Reciprocity sheaves and their cohomology Kay Rülling 22.09.2020 Bergische Universität Wuppertal ``` Reciprocity sheaves (following Kahn-Saito-Yamazaki) ``` De Rham-Witt sheaves as reciprocity sheaves Computation of the modulus (Saito-R) Tensor products and twists Cohomology of reciprocity sheaves (Binda-R-Saito) Applications (BRS) # Reciprocity sheaves (following Kahn-Saito-Yamazaki) complete understanding of general properties of the cohomology of A¹-invariant sheaves with transfers: · projective bundle formula - projective bundle formula - · blow-up formula - · projective bundle formula - · blow-up formula - · Gysin sequence - · projective bundle formula - · blow-up formula - · Gysin sequence - Gersten resolution - · projective bundle formula - · blow-up formula - · Gysin sequence - Gersten resolution - action of proper Chow correspondences - · etc. 1. many non A¹-invariant sheaves have some of the above properties, such as - 1. many non A¹-invariant sheaves have some of the above properties, such as - · Kähler differentials - 1. many non A¹-invariant sheaves have some of the above properties, such as - · Kähler differentials - smooth commutative unipotent groups - 1. many non A¹-invariant sheaves have some of the above properties, such as - · Kähler differentials - smooth commutative unipotent groups - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p>0 - 1. many non A¹-invariant sheaves have some of the above properties, such as - · Kähler differentials - · smooth commutative unipotent groups - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p>0 - 1. many non A¹-invariant sheaves have some of the above properties, such as - · Kähler differentials - · smooth commutative unipotent groups - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p > 0 ### Why? 2. A¹-invariant theory only sees - 1. many non A¹-invariant sheaves have some of the above properties, such as - · Kähler differentials - · smooth commutative unipotent groups - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p > 0 - 2. A¹-invariant theory only sees - log poles - 1. many non A¹-invariant sheaves have some of the above properties, such as - · Kähler differentials - · smooth commutative unipotent groups - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p>0 - 2. A¹-invariant theory only sees - log poles - · regular singularities - 1. many non A¹-invariant sheaves have some of the above properties, such as - · Kähler differentials - · smooth commutative unipotent groups - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p>0 - 2. A¹-invariant theory only sees - · log poles - regular singularities - · tame ramification, etc. - 1. many non A¹-invariant sheaves have some of the above properties, such as - · Kähler differentials - · smooth commutative unipotent groups - étale motivic cohomology with \mathbb{Z}/p^n -coefficints in char p > 0 ### Why? - 2. A¹-invariant theory only sees - log poles - regular singularities - · tame ramification, etc. #### What a pitty! • $$A^1 \leftrightarrow \Box^{\log} = (P^1, \text{ log-structure } \infty \hookrightarrow P^1)$$ • $A^1 \leftrightarrow \Box^{\log} = (P^1, \log\text{-structure} \infty \hookrightarrow