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Voevodsky ~

complete understanding of general properties of the cohomology of
A'-invariant sheaves with transfers:

- projective bundle formula

- blow-up formula

- Gysin sequence

- Gersten resolution

- action of proper Chow correspondences

- etc.
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Drawbacks

1. many non A'-invariant sheaves have some of the above
properties, such as

- Kahler differentials
- smooth commutative unipotent groups
- étale motivic cohomology with Z/p"-coefficints in char p > 0
Why?
2. A'-invariant theory only sees

- log poles
- regular singularities
- tame ramification, etc.

What a pitty!
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One solution (Binda-Park-@stveer):

- A" <> O°8 = (P, log-structure oo < P")
work consequently with smooth log schemes everywhere + dNis
~ logDMef (k)

- a cohomology theory representable in logDM®ff(k) has nice
properties as above

- e.g. cohomology of log-Kahler differentials is representable

- so far no pole order/ ramification filtration



The idea of reciprocity sheaves is to consider only sheaves whose
sections behave in a controlled way at infinity ~
Idea (Kahn 1990’s)

Replace A'-invariance by a modulus condition as the one used by
Rosenlicht-Serre to define the generalized Jacobian for curves
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Modulus a la Rosenlicht-Serre

k perfect field

- Csm proj curve/R, D eff. divisor, U= C\ |D|
- G sm k-group (always commutative)

Definition
a: U — Ghas modulus D <

S wdf) - Trgu(a() = 0,

xeu

forall f € R(C)* with f=1mod D

~~ a factors via U — Alb(C, D) (dep. on x € U(R) with a(x)=0)
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Modulus a la Rosenlicht-Serre

Reformulation
a € G(U) has modulus D <= v*a =0, all y as below

- T € Cor(P"\ {1}, U) prime correspondence, such that
{1}|rN > D‘rN

where TN — P! x C normalization of closure of I
-y =gl — i € Cor(Speck, U)
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Fix perfect field k

- modulus pair X = (X,D) : D eff Cartier divisor on X, X\ |D| € Sm
- (X, D) proper <= X proper

- MCor((X, D), (Y, E)) = generated by finite prime correspondences
V. X\ |D| x Y\ |E| with

- VW — X proper
‘ Dl\/N 2 E‘\/N

where VN — X x Y normal. of closure of V
~ MCor category of modulus pairs

- monoidal structure: (X, D) ® (Y,E) = (X x Y, pxD + p}E)
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~» MPST presheaves on MCor with monoidal structure ®mpst
- adjoint pair w, : MPST = PST : w*

hT(X, D) = Coker(Z« (X, D)(— ® O) 2 7, (X, D))
- Note: Ze(X\ |D]) = w,hB(X, D) —» h&'(X\ |D])
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Reciprocity sheaves

F € PST, a € F(X), (X, D) proper modulus pair, X = X'\ |D|

Definition (Kahn-Saito-Yamazaki)

v a
a has (X,D) <= Z«(X) S— = F
whB'(X, D)
- Fisa iff any a has a modulus
~ RSC C PST

- Set RSCpis = RSC N NST = category of
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First examples of reciprocity sheaves

- smooth k-groups
+ Hlnis C RSCNiS
- Kahler differentials:
- @ e NST
- modulus condition: a € ' (X)
+ take (X, D) such that a € H(X, @ ®o, Ox(D))

- take  C—=X Creg proj curve/K, K function field/k

1
SpecK

+ K(C) > f=1mod 2D|c = Resx(adlog(f)) = 0 for x € |D(|
= 0= 2 ecResc(adlog(f)) = 2 ey jp, o () - Try(a)e(x))
= (X,2D) modulus of a.

- W, (see second lecture for this and more examples)
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Cube invariant sheaves

F € RSC ~~

F(X,D) := {a € F(X\ |D|) | a has modulus (X,D + N - B), N > 0}
—_——
comp. of (X,D)

Then F € MPST and

- (Cube invariance) F(x @ O) = F(X)

* (M-reciprocity) F(X, D) = lim, F(X,D + N - B)

- (semi-purity) F(X, D) C F(X\ |D], D)
Definition
CI™ = cat of G € MPST with cube-invariance and M-reciprocity

CI™*P subcat of semi-pure objects

~ adjoint pairw, : CI” 2 RSC: w®  with w(F) = F € CI™*P

~ whB(X) € RSC (X proper)
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Modulus sheaves

Definition
G € MPST is a —

(U5 X) — G(U,Dyy) =: Gx(U)
is a Nisnevich sheaf on X, all X = (X, D) .

