 \rightsquigarrow

$$\Psi: \prod_{v \in S_{(0)}} \mathsf{CH}_0(X_{K_v}) \to \mathsf{Hom}\left(\bigoplus_{v \in S_{(0)}} H^1_v(S, f_*F_X), H^1(S, F)\right)$$

- S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$
- $\alpha_{v} \in CH_{0}(X_{K_{v}})$ with lift $\overline{\alpha}_{v} \in CH_{1}(X_{S_{v}})$ $(K_{v}, S_{v} \text{ hen in } v)$

$$\leadsto \Phi(\alpha_{\mathsf{v}}) = \overline{\alpha}_{\mathsf{v}}^* : f_* F_{\mathsf{X}_{\mathsf{S}_{\mathsf{v}}}} \to F_{\mathsf{S}_{\mathsf{v}}}$$

$$\longrightarrow H^1_{\mathcal{V}}(S, f_*F_X) \xrightarrow{\Phi(\alpha_{\mathcal{V}})} H^1_{\mathcal{V}}(S, F) \longrightarrow H^1(S, F)$$

~~

$$\Psi: \prod_{v \in S_{(0)}} \mathsf{CH}_0(X_{K_v}) \to \mathsf{Hom}\left(\bigoplus_{v \in S_{(0)}} H^1_v(S, f_*F_X), H^1(S, F)\right)$$

$$\cdot : F(X_K) \to \bigoplus_{v \in S_{(0)}} H^0(S_v \setminus \{v\}, f_*F_X) \xrightarrow{\partial} \bigoplus_{v \in S_{(0)}} H^1_v(S, f_*F_X)$$

- S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$
- $\alpha_{v} \in CH_{0}(X_{K_{v}})$ with lift $\overline{\alpha}_{v} \in CH_{1}(X_{S_{v}})$ $(K_{v}, S_{v} \text{ hen in } v)$

$$\rightsquigarrow \Phi(\alpha_{\mathsf{v}}) = \overline{\alpha}_{\mathsf{v}}^* : f_* F_{\mathsf{X}_{\mathsf{S}_{\mathsf{v}}}} \to F_{\mathsf{S}_{\mathsf{v}}}$$

$$\longrightarrow H^1_{\mathsf{V}}(\mathsf{S}, f_* \mathsf{F}_{\mathsf{X}}) \xrightarrow{\Phi(\alpha_{\mathsf{V}})} H^1_{\mathsf{V}}(\mathsf{S}, \mathsf{F}) \longrightarrow H^1(\mathsf{S}, \mathsf{F})$$

~→

$$\Psi: \prod_{v \in S_{(0)}} \mathsf{CH}_0(X_{K_v}) \to \mathsf{Hom}\left(\bigoplus_{v \in S_{(0)}} H^1_v(S, f_*F_X), H^1(S, F)\right)$$

•
$$i: F(X_K) \to \bigoplus_{v \in S_{(0)}} H^0(S_v \setminus \{v\}, f_*F_X) \xrightarrow{\partial} \bigoplus_{v \in S_{(0)}} H^1_v(S, f_*F_X)$$

Theorem

$$\Psi((\alpha_{V})_{V}) \circ i \neq 0 \Longrightarrow \nexists \alpha \in CH_{0}(X_{K}) \text{ with } \alpha \mapsto (\alpha_{V})_{V}$$

Proof: take $\alpha \mapsto (\alpha_{\nu})$, taking $\bar{\alpha} \in CH_1(X)$ lifting α

Proof: take $\alpha \mapsto (\alpha_v)$, taking $\bar{\alpha} \in CH_1(X)$ lifting α

Remark:

If $K = \mathbf{F}_q$ and $F = \operatorname{Br}$ then Ψ becomes (using CFT)

$$\prod_{v \in S_{(0)}} CH_0(X_{K_v}) \to Hom \left(\bigoplus_{v \in S_{(0)}} \frac{\operatorname{Br}(X_{K_v})}{\operatorname{Br}(X_{S_v})}, \mathbb{Q}/\mathbb{Z} \right)$$