P^1)$ work consequently with smooth log schemes everywhere + dNis • $A^1 \leftrightarrow \Box^{\log} = (P^1, \log\text{-structure} \ \infty \hookrightarrow P^1)$ work consequently with smooth log schemes everywhere + dNis $\leftrightarrow \log DM^{eff}(k)$ - $A^1 \leftrightarrow \Box^{\log} = (P^1, \log\text{-structure} \infty \hookrightarrow P^1)$ work consequently with smooth log schemes everywhere + dNis - $\rightsquigarrow logDM^{eff}(k)$ - a cohomology theory representable in $logDM^{eff}(k)$ has nice properties as above - $A^1 \leftrightarrow \Box^{\log} = (P^1, \log\text{-structure} \infty \hookrightarrow P^1)$ work consequently with smooth log schemes everywhere + dNis $\rightarrow \log DM^{eff}(k)$ - a cohomology theory representable in logDM^{eff}(k) has nice properties as above - e.g. cohomology of log-Kähler differentials is representable - $A^1 \leftrightarrow \Box^{\log} = (P^1, \log\text{-structure} \ \infty \hookrightarrow P^1)$ work consequently with smooth log schemes everywhere + dNis $\hookrightarrow \log DM^{eff}(R)$ - a cohomology theory representable in logDM^{eff}(k) has nice properties as above - e.g. cohomology of log-Kähler differentials is representable - · so far no pole order/ ramification filtration The idea of reciprocity sheaves is to consider only sheaves whose sections behave in a controlled way at infinity \leadsto ### Idea (Kahn 1990's) Replace A¹-invariance by a modulus condition as the one used by Rosenlicht-Serre to define the generalized Jacobian for curves # k perfect field - C sm proj curve/k, D eff. divisor, $U = C \setminus |D|$ - G sm k-group (always commutative) # k perfect field - C sm proj curve/k, D eff. divisor, $U = C \setminus |D|$ - *G* sm *k*-group (always commutative) ### Definition $a:U\to G$ has modulus $D\Longleftrightarrow$ $$\sum_{x\in U} v_x(f)\cdot \mathsf{Tr}_{x/k}(a(x))=0,$$ for all $f \in k(C)^{\times}$ with $f \equiv 1 \mod D$ # k perfect field - C sm proj curve/k, D eff. divisor, $U = C \setminus |D|$ - G sm k-group (always commutative) ### Definition $a:U\to G$ has modulus $D\Longleftrightarrow$ $$\sum_{x\in U} v_x(f)\cdot \mathsf{Tr}_{x/k}(a(x))=0,$$ for all $f \in k(C)^{\times}$ with $f \equiv 1 \mod D$ \rightsquigarrow a factors via $U \rightarrow \text{Alb}(C, D)$ (dep. on $x \in U(k)$ with a(x)=0) #### Reformulation $a \in G(U)$ has modulus $D \Longleftrightarrow \gamma^* a = 0$, all γ as below #### Reformulation $a \in G(U)$ has modulus $D \iff \gamma^* a = 0$, all γ as below • $\Gamma \in Cor(P^1 \setminus \{1\}, U)$ prime correspondence, such that $$\{1\}_{\mid \Gamma^N} \geq D_{\mid \Gamma^N}$$ where $\Gamma^N \to \mathbf{P}^1 \times C$ normalization of closure of Γ • $$\gamma := i_0^* \Gamma - i_\infty^* \Gamma \in \mathsf{Cor}(\mathsf{Spec}\,k, U)$$ Fix perfect field k • modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$ Fix perfect field k - modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$ - · (\overline{X}, D) proper $\iff \overline{X}$ proper ### Fix perfect field k - modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$ - · (\overline{X}, D) proper $\iff \overline{X}$ proper - $\underline{\mathsf{M}}\mathsf{Cor}((X,D),(Y,E)) = \mathsf{generated}$ by finite prime correspondences $V \subset X \setminus |D| \times Y \setminus |E|$ with where $V^N \to X \times Y$ normal. of closure of V ### Fix perfect field *k* - modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$ - · (\overline{X}, D) proper $\iff \overline{X}$ proper - $\underline{\mathsf{MCor}}((X,D),(Y,E)) = \text{generated by finite prime correspondences} V \subset X \setminus |D| \times Y \setminus |E| \text{ with}$ - $V^N \to X$ proper where $V^N \to X \times Y$ normal. of closure of V ### Fix perfect field k - modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$ - · (\overline{X}, D) proper $\iff \overline{X}$ proper - $\underline{\mathsf{MCor}}((X,D),(Y,E)) = \text{generated by finite prime correspondences}$ $V \subset X \setminus |D| \times Y \setminus |E| \text{ with}$ - $V^N \to X$ proper - $\cdot \ D_{|V^N} \geq E_{|V^N}$ where $V^N \to X \times Y$ normal. of closure of V #### Fix perfect field k - modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$ - · (\overline{X}, D) proper $\iff \overline{X}$ proper - $\underline{\mathbf{M}}\mathbf{Cor}((X, D), (Y, E)) = \text{generated by finite prime correspondences}$ $V \subset X \setminus |D| \times Y \setminus |E| \text{ with}$ - $V^N \to X$ proper - $D_{|V^N} \geq E_{|V^N}$ where $V^N \to X \times Y$ normal. of closure of V → MCor category of modulus pairs #### Fix perfect field k - modulus pair $\mathcal{X} = (X, D)$: D eff Cartier divisor on X, $X \setminus |D| \in \mathbf{Sm}$ - · (\overline{X}, D) proper $\iff \overline{X}$ proper - $\underline{\mathsf{M}}\mathsf{Cor}((X,D),(Y,E)) = \mathsf{generated}$ by finite prime correspondences $V \subset X \setminus |D| \times Y \setminus |E|$ with - $V^N \to X$ proper - $\cdot \ D_{|V^N} \geq E_{|V^N}$ where $V^N \to X \times Y$ normal. of closure of V - → MCor category of modulus pairs - monoidal structure: $(X, D) \otimes (Y, E) = (X \times Y, p_X^*D + p_Y^*E)$ \leadsto MPST presheaves on MCor with monoidal structure \otimes_{MPST} - \rightarrow MPST presheaves on MCor with monoidal structure \otimes_{MPST} - adjoint pair $\underline{\omega}_!$: $\underline{\mathsf{M}}\mathsf{PST} \rightleftarrows \mathsf{PST} : \underline{\omega}^*$ $$\underline{\omega}_! G(X) = G(X, \emptyset)$$ $\underline{\omega}^* F(X, D) = F(X \setminus |D|)$ - \rightsquigarrow MPST presheaves on MCor with monoidal structure \otimes_{MPST} - adjoint pair $\underline{\omega}_!$: $\underline{\mathsf{M}}\mathsf{PST} \rightleftarrows \mathsf{PST} : \underline{\omega}^*$ $$\underline{\omega}_! G(X) = G(X, \emptyset) \qquad \underline{\omega}^* F(X, D) = F(X \setminus |D|)$$ • $\mathbb{Z}_{\mathsf{tr}}(\overline{X}, D) = \underline{\mathsf{M}}\mathsf{Cor}(-, (\overline{X}, D)) \in \underline{\mathsf{M}}\mathsf{PST}$ - \rightsquigarrow MPST presheaves on MCor with monoidal structure \otimes_{MPST} - adjoint pair $\underline{\omega}_!$: $\underline{\mathsf{M}}\mathsf{PST} \rightleftarrows \mathsf{PST} : \underline{\omega}^*$ $$\underline{\omega}_! G(X) = G(X, \emptyset)$$ $\underline{\omega}^* F(X, D) = F(X \setminus |D|)$ - $\mathbb{Z}_{\mathsf{tr}}(\overline{X}, D) = \underline{\mathsf{M}}\mathsf{Cor}(-, (\overline{X}, D)) \in