Remark: There is a site with a Grothendieck topoloy generated by a
regular and complete cd-structure, such that G € MPST is a sheaf in
the above sense if it is a sheaf on this site.

~» MNST
Note: w, restricts to w, : MNST — NST
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Theorem (Kahn-Miyazaki-Saito-Yamazaki)
There exists a sheafification functor ay; : MPST — MNST.

It sends presheaves with M-reciprocity to sheaves with
M-reciprocity.
The second part of the Theorem is the hard one.
We have
" Anis(G)x,0) = 1im £ (Gv. D), is ),
colimit over directed set: f: Y — X proper with Y\ |[f*D| = X'\ |D|
~ wi(anis(6)) = (wiG)nis

(*)  Extunst(Zu(X,D),G) = lim H'(Ynis, G(y,r0))

Question
Does (x) stabilize for G € CI™*P?



Theorem (S. Saito)

Anis(C17°P) € CI™*P N MNST =: CIf:P

Generalization of: (Hl)nis C HI (Voevodsky)



Theorem (S. Saito)

Anis(C17°P) € CI™*P N MNST =: CIf:P

Generalization of: (Hl)nis C HI (Voevodsky)

Corollary
F e RSC — Fnis € RSCNis

In particular RSCyis € NST full abelian subcategory



Theorem (S. Saito)

Anis(C17°P) € CI™*P N MNST =: CIf:P

Generalization of: (Hl)nis C HI (Voevodsky)

Corollary
F e RSC — Fnis € RSCNis

In particular RSCyis € NST full abelian subcategory

Proof (Cor):
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Theorem (S. Saito)
Fe RSCNis —
H(X,F) =0, xeX9 i#c

and

HE(X, F) ~ F_c(x) i= F((A"\ {0})° x x)
R S AT {0} X AT x (AT {0) x %)

- Generalizes A'-invariant case (Voevodsky)
- ~» Cousin resolution ( « Gersten)
O—>F—>@1X* %@/X*HC
xeXx(0) xex(©)

- Injectivity also proved before by Kahn-Saito-Yamazaki
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Relation with logarithmic theory of Binda-Park-@stvaer

- Denote by Shv'i\.. the category of dividing Nisnevich sheaves
with log-transfers on [Sm

- F € RSCpis. For (X, My) € [Sm define

Flog(Xa MX) - ll_n;F(Ya Supp(MY))7
f

where f runs through log-modifications f: (Y, My) — (X, My)
with (Y, supp(My)) € MCorg

Theorem (S. Saito)
- RSCis — Shv!'. F s F°€ exact, fully faithful functor
* Hiinis (6 M), F8) = Hipgo (X, M) x T1°8, Flog)
° Hi(X, Fx) = HomlogDMeff(k)(/\/l(X, O; ), FIOg[i])



De Rham-Witt sheaves as
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dRW-Motivation

X smproj/Fpn
v H' = Hiy(X/W(Fpr))[3] is an F := (F})*-crystal
~~ slope decomposition H' = @ Hi,
Bloch, Deligne-Illusie ~

The de Rham-Witt complex computes crystalline cohomology and
gives a cohomological description of the slopes, i.e,

. Hi = Hi(XZara WQ*)[%]
- B = Hi(X, WE)[1] = H* degenerates to give

B = HIo )]
JEAj+HT
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Witt vectors

A = Fp-algebra
Wn(A), n > 1, family of rings with

Wr(A) = {(ao,...,an_1) | a; € A} (as a set)

* R: Whq(A) = V\/,,(A) (ao,...,an) — (ag,...,an_1) (ring map)
© F: Wpia(A) = Wa(A), (Qo, ..., an) — (ah,...,a>_,) (ring map)
<V Wp(A) — Whyq(A), a — (0,a) (group map)

“ [-]: A — Wy(A), a [a] = (a,0,...,0) (multiplicative)

satisfying

- Wq(A) = A (as ring)