→ classical Brauer-Manin obstruction for zero-cycles (in the function field case)

•
$$(f: X \to S)$$
, $(g: Y \to S) \in C_S$, $X, Y integral$

- $(f: X \to S)$, $(g: Y \to S) \in C_S$, X, Y integral
- f and g are properly birational/S $\iff \exists S$ -maps $Z \xrightarrow{\simeq} X$, $Z \xrightarrow{\simeq} Y$ proper birational

- $(f: X \to S), (g: Y \to S) \in C_S, X, Y \text{ integral}$
- f and g are properly birational/S $\iff \exists S$ -maps $Z \xrightarrow{\simeq} X$, $Z \xrightarrow{\simeq} Y$ proper birational
- f and g are stably properly birational over S $\iff \exists \ vb's \ V \ on \ X \ and \ W \ on \ Y, \ s.t. \ P(V) \ and \ P(W) \ are prop \ bir/S.$

- $(f: X \to S), (g: Y \to S) \in C_S, X, Y \text{ integral}$
- f and g are properly birational/S $\iff \exists S$ -maps $Z \xrightarrow{\simeq} X$, $Z \xrightarrow{\simeq} Y$ proper birational
- f and g are stably properly birational over S $\iff \exists \ vb's \ V \ on \ X \ and \ W \ on \ Y, \ s.t. \ P(V) \ and \ P(W) \ are prop \ bir/S.$

Theorem

Any $F \in RSC_{Nis}$ is a stably properly birational invariant over S,

i.e., $(f: X \to S)$, $(g: Y \to S) \in C_S$, stably properly birational

$$\implies f_*F_X \cong g_*F_Y$$

- $(f: X \to S), (g: Y \to S) \in C_S, X, Y \text{ integral}$
- f and g are properly birational/S $\iff \exists S$ -maps $Z \xrightarrow{\simeq} X$, $Z \xrightarrow{\simeq} Y$ proper birational
- f and g are stably properly birational over S $\iff \exists \ vb's \ V \ on \ X \ and \ W \ on \ Y, \ s.t. \ P(V) \ and \ P(W) \ are prop \ bir/S.$

Theorem

Any $F \in RSC_{Nis}$ is a stably properly birational invariant over S,

i.e., $(f: X \to S)$, $(g: Y \to S) \in C_S$, stably properly birational

$$\implies f_*F_X \cong g_*F_Y$$

Proof: pbf+ purity + correspondence action

Theorem

$$(f: X \to S)$$
, $(g: Y \to S) \in C_S$ properly birational/S.

$$F \in \mathsf{RSC}_{\mathsf{Nis}}$$
 with $F\langle 1 \rangle_X = 0 = F\langle 1 \rangle_Y$

$$\Longrightarrow$$
 $Rg_*F_Y \xrightarrow{\simeq} Rf_*F_X$

Theorem

$$(f: X \to S)$$
, $(g: Y \to S) \in C_S$ properly birational/S.

$$F \in \mathsf{RSC}_{\mathsf{Nis}}$$
 with $F\langle 1 \rangle_X = 0 = F\langle 1 \rangle_Y$

$$\implies$$
 $Rg_*F_Y \xrightarrow{\simeq} Rf_*F_X$

Proof: Take $Z \subset X \times_S Y$ mapping proper and birationally to X and Y

Theorem

$$(f: X \to S)$$
, $(g: Y \to S) \in C_S$ properly birational/S.

$$F \in \mathsf{RSC}_{\mathsf{Nis}}$$
 with $F\langle 1 \rangle_X = 0 = F\langle 1 \rangle_Y$

$$\implies$$
 $Rg_*F_Y \xrightarrow{\simeq} Rf_*F_X$

Proof: Take $Z \subset X \times_S Y$ mapping proper and birationally to X and Y $\Rightarrow Z \circ Z^t = \Delta_Y + \varepsilon$ with $p_{Y*}\varepsilon \in CH^{\geq 1}(Y)$