\underline{\mathsf{M}}\mathsf{PST}$ - set $\overline{\square} = (P^1, \infty)$ - \rightsquigarrow MPST presheaves on MCor with monoidal structure \otimes_{MPST} - · adjoint pair $\underline{\omega}_!: \underline{\mathsf{M}}\mathsf{PST} \rightleftarrows \mathsf{PST}: \underline{\omega}^*$ $$\underline{\omega}_! G(X) = G(X, \emptyset) \qquad \underline{\omega}^* F(X, D) = F(X \setminus |D|)$$ $$\cdot \ \mathbb{Z}_{\mathsf{tr}}(\overline{X}, D) = \underline{\mathsf{M}}\mathsf{Cor}(-, (\overline{X}, D)) \in \underline{\mathsf{M}}\mathsf{PST}$$ • set $$\overline{\square} = (P^1, \infty)$$ $h_0^{\overline{\square}}(\overline{X},D) = \mathsf{Coker}(\mathbb{Z}_\mathsf{tr}(\overline{X},D)(-\otimes \overline{\square}) \xrightarrow{i_0^* - i_1^*} \mathbb{Z}_\mathsf{tr}(\overline{X},D))$ - → MPST presheaves on MCor with monoidal structure ⊗MPST - adjoint pair $\underline{\omega}_!: \underline{\mathsf{M}}\mathsf{PST} \rightleftarrows \mathsf{PST}: \underline{\omega}^*$ $$\underline{\omega}_! G(X) = G(X, \emptyset) \qquad \underline{\omega}^* F(X, D) = F(X \setminus |D|)$$ - $\mathbb{Z}_{\mathsf{tr}}(\overline{X}, D) = \underline{\mathsf{M}}\mathsf{Cor}(-, (\overline{X}, D)) \in \underline{\mathsf{M}}\mathsf{PST}$ - set $\overline{\square} = (P^1, \infty)$ $$h_0^{\overline{\square}}(\overline{X},D) = \mathsf{Coker}(\mathbb{Z}_{\mathsf{tr}}(\overline{X},D)(-\otimes \overline{\square}) \xrightarrow{i_0^*-i_1^*} \mathbb{Z}_{\mathsf{tr}}(\overline{X},D))$$ · Note: $\mathbb{Z}_{\operatorname{tr}}(\overline{X}\setminus |D|) \twoheadrightarrow \underline{\omega}_! h_0^{\square}(\overline{X}, D) \twoheadrightarrow h_0^{\mathbf{A}^1}(X\setminus |D|)$ $$F \in PST$$, $a \in F(X)$, (\overline{X}, D) proper modulus pair, $X = \overline{X} \setminus |D|$ $$F \in \mathbf{PST}$$, $a \in F(X)$, (\overline{X}, D) proper modulus pair, $X = \overline{X} \setminus |D|$ $$F \in \mathbf{PST}, a \in F(X), (\overline{X}, D)$$ proper modulus pair, $X = \overline{X} \setminus |D|$ - a has modulus $(\overline{X}, D) \iff \mathbb{Z}_{tr}(X) \xrightarrow{q \text{ Yoneda}} F$ $\underbrace{\omega_! h_0^{\square}(\overline{X}, D)}$ - F is a reciprocity presheaf iff any a has a modulus $$F \in \mathsf{PST}, \, a \in F(X), \, (\overline{X}, D)$$ proper modulus pair, $X = \overline{X} \setminus |D|$ - a has modulus $(\bar{X}, D) \iff \mathbb{Z}_{tr}(X) \xrightarrow{a \text{ Yoneda}} F$ $\underbrace{\omega_! h_0^{\square}(\bar{X}, D)}$ - F is a reciprocity presheaf iff any a has a modulus - \leadsto RSC \subset PST $$F \in \mathsf{PST}, \, a \in F(X), \, (\overline{X}, D)$$ proper modulus pair, $X = \overline{X} \setminus |D|$ - a has modulus $(\bar{X}, D) \iff \mathbb{Z}_{tr}(X) \xrightarrow{a \text{ Yoneda}} F$ $\underbrace{\omega_! h_0^{\square}(\bar{X}, D)}$ - F is a reciprocity presheaf iff any a has a modulus - \leadsto RSC \subset PST - · Set $RSC_{Nis} = RSC \cap NST =$ category of reciprocity sheaves smooth k-groups - smooth k-groups - $\cdot \ \mathsf{HI}_{\mathsf{Nis}} \subset \mathsf{RSC}_{\mathsf{Nis}}$ - smooth k-groups - $\cdot \ \mathsf{HI}_{\mathsf{Nis}} \subset \mathsf{RSC}_{\mathsf{Nis}}$ - · Kähler differentials: - smooth