- (@0, - -+, an_1) = 1 Vi([a)])
CFV=VF=p
- V(a)-b=V(a-F(b))
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Properties of Witt vectors

- W(Fp) = “@ Wn(Fp) = Zp

- A perfect ~ W,(A) = the unique flat Z/p"Z-lift of A/F,

- Sch/Fp 3 X — HO(X, W,Ox) is represented by a ring scheme ~ W,
- Any commutative unipotent F,-group scheme C &, W,
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The de Rham-Witt complex over an F,-scheme X is a pro-dga
(WnS2*, d)nz1, R)
with
- WhQ% = W,0x

© F: WenQ5 — We (map of pro-gr-rings, ext. F on We;10x)
- VW — We 15 (map of pro-gr-groups, ext. V on WeOx)

such that
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de Rham-Witt complex (B, De-Il, He-Ma)

The de Rham-Witt complex over an F,-scheme X is a pro-dga
(WnS2*, d)nz1, R)
with
- WhQ% = W,0x

© F: WenQ5 — We (map of pro-gr-rings, ext. F on We;10x)
- VW — We 15 (map of pro-gr-groups, ext. V on WeOx)

such that

- FV=p, V(a)-B=V(a-Fp))
- Fdv=d
- Fd[a] = [a]P~"d[q]

W25 = initial object in the category of pro-dga’s as above



- WA = Q;/Fp



- WA = Q;/Fp

Wi 1 Q2 —— W,

L]

QJ)‘(—C_1>§2£</(19£<71 adlogb ——— aPdlogb

F lifts the inverse Cartier operator



- Bloch, Kato

WoQ% = T S Ker (Kq+1(R[7]/T') T=0, Kq+1(R)) as pro-object

p-typical parAthymbolic part



- Bloch, Kato
WoQ% = T S Ker (Kq+1(R[7]/T') T=0, Kq+1(R)) as pro-object

[ rAthymbolic part

p-typical pa
- Illusie: quotient of Qavnox/vvn(Fp) stV exits (= F exists)



- Bloch, Kato
WoQ% = T S Ker (Kq+1(R[7]/T') T=0, Kq+1(R)) as pro-object

:

p-typical part symbolic part
- Illusie: quotient of Qavnox/vvn(Fp) stV exits (= F exists)
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- Bloch, Kato
WoQ% = T S Ker (Kq+1(R[7]/T') T=0, Kq+1(R)) as pro-object

:

p-typical part symbolic part
- Illusie: quotient of Qavnox/vvn(Fp) stV exits (= F exists)
- Katz, Illusie-Raynaud: X/k smooth with smooth lift X, /W,(R)

Wiy = HI(Q k)

many more... (Hesselholt-Madsen, Cuntz-Deninger,

Bhatt-Lurie-Mathew... )
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Theorem (Bloch, Illusie)

X/I? sm u: (X/Wm(k)))crys — XZar

= RU.Ox/w, (k),crys = WnS2x

Theorem (Ekedahl)
X/Rsm 7, WoX = (|X], W,Ox) — Spec W, (k) (not smooth/flat)

7 Wh(R) 2 W, Q8™ [dim X],

WoS2, =5 RHomy, o, (W, Q8™ W, QgimX)

~ proper pushforward (Gros): for f: Y — X proper in Sm
fu: REWN, = Wo @ [-r], r=rel-dim(f)
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indeed
- W, € NST (Chatzistamatiou-R): Z € Cor(X, )
7 WaS2(Y) 25 W@ (X x ¥)

uclz Hgim Y(X x Y7 Wan+dim Y)

Py W (X)



~ WhY € RSChis

indeed
- W, € NST (Chatzistamatiou-R): Z € Cor(X, )
7 WaS2(Y) 25 W@ (X x ¥)
uclz Hgim Y(X x Y7 Wan+dim Y)
Py W (X)

- any a € W,Q/(X) has a modulus: similar as in case of Kahler
differentials in char 0



~ WhY € RSChis

indeed
- W, € NST (Chatzistamatiou-R): Z € Cor(X, )
7 WaS2(Y) 25 W@ (X x ¥)
uclz Hgim Y(X x Y7 Wan+dim Y)
Py W (X)

- any a € W,Q/(X) has a modulus: similar as in case of Kahler
differentials in char 0