Theorem

$$(f: X \to S), (g: Y \to S) \in C_S$$
 properly birational/S.

$$F \in \mathsf{RSC}_{\mathsf{Nis}}$$
 with $F\langle 1 \rangle_X = 0 = F\langle 1 \rangle_Y$

$$\Longrightarrow$$
 $Rg_*F_Y \xrightarrow{\simeq} Rf_*F_X$

Proof: Take $Z \subset X \times_S Y$ mapping proper and birationally to X and Y

$$\Rightarrow Z \circ Z^t = \Delta_Y + \varepsilon$$
 with $p_{Y*}\varepsilon \in CH^{\geq 1}(Y)$

$$F\langle 1 \rangle_{|Y} = 0 \Rightarrow \varepsilon^* = 0$$
 on Rg_*F_Y

Theorem

$$(f: X \to S), (g: Y \to S) \in C_S$$
 properly birational/S.

$$F \in \mathsf{RSC}_{\mathsf{Nis}}$$
 with $F\langle 1 \rangle_X = 0 = F\langle 1 \rangle_Y$

$$\Longrightarrow$$
 $Rg_*F_Y \xrightarrow{\simeq} Rf_*F_X$

Proof: Take $Z \subset X \times_S Y$ mapping proper and birationally to X and Y

$$\Rightarrow$$
 $Z \circ Z^t = \Delta_Y + \varepsilon$ with $p_{Y*}\varepsilon \in CH^{\geq 1}(Y)$

$$F\langle 1 \rangle_{|Y} = 0 \Rightarrow \varepsilon^* = 0$$
 on Rg_*F_Y

 \Rightarrow Z* and (Z^t)* are inverse to each other

Example

Assume $\dim X = \dim Y = d \rightsquigarrow$ Theorem applies for F =

• (char(k)
$$\neq$$
 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M

Example

Assume $\dim X = \dim Y = d \rightsquigarrow$ Theorem applies for F =

sume dim
$$X = \dim Y = d \rightsquigarrow$$
 Theorem applies for $F =$

· (char(k) =
$$p \neq 0, 2, 3, 5$$
): $W_n \Omega^d / B_\infty$

· (char(k)
$$\neq$$
 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M
· (char(k) = $p \neq$ 0,2,3,5): $W_n \Omega^d / B_\infty$

Example

Assume
$$\dim X = \dim Y = d \rightsquigarrow$$
 Theorem applies for $F =$

sume dim
$$X = \dim Y = d \rightsquigarrow$$
 Theorem applies for $F = d \rightsquigarrow$

• (char(
$$k$$
) \neq 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M

• (char(k) = $p \neq 0, 2, 3, 5$): $W_n \Omega^d / B_{\infty}$ • (char(k) = $p \neq 0, 2, 3, 5$): $R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$

The dim
$$X = \dim Y = u \Leftrightarrow \text{Theorem applies for } F = u \Leftrightarrow \text{Theo$$

Assume $\dim X = \dim Y = d \Leftrightarrow$ Theorem applies for F =

$$(2) \neq 2, 3, 5$$
:

• (char(k) = $p \neq 0, 2, 3, 5$): $R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$

• (char(k) = p > 0): G(d), G sm unip k-group

$$ar(k) \neq 2, 3, 5$$
):

- · (char(k) \neq 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ / dlog K_d^M
- (char(k) = $p \neq 0, 2, 3, 5$): $W_n \Omega^d / B_{\infty}$

Assume $\dim X = \dim Y = d \Leftrightarrow$ Theorem applies for F =

• (char(k)
$$\neq$$
 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ / dlog K_d^M

• (char(
$$R$$
) \neq 2,3,5): $\Omega'_{/R}$, $\Omega'_{/R}$ /dlog K''_d
• (char(R) = $p \neq$ 0,2,3,5): $W_n \Omega^d / B_\infty$

• (case char(k) = p > 0) $H^1(G)(d)$, G finite p-group/k

· (char(k) =
$$p \neq 0, 2, 3, 5$$
): $W_n \Omega^d / B_\infty$
· (char(k) = $p \neq 0, 2, 3, 5$): $R^i \varepsilon_* (\mathbb{Z}/p^n(d))$