Remark: F, V, R, d are morphisms in RSCy;s
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Consequences

—

* W,Q* € Comp™ (RSCpis) represents Sm > X — Ru. O w, crys
* BooWnQ := U5 FFdWn 2" € RSCis
- generalized Artin-Schreier-Witt on Xg

0— W, QjX,Iog

s WS/ Boe =5 W,/Boe — 0
+ Geisser-Levine =
ReZ/p"(j) = (WpS /Boo =1 WoS¥ /B.o)[—j] € Comp®(RSChis)

where € : Smg — Smpys,

+ Voevodsky = R'e,(Q/Z(j)) € RSCy;s (all i, )
In particular X +— Br(X) = H(X, R?c.(Q/Z(1)) € RSCh;s



Computation of the modulus

(Saito-R)
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- L henselian dvf of geometric type/k, i.e,
L =FracOp, (Uesm, xeUD)
- For F € RSCyp;s set
F(L) := F(SpecL), F(O,,m™") := F(Spec Oy, n - {closed pt})

- Have:

- _ * F mivt(p*D)
F(X,D) = {a € F(X\ |D]) ’cpaé (GX \F|(DO|)L£L)L )’}

~s suffices to understand for all L the filtration

FO) c FOL,m ) C...c FO,m") C ... C F(L)



- F has level n < it suffices to consider trdeg(L/R) < n



- F has level n < it suffices to consider trdeg(L/R) < n

- (Criterion for level n)
F has level n <= for all X € Sm

p;a € F(Ogloovmog)i} — F(X)

VX € X<non

{a € F(AY)

where py : Spec Frac(OQw o) = Ay = Ay
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char(kR) =0

Theorem

. Qj/z has level j + 1 and

Ql/z(OLamfn) = t”% : Q]@L/Z(IOg t), my=(t)

- Conn! .(X) := iso-classes integrable rank 1 connections on X
=

- Conn|,, € RSCyis has level 2 (resp. 1)

= iso-classes of integrable rank 1 connections on
- Conn;, (X, D) = ; L
o X whose non-log irregularity is bounded by D
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In order to define the Albanese with modulus in higher dimension
Kato-Russell (building on work of Brylinski Kato, Matsuda) define
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j>0
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char(R)=p >0

In order to define the Albanese with modulus in higher dimension
Kato-Russell (building on work of Brylinski, Kato, Matsuda) define

W (L) ==Y P (fnk’g ) 4+ V- S(f.|1°gvvs(L)))
j>0

- AillsW, (L) = {(ao, - .., an—1) | PV (a;) = —r Vi}
- s =min{n,ordp(r)}
Theorem

W, has level 1 and

Wn(OL, m ") = il W,(L)

OL r<i
In particular Gq(Op, m;") = S P(#=00) (p,r) =1
YiP(FO)  pIr
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Brylinski-Kato-Matsuda filtration on HL (L, Q/Z) defined by (r > 1)
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char(R)=p >0

Brylinski-Kato-Matsuda filtration on HL (L, Q/Z) defined by (r > 1)
fil Hy (L, Q/Z) := @D Hix(L, Qe/Ze) & | Im(filfWa(L) — H (L, Q/Z))
0#£D n
Theorem
€ :SMg — SMyis —

R'e.Q/Z € RSCy;s has level 1 and

Rie,Q/Z(OL, m") = fil-Hy(L, Q/Z)

Remark: We have H} (L, Q/Z) = Homcs(Gi, Q/Z)
Yatagawa —
fil, H (L, Q/Z) = Homes(GL/Gt, Q/Z)
where {G{}je@zo = Abbes-T. Saito ramification filtration of G,
(decreasing) and G* = U,., G}



in progress, char(kR) =p > 0

Voevodsky + Geisser-Levine =

. R’g*(Q/Z(j)) € Hly;s for i 7éj+1



in progress, char(kR) =p > 0

Voevodsky + Geisser-Levine =

S R’E*(Q/Z(j)) € Hly;s fori 7éj+1
© Ve (Q/Z())) = R, (Q/Z())) & RV e (Qp/Zy(j))

€Hlnis :=H+1ERSCyis




in progress, char(kR) =p > 0

Voevodsky + Geisser-Levine =

S R’E*(Q/Z(j)) € Hly;s fori 7éj+1
© Ve (Q/Z())) = R, (Q/Z())) & RV e (Qp/Zy(j))

€Hlnis :=H+1ERSCyis

~ filtration which measures the difference to A'-invariance

H(O) c H(O,m Y c...c HO,m ) c...c H(L)

Above we determined H'(O, m.")
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candidate for H(O,, m;")

- r,n>1,sets =min{n,ord,(r)}
fil (W' /Bso) :=
Im (fnl;i%vvn(L) © KM(L) @ VIS(fill8Ws(L)) @ KM, (OL) — VV,,Q"[1/BOC)

- il HI(L) = lim Im(fil (W)~ /Boo) = HI(L))

N - pra € fil.H(L),
A0t0):= {a e w0 | 75 G 0

Proposition

i ,5p
. H e
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- r,n>1,sets =min{n,ord,(r)}
fil (W' /Bso) :=
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candidate for H(O,, m;")

- r,n>1,sets =min{n,ord,(r)}
fil (W' /Bso) :=
Im (fnl;i%vvn(L) © KM(L) @ VIS(fill8Ws(L)) @ KM, (OL) — VV,,Q"[1/BOC)

- il HI(L) = lim Im(fil (W)~ /Boo) = HI(L))

. o * il J ,
HI(X, D) := {a e H(X\ |D|) ’C’pOE (Ex\f :DI],)((LL))}

Proposition



candidate for H(O,, m;")

- r,n>1,sets =min{n,ord,(r)}
fil (W' /Bso) :=
Im (fnl;i%vvn(L) © KM(L) @ VIS(fill8Ws(L)) @ KM, (OL) — VV,,Q"[1/BOC)
il HI(L) = lim_ Im(fil (Wy Q)" /Boo) — HI(L))

~

— - pra e fil.H(L),
HI(X, D) = {a € H(X\ D)) ’vp e (X\ |D|)(L)}

Proposition

Remark: Kato defined a filtration fil‘H/(L), which satisfies
fils H(L) C fil.H(L) C fil’H/(L)
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Trosors under finite groups in char(R) =p > 0

- G finite k-group
- We can write G = Gem X Goy X Gim X Gig

(e~g~: Gem = Z/ﬁ, Geu = Z/P, Gim = Kp, Gy = ap)
c X HW(G)(X) = H}I);)f(X7 G)

Theorem
- H'(G) € RSChis
- H'(G) has level 2 and if Gy, = 0 it has level 1
* H'(Gem X Gim) € Hlnis

— —~

« H(Z/pZ)(O,m ") and H'(ap)(Or, m[ ") are induced by

GG(OD m;r)
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Lax monoidal structure on RSCys

- F,G € RSCy;s ~ define
(F, G)rscye := @;(hoﬁ(F @MPST é))Nis € RSCy;s

- monoidal structure? (associativity is not clear)

- right exact? (not clear since w is not right exact)

Theorem (R-Sugiyama-Yamazaki)
- F,G € Hlyis = (F, G)RSCNis = F®H|NiS G
- char(R) =0
- G unipotent, A abelian variety = (G, A)rscy, = 0
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Lax monoidal structure on RSCys

- F,G € RSCy;s ~ define
(F, G)rscye := @;(hoﬁ(F @MPST é))Nis € RSCy;s

- monoidal structure? (associativity is not clear)

- right exact? (not clear since w is not right exact)

Theorem (R-Sugiyama-Yamazaki)
- F,G € Hlnis = (F, G)rscy. = F ®niy. G
- char(R) =0
- G unipotent, A abelian variety = (G, A)rscy, = 0
" (Ga, Gm)rseys = Q)
* (Ga, Ga)rscy (X) = HO(X, Oxxeox/Ia,)
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- G e CIgYP define
* G(n) := hg'(G @upst K 3. € CIG

- 4G = HOJ@N(@; G) € CIg

- F € RSCyis define
© F(1) := (F, Gm)rscys, F(n) == (F(n —1)){1) € RSCnis
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- G e CIgYP define
- G(n) := h3(G @wpst KI)3E. € CITP

- "G = HomMpsT(@a G) € QI

- F € RSCy;s define
© F(1) := (F, Gm)rscys, F(n) == (F(n —1)){1) € RSCnis
- 4"F := Hompe (K, F) € RSChis