· (char(
$$k$$
) = $p \neq 0, 2, 3, 5$): $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$
· (char(k) = $p > 0$): $G(d)$. G sm unip k -gr

· (char(
$$k$$
) = $p \neq 0, 2, 3, 5$): $R'\varepsilon_*(\mathbb{Z}/p''(d))$
· (char(k) = $p > 0$): $G\langle d \rangle$, G sm unip k -group

$$(\operatorname{char}(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$

Assume
$$\dim X = \dim Y = d \rightsquigarrow$$
 Theorem applies for $F =$

· (char(
$$k$$
) \neq 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M
· (char(k) = $p \neq$ 0,2,3,5): $W_n \Omega^d / B_\infty$

• (char(k) = $p \neq 0, 2, 3, 5$): $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$

• (case char(k) = p > 0) $H^1(G)\langle d \rangle$, G finite p-group/k

· (char(
$$k$$
) = $p \neq 0, 2, 3, 5$): $R^{l} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$
· (char(k) = $p > 0$): $G\langle d \rangle$, G sm unip k -gro

· (char(
$$k$$
) = $p \neq 0, 2, 3, 3$). If $\mathcal{E}_*(\mathbb{Z}/p^*(\mathcal{U}))$
· (char(k) = $p > 0$): $G\langle d \rangle$, G sm unip k -group

• (k alg closed) $R^d \varepsilon_* \mathbb{Q}/\mathbb{Z}(d)$

Assume $\dim X = \dim Y = d \rightsquigarrow$ Theorem applies for F =

$$\cdot$$
 (char(k) \neq 2, 3, 5): $\Omega^d_{/k}$, $\Omega^d_{/k}$ / dlog K^M_d

• (char(k) =
$$p \neq 0, 2, 3, 5$$
): $W_n \Omega^d / B_\infty$

· (char(
$$k$$
) = $p \neq 0, 2, 3, 5$): $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$

· (char(
$$k$$
) = $p > 0$): $G\langle d \rangle$, G sm unip k -group

• (case char(
$$k$$
) = $p > 0$) $H^1(G)\langle d \rangle$, G finite p -group/ k

$$\cdot$$
 (k alg closed) $R^d \varepsilon_* \mathbb{Q}/\mathbb{Z}(d)$

Remark:

 \cdot case $\Omega^d_{/k}$ known before (CR, Kovács)

Assume $\dim X = \dim Y = d \rightsquigarrow$ Theorem applies for F =

$$\cdot \text{ (char(}k\text{)} \neq 2,3,5\text{): } \Omega^d_{/k}, \quad \Omega^d_{/k}/\operatorname{dlog} K^M_d$$

• (char(k) =
$$p \neq 0, 2, 3, 5$$
): $W_n \Omega^d / B_\infty$

· (char(
$$k$$
) = $p \neq 0, 2, 3, 5$): $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$

• (char(
$$k$$
) = $p > 0$): $G\langle d \rangle$, G sm unip k -group
• (case char(k) = $p > 0$) $H^1(G)\langle d \rangle$, G finite p -group/ k

· (k alg closed)
$$R^d \varepsilon_* \mathbb{Q}/\mathbb{Z}(d)$$

Remark:

- \cdot case $\Omega^d_{/k}$ known before (CR, Kovács)
- · last three cases use Bloch-Kato-Gabber and Voevodsky (Milnor-Bloch-Kato Conj) to check $F\langle 1\rangle_X=0$

Assume $\dim X = \dim Y = d \Leftrightarrow$ Theorem applies for F =

• (char(k)
$$\neq$$
 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M
• (char(k) = $p \neq$ 0,2,3,5): $W_n \Omega^d / B_\infty$

· (char(k) =
$$p \neq 0, 2, 3, 5$$
): $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$