Theorem (Merici-Saito)
F € RSCpis =



- G e CIgYP define
* G(n) := hg (G Rupst K )3, € CIGP

- "G = HomMpsT(@a G) € QI

- F € RSCy;s define
« FQ1) := (F, Gm)rscy,, F(n) := (F(n —1))(1) € RSCis

- 4"F := Hompe (K, F) € RSChis

Theorem (Merici-Saito)
F € RSCpis =

Y'(F(n)) = F and Y'(F(n)) =F

Generalizes part of Voevodsky's cancellation theorem
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Some formulas (R-Sugiyama-Yamazaki, Binda-R-Saito, R)

Z(n) = w*KMin QL. Z(n) = K in RSCys
- (char(kr) = 0)
Go(n) = Q7 in P, Gq(n) = Q5 in RSCyis
- (char(kR) = p #0,2,3,5)

Ga<ﬂ> = QH/BOO in RSCNiS

Proofs use computation of F((’)L,m[r) for various F

Furthermore

< AT(WQ9) = W,Q9" (<= R Fyypr = (7'F)x, where 7 : P} — X)



Cohomology of reciprocity
sheaves

(Binda-R-Saito)
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We say

- X =(X,D)is an [s modulus pair or write X € MCor
<= X € Sm and |[D| SNCD

- f:Y—= XinSmis transversal to D
< f(D1N...ND;) = Y regular, closed, codim r,
for all irred cpts Dy,..., D, of |D|.
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Projective bundle formula

Theorem
GeClyr X =(X,D)eMCor, m:P— Xprojbdle rkn
»= (P7 D\P)
= n
Rm.Gp = (V6 x[-1] in D(Xni)
i=0
Example

- (char(kR) = 0)
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Projective bundle formula

Theorem
GeClyr X =(X,D)eMCor, m:P— Xprojbdle rkn
»= (P7 DIP)
= n
Rm.Gp = (V6 x[-1] in D(Xni)
i=0
Example

- (char(kR) = 0)
RS2, (log Djp)(Dje — |Dye|) = @QW log D)(D — [D])[ ]

- (char(R) = p > 0, D = 0, (also Gros))

n

Rr. (RJ+15*Z/pf(j))P =P (Rf*"“s*z/p’(j - i)>X [—i]

—0



Blow-up formula

Theorem
GeCIyP & =(X,D) € MCor, i:Z < Xcodim ¢, transversal to D

p:X—=Xblow-upinzZ X =(X,Dg) Z=(Z,D)



Blow-up formula

Theorem
GeCIyP & =(X,D) € MCor, i:Z < Xcodim ¢, transversal to D

p:X—=Xblow-upinZ X =(X,Dg) Z=(Z,0p) =

c—1
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Blow-up formula

Theorem
GeCIyP & =(X,D) € MCor, i:Z < Xcodim ¢, transversal to D
p:X—=Xblow-upinZ X =(X,Dg) Z=(Z,0p) =

c—1

RpuGg = Gx & P inyGz[-1]

=1

Examples
as above ...
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some words on the proof

- proofs of pbf and buf are enmeshed
- main point: L c A? line through 0, Y — A? blow-up in 0,
7 : Y — Pl paramterizes lines through 0 € A?

toshow  H'(PL, m.Gy,pe1)) =0
- this relies on the following: set o™ = (P',n- {0} +n-{oo})
O,sp =) o =)
hone(D,” ®0s)

A
Osp,=1) =@y Vs« TOsp,= _ =)
hone(@,” ®07) —— hg N (Ox " ® O 7)

— o ed’) = KeCn,eGneZ c Hivs  (RSY)

- splitting in blow-up sequence constructed as by Voevodsky
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Gysin sequence

~+ define a Gysin map similarly as Voevodsky ~

Theorem
GeClyP X =(X,D) e MCor, i:Z < X codim c, transversal to D

Z=(Z,D) p:X—Xblow-upinZ E=p'(2)



Gysin sequence

~+ define a Gysin map similarly as Voevodsky ~

Theorem

GeClyP X =(X,D) e MCor, i:Z < X codim c, transversal to D
Z=(Z,D) p:X—Xblow-upinZ E=p'(2)

= exact triangle

9dz/x

i7°Gz[~c] = Gx %= RoxGgp 46 2 1A Gz~ +1]






Example
- (char(k) = 0)
s =1

—_—
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Example

- (char(k) = 0)
cc=1

—

0 — Conn'(X, D) — Conn'(X, D + Z) — H°(Z, O;(i*D — |i*D|))/Z

92/x, 1 (X’ Q;/k(logo><n—w\>) 4 (x, n;/k(lognmw—ww)) N

diog(j« O /) dlog(j« O |5 7/)

- Cc>2

e

Conn'(X, D) = Conn' ()~(, p*D+E)

- (char(R)y=p >0,£+#p,c>2)
Lisse' € RSCpis sheaf whose sections over X are the lisse Q,
sheaves of rank 1.

lisse Q¢-sheaves of rank 1on X\ |D|

Lisse1(X, D)="" )
with Artin conductor < D

and

e e

Lisse' (X, D) = Lisse' (X, p*D + F)
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proper correspondence action on reciprocity sheaves

- S finite type, sep/k
+ Cs= with
- obj(Cs): (f: X —S), Xquasi-proj, sm/R, ffinite type
——

=X

- Cs(X,Y) = CHaimx(closed C X xs Y, proper/X), (forX, Y conn)
- Fulton refined intersection ~» composition

Definition
F € RSCyjs, (f X — S), (Q Y — S) €C, a«ac Cs(X, Y)

define
o’ RQ*FY — Rf*FX in D(SNis)

by
- pullback to X x Y

- cup with a (minding the support)

- pushforward to X (using the propernesss of support over X)
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Explanation

- Ad cup:
< € CHaimx(V) = HE(X x Y, K¥), e =dimY, V C X xs Y proper/X
~ o Z[—e] — RL,(KY)

Rl

YEF[—e] = v°F @7 RL,(Ke') — RE,(7Y°F @upst Kz

adj.

= R, (Homyps (KE, F) @uest k') 225 RL,F

- Ad pushforward(classical):

- uses Gysin map + projective bundle formula + cancellation
- +work carefully with supports

~s functor Cs — D(Snis),  (f: X—=S) — Rf.F
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Obstructions for existence of zero cycles of degree 1

Theorem

Fe RSCnis  f: X — Sproj, dominSm, K= R(S)
Assume 3 € € CHg(Xk)dee'

= f*: HI(S, Fs) — H'(X, Fx) is split-injective.
Proof:
Take £ lift of € under

CS(S,X) = CHdimS(S Xs X) — CHO(XK)

and use

Eof=( f.£ )=id:H(S,F) — H(XF) — H(S,F)
~—

=S€CHgims(S)
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generalized Brauer-Manin obstruction for zero cycles

- Sreg proj curve/fct field K=R(S) f:X— S proj, dom

Ve S(O)

-+ ay € CHo(Xk,) with lift @, € CH4(Xs,) (Ky, Sy henin v)
> q)(Ozv) = a; f FXS — Fsv

~

~

H(S, . Fx) 2% 11, F) = HI(S, F)

v HCHOXKveHom(EBI-ﬂSfFX (s, ))

VES(o) VES(0)
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generalized Brauer-Manin obstruction for zero cycles

- Sreg proj curve/fct field K=R(S) f:X— S proj, dom
Ve S(O)

-+ ay € CHo(Xk,) with lift @, € CH4(Xs,) (Ky, Sy henin v)
~ (b(Ozv) = a; :f*Fst — Fsv

o HY(S, FuFx) 22 H(S, F) — HY(S, F)

~

v J] CHo(Xc,) — Hom (@ HL(S, f.Fx), H'(S, F))

VES() VES()
o
Tt F(XK) - @veS(O) HO(SV \ {V}vf*FX) - @veS(o) H?,(Sf*l'—x)
Theorem

W((ay)y) 02 # 0 = Ba € CHy(Xk) with a — (av)y



Proof: take a — (av), taking & € CH;(X) lifting «

0

F(XK) 41) @v H1V(S’f*FX) — H1(X7 F)
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Proof: take a — (av), taking & € CH;(X) lifting «

0

F(XK) 41) @v H1V(S7f*FX) — H1(X7 F)

5, WV)J /
«@

H'(S, F)

Remark:

If K=Fq and F = Br then W becomes (using CFT)

Br(Xx,)
IT CHo(Xk,) — Hom (ves Br(Xs ),Q/z>

VES()

~ classical Brauer-Manin obstruction for zero-cycles

(in the function field case)
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Stably birational invariance

- (f:X—=9),(g:Y—=S5)eCs, X VYintegral

- fand g are /S
< 3 S-maps Z = X, Z = Y proper birational

- fand g are
<= 3Jvb’'sVonXand WonY,st P(V)and P(W) are prop bir/S.