• (char(
$$k$$
) = $p > 0$): $G\langle d \rangle$, G sm unip k -group

• (case char(k) =
$$p > 0$$
) $H^1(G)\langle d \rangle$, G finite p-group/k

· (k alg closed)
$$R^d \varepsilon_* \mathbb{Q}/\mathbb{Z}(d)$$

Remark:

- · case $\Omega^d_{/k}$ known before (CR, Kovács)
- last three cases use Bloch-Kato-Gabber and Voevodsky (Milnor-Bloch-Kato Conj) to check $F\langle 1\rangle_X=0$
- there is a version of theorem with $F(1) \leftrightarrow \gamma F$ but in this we only get results if resolutions of singularities are available (in dim d)

Corollary

 $(\sim \text{Pic}_{X/S}, \text{Pic}_{Y/S} \text{ representable})$ Assume X and Y are stably properly birational/S

 $\Longrightarrow \operatorname{Pic}_{X/S}[n] \cong \operatorname{Pic}_{Y/S}[n]$ on S_{Nis} , all n.

 $S, X, Y \in \mathbf{Sm}$ $X \to S, Y \to S$ flat, geom int, proj, gen fiber index 1

Corollary

 $S, X, Y \in \mathbf{Sm}$ $X \to S, Y \to S$ flat, geom int, proj, gen fiber index 1

 $(\sim \text{Pic}_{X/S}, \text{Pic}_{Y/S} \text{ representable})$

 $\Longrightarrow \operatorname{Pic}_{X/S}[n] \cong \operatorname{Pic}_{Y/S}[n]$ on S_{Nis} , all n.

Remark: Was known at least for $S = \operatorname{Spec} k$ with k alg closed

• K/k function field $X \operatorname{sm}/K \operatorname{dim} X = d$

- K/k function field $X \operatorname{sm}/K \operatorname{dim} X = d$
- diagonal of X decomposes :<

(*)
$$[\Delta_X] = p_2^* \xi + (i \times id)_* \beta \quad \text{in } CH^d(X \times_K X)$$

where $\xi \in CH_0(X)$, $\beta \in CH_d(Z \times_K X)$ with $codim(Z,X) \ge 1$

- K/k function field $X \operatorname{sm}/K \operatorname{dim} X = d$
- diagonal of X decomposes :<

(*)
$$[\Delta_X] = p_2^* \xi + (i \times id)_* \beta \quad \text{in } CH^d(X \times_K X)$$

where $\xi \in CH_0(X)$, $\beta \in CH_d(Z \times_K X)$ with $codim(Z, X) \ge 1$

• this condition was first considered by Bloch-Srinivas (with $\otimes \mathbb{Q}$)

- K/k function field $X \operatorname{sm}/K \operatorname{dim} X = d$
- diagonal of X decomposes : \iff

(*)
$$[\Delta_X] = p_2^* \xi + (i \times id)_* \beta \quad \text{in } CH^d(X \times_K X)$$

where $\xi \in CH_0(X)$, $\beta \in CH_d(Z \times_K X)$ with $codim(Z, X) \ge 1$

- · this condition was first considered by Bloch-Srinivas (with $\otimes \mathbb{Q}$)
- Colliot-Thélène-Pirutka

 → satisfied if X sm proj/K and retract rational
 (i.e. ∃ dense open U ⊂ X, V ⊂ Pⁿ_k, and a map V → U with section)

- K/k function field $X \operatorname{sm}/K \operatorname{dim} X = d$
- diagonal of X decomposes :<

(*)
$$[\Delta_X] = p_2^* \xi + (i \times id)_* \beta \quad \text{in } CH^d(X \times_K X)$$

where $\xi \in CH_0(X)$, $\beta \in CH_d(Z \times_K X)$ with $codim(Z, X) \ge 1$

- this condition was first considered by Bloch-Srinivas (with $\otimes \mathbb{Q}$)
- Colliot-Thélène-Pirutka