Theorem
Any F € RSCyis is a stably properly birational invariant over S,
Le, (f:X—2S5),(g:Y—S) e Cs, stably properly birational

= fiFx = guFy

Proof: pbf+ purity + correspondence action
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Birational invariance of cohomology

Theorem
(f: X—=9),(g:Y—S) € Cs properly birational/S.

F € RSCpis With
— Rg.Fy = Rf.Fx

Proof: Take Z C X x5 Y mapping proper and birationally to X and Y
=Zo0Z'=Ay+e with py.e € CHZ'(Y)
F()y=0=¢*=0 onRg.Fy

= 7Z* and (Z')* are inverse to each other O
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Example
Assume dimX = dimY = d ~» Theorem applies for F =

(char(R) # 2,3,5): Qf,, 9,/ dlogK{
(char(R) = p #0,2,3,5): W,Q%/By
- (char(R) = p #0,2,3,5): Re.(Z/p"(d))
(char(R) = p > 0): G(d), Gsm unip k-group
(case char(R) = p > 0) H'(G)(d), G finite p-group/k
(k alg closed) R%,Q/Z(d)

Remark:

- case QY known before (CR, Kovdcs)

- last three cases use Bloch-Kato-Gabber and VoevodsRy
(Milnor-Bloch-Kato Conj) to check F{1)x =

- there is a version of theorem with F(1) < ~F but in this we only
get results if resolutions of singularities are available (in dimd)
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Corollary
S, X,YeSm X — S, Y — Sflat, geom int, proj, gen fiber index 1

(~ Picys, Picy/s representable)

Assume X and Y are stably properly birational/S
= Picx/s[n] = Picys[n] on Snis, all n.

Remark: Was known at least for S = Spec k with k alg closed
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Decomposition of the diagonal

- K/k function field Xsm/K dimX=d

- diagonal of X decomposes <=
(*)  [Ax]=pi&+ (i xid),B  in CHIX xx X)

where £ € CHo(X), 8 € CHy(Z xk X) with codim(Z,X) > 1
- this condition was first considered by Bloch-Srinivas (with @Q)

- Colliot-Théléne-Pirutka
~ satisfied if  X'sm proj/K and retract rational
(i.e. 3 dense open U C X,V C P, and a map V — U with section)

- Implications of (x) on cohomology yield obstructions for X being
retract rational over K
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Theorem
. {Spec Of, Uesm, xeu® or
reg conn aff finite type/K dimS <1
f:X—=S smproj
Assume the diagonal of the generic fiber of f decomposes

= F(S) = F(X) any F € RSCy;s

Remark: Auel-Bigazzi-Bohning-Graf-von-Bothmer posed the problem:
k alg closed char(R) =p >0 X sm proper/k with decomp. diag
Do we have H(X,Rie,Z/p(j)) = 0 for i+ 0?

Thm ~ Yes (if X/k proj)
Indeed in Thm take S = Speck F = R'e,Z/p(j) and observe F(k) = 0
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Theorem
f:X—=SinSm flatproj dimX=d dimS=e¢e

Assume the diagonal of the generic fiber of f decomposes —>
fo: REFS = Féle —d]
is an isomorphism, if F¢ is one of the following sheaves

- (char(R) #2,3,5): Q9,, 9,/ dlogK}]

- (char(R) = p #0,2,3,5): WpQ/Bs

- (char(R) = p #0,2,3,5): Re.(Z/p"(d))

- (char(R) =p >0): G(d), Gsm unip k-group

- (case char(k) = p > 0) HY(G)(d), G finite p-group/k

- (kR alg closed) R%,Q/Z(d)

Example
kalg closed X/ksm proj dimX=d diagonal of X decomposes

= H'(X,R9e,Z/p"(d)) = 0 all i



Thank you!
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