 → satisfied if X sm proj/K and retract rational
 (i.e. ∃ dense open U ⊂ X, V ⊂ Pⁿ_K, and a map V → U with section)
- Implications of (*) on cohomology yield obstructions for X being retract rational over K

$$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,x}^h & U \in \operatorname{Sm}, x \in U^{(1)} & \text{or} \\ \operatorname{reg \ conn \ aff \ finite \ type/K} & \dim S \leq 1 \end{cases}$$

$$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,x}^h & U \in \operatorname{Sm}, x \in U^{(1)} & \text{or} \\ \operatorname{reg \ conn \ aff \ finite \ type/K} & \operatorname{dim} S \leq 1 \end{cases}$$

$$f : X \to S \quad \operatorname{sm \ proi}$$

Assume the diagonal of the generic fiber of f decomposes

 $f: X \to S$ sm proj,

$$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,x}^h & U \in \operatorname{Sm}, x \in U^{(1)} \\ \operatorname{reg\ conn\ aff\ finite\ type}/K & \dim S \leq 1 \end{cases}$$

$$f: X \to S \quad \operatorname{sm\ proj},$$

 \implies F(S) = F(X) any $F \in RSC_{Nis}$

$$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,x}^h & U \in \operatorname{Sm}, x \in U^{(1)} \\ \operatorname{reg \ conn \ aff \ finite \ type}/K & \dim S \leq 1 \end{cases}$$

$$f: X \to S \quad \operatorname{sm \ proj},$$

Assume the diagonal of the generic fiber of f decomposes

$$\implies$$
 $F(S) = F(X)$ any $F \in \mathbf{RSC}_{Nis}$

Remark: Auel-Bigazzi-Böhning-Graf-von-Bothmer posed the problem:

$$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,x}^h & U \in \operatorname{Sm}, x \in U^{(1)} & \text{or} \\ \operatorname{reg \ conn \ aff \ finite \ type/K} & \dim S \le 1 \end{cases}$$

$$f: X \to S$$
 sm proj,

Assume the diagonal of the generic fiber of f decomposes

 \implies F(S) = F(X) any $F \in RSC_{Nis}$

Remark: Auel-Bigazzi-Böhning-Graf-von-Bothmer posed the problem:

$$k$$
 alg closed char $(k) = p > 0$ X sm proper $/k$ with decomp. diag Do we have $H^0(X, R^i \varepsilon_* \mathbb{Z}/p(j)) = 0$ for $i \neq 0$?

$$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,X}^h & U \in \operatorname{Sm}, x \in U^{(1)} & \text{or} \\ reg \ conn \ aff \ finite \ type/K & \dim S \le 1 \end{cases}$$

$$f: X \to S \quad sm \ proj,$$

Assume the diagonal of the generic fiber of f decomposes

$$\implies$$
 $F(S) = F(X)$ any $F \in \mathbf{RSC}_{Nis}$

Remark: Auel-Bigazzi-Böhning-Graf-von-Bothmer posed the problem:

$$k$$
 alg closed char $(k) = p > 0$ X sm proper $/k$ with decomp. diag Do we have $H^0(X, R^i \varepsilon_* \mathbb{Z}/p(j)) = 0$ for $i \neq 0$?

Thm \rightsquigarrow Yes (if X/k proj)

Indeed in Thm take $S = \operatorname{Spec} k F = R^i \varepsilon_* \mathbb{Z}/p(j)$ and observe F(k) = 0

 $f: X \to S \text{ in } Sm \quad \text{flat proj} \quad \dim X = d \quad \dim S = e$

Assume the diagonal of the generic fiber of f decomposes \Longrightarrow

$$f: X \to S$$
 in **Sm** flat proj dim $X = d$ dim $S = e$
Assume the diagonal of the generic fiber of f decom

Assume the diagonal of the generic fiber of f decomposes \Longrightarrow

$$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$

is an isomorphism, if F^d is one of the following sheaves

 $f: X \to S$ in **Sm** flat proj dim X = d dim S = e

Assume the diagonal of the generic fiber of
$$f$$
 decomposes \Longrightarrow

Assume the diagonal of the generic fiber of f decomposes
$$\Longrightarrow$$

$$f_*: Rf_*\mathsf{F}_\mathsf{X}^d \xrightarrow{\simeq} \mathsf{F}_\mathsf{S}^e[\mathsf{e}-\mathsf{d}]$$

$$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$

• $(char(k) \neq 2,3,5)$: $\Omega_{/k}^d$, $\Omega_{/k}^d$ / $dlog K_d^M$

 $f: X \to S$ in **Sm** flat proj dim X = d dim S = eAssume the diagonal of the generic fiber of f decomposes \Longrightarrow

$$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$

$$J_*: KJ_*F_{\bar{X}} \to F_{\bar{S}}[e-u]$$

is an isomorphism, if F^d is one of the following sheaves

• (char(k)
$$\neq$$
 2,3,5): $\Omega^d_{/k}$, $\Omega^d_{/k}$ /dlog K^M_d

· (char(k)
$$\neq$$
 2,3,5): $\Omega^d_{/k}$, $\Omega^d_{/k}$ /dlog K^M_d

• $(char(k) = p \neq 0, 2, 3, 5)$: $W_n \Omega^d / B_{\infty}$

 $f: X \to S$ in Sm flat proj $\dim X = d$ $\dim S = e$

Assume the diagonal of the generic fiber of
$$f$$
 decomposes \Longrightarrow $f_*: Rf_*F_*^d \stackrel{\sim}{\to} F_*^e[e-d]$

$$f_*: Rf_*F_X^u \xrightarrow{\longrightarrow} F_S^e[e-d]$$

• (char(k)
$$\neq$$
 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M

•
$$(char(k) \neq 2,3,5)$$
: $\Omega_{/k}^d$, $\Omega_{/k}^d$ / $dlog K_d^M$
• $(char(k) = p \neq 0,2,3,5)$: $W_d \Omega_d^d/R$

$$\cdot \text{ (char(k) = p \neq 0,2,3,5): } W_n \Omega^d / B_{\infty}$$

•
$$(char(R) = p \neq 0, 2, 3, 5)$$
: $W_n \Omega^n / B_\infty$
• $(char(R) = p \neq 0, 2, 3, 5)$: $R^i \varepsilon_* (\mathbb{Z}/p^n(d))$

$$\cdot (char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$

 $f: X \to S$ in **Sm** flat proj dim X = d dim S = eAssume the diagonal of the generic fiber of f decomposes \Longrightarrow

$$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$

is an isomorphism, if F^d is one of the following sheaves

• (char(k)
$$\neq$$
 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ / dlog K_d^M

•
$$(char(k) \neq 2,3,5)$$
: $\Omega_{/k}^d$, $\Omega_{/k}^d$ / $dlog K_d^M$

$$\cdot (char(k) = p \neq 0, 2, 3, 5): W_n \Omega^d / B_\infty$$

$$\cdot (char(k) = p \neq 0, 2, 3, 5): Pic (\mathbb{Z}/p^n(d))$$

•
$$(char(k) = p \neq 0, 2, 3, 5)$$
. $W_n \Omega / B_\infty$
• $(char(k) = p \neq 0, 2, 3, 5)$: $R^i \varepsilon_* (\mathbb{Z}/p^n(d))$

$$\cdot (char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$

$$\cdot (char(k) = p > 0): G(d) = G(m) \cdot (char(k) = p > 0)$$

•
$$(char(k) = p \neq 0, 2, 3, 5)$$
: $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$
• $(char(k) = p > 0)$: $G(d)$, G sm unip k -group

 $f: X \to S$ in **Sm** flat proj dim X = d dim S = eAssume the diagonal of the generic fiber of f decomposes \Longrightarrow

$$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$

is an isomorphism, if F^d is one of the following sheaves

• (char(k)
$$\neq$$
 2,3,5): $\Omega^d_{/k}$, $\Omega^d_{/k}$ / dlog K^M_d

•
$$(cnar(R) \neq 2, 3, 5)$$
: $\Omega_{/k}^{e}$, $\Omega_{/k}^{e}/d\log K_{d}^{e}$
• $(char(k) = p \neq 0, 2, 3, 5)$: $W_{n}\Omega^{d}/B_{\infty}$

$$\cdot (char(k) = p \neq 0, 2, 3, 5): W_n \Omega^d / B_{\infty}$$

$$\cdot (char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$

•
$$(char(k) = p \neq 0, 2, 3, 5)$$
: $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$
• $(char(k) = p \geq 0)$: $G(d)$ $G(smunin h, around)$

•
$$(char(k) = p \neq 0, 2, 3, 5)$$
: $R^l \varepsilon_*(\mathbb{Z}/p^n(d))$
• $(char(k) = p > 0)$: $G\langle d \rangle$, G sm unip k -group

$$(char(k) = p \neq 0, 2, 3, 3)$$
. $k \in_*(\mathbb{Z}/p^*(d))$
 $(char(k) = p > 0)$: $G\langle d \rangle$, G sm unip k -group

•
$$(char(k) = p > 0)$$
: $G\langle d \rangle$, G sm unip k -group
• $(case char(k) = p > 0)$ $H^1(G)\langle d \rangle$, G finite p -group/ k

Theorem $f: X \to S$ in **Sm** flat proj dim X = d dim S = e

Assume the diagonal of the generic fiber of f decomposes \Longrightarrow

$$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$

is an isomorphism, if F^d is one of the following sheaves

•
$$(char(k) \neq 2,3,5)$$
: $\Omega_{/k}^d$, $\Omega_{/k}^d$ / $dlog K_d^M$
• $(char(k) = p \neq 0,2,3,5)$: $W_0 \Omega^d / B_{ab}$

•
$$(char(k) = p \neq 0, 2, 3, 5)$$
: $W_n \Omega^d / B_\infty$
• $(char(k) = p \neq 0, 2, 3, 5)$: $Pic_n(\mathbb{Z}/p_n^n(d))$

$$(char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$

$$\cdot (char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$

$$\cdot (char(k) = p > 0): G/d \setminus G \text{ sm unip } k\text{-aroun}$$

•
$$(char(k) = p \neq 0, 2, 3, 5)$$
: $R^{i}\varepsilon_{*}(\mathbb{Z}/p^{n}(d))$
• $(char(k) = p > 0)$: $G(d)$, G sm unip k -group

· (k alg closed) $R^d \varepsilon_* \mathbb{Q}/\mathbb{Z}(d)$

•
$$(char(k) = p \neq 0, 2, 3, 3)$$
. $k \in_*(\mathbb{Z}/p)(d)$
• $(char(k) = p > 0)$: $G\langle d \rangle$, G sm unip k -group
• $(case\ char(k) = p > 0)$ $H^1(G)\langle d \rangle$, G finite p -group/ k

 $f: X \to S$ in Sm flat proj $\dim X = d$ $\dim S = e$ Assume the diagonal of the generic fiber of f decomposes \Longrightarrow

$$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$

is an isomorphism, if F^d is one of the following sheaves

• (char(k)
$$\neq$$
 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ / dlog K_d^M

$$\cdot (char(k) = p \neq 0, 2, 3, 5): W_n \Omega^d / B_\infty$$

$$\cdot (char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$

•
$$(char(k) = p \neq 0, 2, 3, 3)$$
. $k \in_*(\mathbb{Z}/p^*(d))$
• $(char(k) = p > 0)$: $G\langle d \rangle$, $G \text{ sm unip } k\text{-group}$

• (case char(k) =
$$p > 0$$
) $H^1(G)\langle d \rangle$, G finite p-group/k
• (k ala closed) $R^d \varepsilon_* \emptyset / \mathbb{Z}(d)$

_

Example k alg closed X/k sm proj $\dim X = d$ diagonal of X decomposes

k alg closed X/k sm proj $\dim X = d$ diagonal of $X \to H^i(X, \mathbb{R}^{d+1} \varepsilon_* \mathbb{Z}/p^n(d)) = 0$ all i