k-groups - $\cdot \ \mathsf{HI}_{\mathsf{Nis}} \subset \mathsf{RSC}_{\mathsf{Nis}}$ - · Kähler differentials: - $\Omega^j \in \mathsf{NST}$ - smooth k-groups - $\cdot HI_{Nis} \subset RSC_{Nis}$ - · Kähler differentials: - $\Omega^j \in \mathsf{NST}$ - modulus condition: $a \in \Omega^{j}(X)$ - smooth k-groups - \cdot $HI_{Nis} \subset RSC_{Nis}$ - · Kähler differentials: - $\Omega^j \in \mathsf{NST}$ - modulus condition: $a \in \Omega^{j}(X)$ - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$ - smooth k-groups - \cdot $HI_{Nis} \subset RSC_{Nis}$ - · Kähler differentials: - $\Omega^j \in \mathsf{NST}$ - modulus condition: $a \in \Omega^{j}(X)$ - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$ - take $C \longrightarrow \overline{X}$ C reg proj curve/K, K function field/k \downarrow $\mathbf{Spec}\ K$ - smooth k-groups - $\cdot HI_{Nis} \subset RSC_{Nis}$ - · Kähler differentials: - $\Omega^j \in \mathsf{NST}$ - modulus condition: $a \in \Omega^{j}(X)$ - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$ - take $C \longrightarrow \overline{X}$ C reg proj curve/K, K function field/kSpec K - $K(C) \ni f \equiv 1 \mod 2D_{|C} \Longrightarrow \operatorname{Res}_{x}(a \operatorname{dlog}(f)) = 0 \text{ for } x \in |D_{|C}|$ - smooth k-groups - \cdot $HI_{Nis} \subset RSC_{Nis}$ - · Kähler differentials: - $\Omega^j \in \mathsf{NST}$ - modulus condition: $a \in \Omega^{j}(X)$ - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$ - take $C \longrightarrow \overline{X}$ C reg proj curve/K, K function field/kSpec K - $K(C) \ni f \equiv 1 \mod 2D_{|C} \Longrightarrow \operatorname{Res}_{x}(a \operatorname{dlog}(f)) = 0 \text{ for } x \in |D_{|C}|$ $\Rightarrow 0 = \sum_{x \in C} \operatorname{Res}_{x}(a \operatorname{dlog}(f)) = \sum_{x \in C \setminus |D_{|C}|} v_{x}(f) \cdot \operatorname{Tr}_{x/K}(a_{|C}(x))$ - smooth k-groups - \cdot $HI_{Nis} \subset RSC_{Nis}$ - · Kähler differentials: - $\Omega^j \in \mathsf{NST}$ - modulus condition: $a \in \Omega^{j}(X)$ - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$ - take $C \longrightarrow \overline{X}$ C reg proj curve/K, K function field/kSpec K - $K(C) \ni f \equiv 1 \mod 2D_{|C} \Longrightarrow \operatorname{Res}_{x}(a \operatorname{dlog}(f)) = 0 \text{ for } x \in |D_{|C}|$ - $\Rightarrow 0 = \sum_{x \in C} \mathsf{Res}_X(a \operatorname{dlog}(f)) = \sum_{x \in C \setminus |D|_C|} \mathsf{v}_X(f) \cdot \mathsf{Tr}_{x/K}(a_{|C}(x))$ - \Rightarrow (\overline{X} , 2D) modulus of a. - smooth k-groups - \cdot $HI_{Nis} \subset RSC_{Nis}$ - · Kähler differentials: - $\Omega^j \in \mathsf{NST}$ - modulus condition: $a \in \Omega^{j}(X)$ - take (\overline{X}, D) such that $a \in H^0(\overline{X}, \Omega^j_{\overline{X}} \otimes_{\mathcal{O}_{\overline{X}}} \mathcal{O}_{\overline{X}}(D))$ • take $$C \longrightarrow \overline{X}$$ C reg proj curve/ K , K function field/ k Spec K - $\begin{array}{c} \cdot \ \, \mathit{K}(\mathit{C}) \ni \mathit{f} \equiv 1 \, \mathsf{mod} \, 2\mathit{D}_{|\mathit{C}} \Longrightarrow \mathsf{Res}_{\mathsf{x}}(\mathit{a} \, \mathsf{dlog}(\mathit{f})) = 0 \, \mathsf{for} \, \mathit{x} \in |\mathit{D}_{|\mathit{C}}| \\ \Rightarrow \ \, 0 = \sum_{\mathsf{x} \in \mathit{C}} \mathsf{Res}_{\mathsf{x}}(\mathit{a} \, \mathsf{dlog}(\mathit{f})) = \sum_{\mathsf{x} \in \mathit{C} \setminus |\mathit{D}_{|\mathit{C}}|} \mathit{v}_{\mathsf{x}}(\mathit{f}) \cdot \mathsf{Tr}_{\mathsf{x}/\mathit{K}}(\mathit{a}_{|\mathit{C}}(\mathit{x})) \end{aligned}$ - \Rightarrow (\overline{X} , 2D) modulus of a. - $W_n\Omega^j$ (see second lecture for this and more examples) $$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$ $$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus} \underbrace{(\overline{X}, \overline{D} + N \cdot B)}_{\text{comp. of } (X, D)}, N \gg 0 \}$$ Then $\widetilde{F} \in \underline{M}PST$ and • (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$ $$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$ Then $\widetilde{F} \in \underline{M}PST$ and - (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$ - (M-reciprocity) $\widetilde{F}(X, D) = \varinjlim_{N} \widetilde{F}(\overline{X}, \overline{D} + N \cdot B)$ $$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$ #### Then $\widetilde{F} \in \underline{M}PST$ and - (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$ - (M-reciprocity) $\widetilde{F}(X, D) = \varinjlim_{N} \widetilde{F}(\overline{X}, \overline{D} + N \cdot B)$ - (semi-purity) $\widetilde{F}(X, D) \subset \widetilde{F}(X \setminus |D|, \emptyset)$ $$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$ #### Then $\widetilde{F} \in \underline{M}PST$ and - (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$ - (M-reciprocity) $\widetilde{F}(X, D) = \varinjlim_{N} \widetilde{F}(\overline{X}, \overline{D} + N \cdot B)$ - (semi-purity) $\widetilde{F}(X, D) \subset \widetilde{F}(X \setminus |D|, \emptyset)$ #### Definition $CI^{\tau} = \text{cat of } G \in \underline{MPST}$ with cube-invariance and M-reciprocity $CI^{\tau,sp}$ subcat of semi-pure objects $$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$ #### Then $\widetilde{F} \in \mathbf{MPST}$ and - (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$ - (M-reciprocity) $\widetilde{F}(X, D) = \varinjlim_{N} \widetilde{F}(\overline{X}, \overline{D} + N \cdot B)$ - (semi-purity) $\widetilde{F}(X, D) \subset \widetilde{F}(X \setminus |D|, \emptyset)$ #### Definition ${\bf CI}^{\tau}={\bf cat}\ {\bf of}\ G\in
{\bf \underline{M}PST}\ {\bf with}\ {\bf cube-invariance}\ {\bf and}\ {\bf M-reciprocity}$ ${\bf CI}^{\tau,sp}\ {\bf subcat}\ {\bf of}\ {\bf semi-pure}\ {\bf objects}$ \rightarrow adjoint pair $\underline{\omega}_1 : \mathbf{CI}^{\tau} \rightleftarrows \mathbf{RSC} : \underline{\omega}^{\mathbf{CI}}$ with $\underline{\omega}^{\mathbf{CI}}(F) = \widetilde{F} \in \mathbf{CI}^{\tau,sp}$ $$F \in \mathbf{RSC} \leadsto \widetilde{F}(X, D) := \{ a \in F(X \setminus |D|) \mid a \text{ has modulus } (\overline{X}, \overline{D} + N \cdot B), N \gg 0 \}$$ #### Then $\widetilde{F} \in \underline{MPST}$ and - · (Cube invariance) $\widetilde{F}(\mathcal{X} \otimes \overline{\square}) = \widetilde{F}(\mathcal{X})$ - (M-reciprocity) $\widetilde{F}(X, D) = \varinjlim_{N} \widetilde{F}(\overline{X}, \overline{D} + N \cdot B)$ - (semi-purity) $\widetilde{F}(X, D) \subset \widetilde{F}(X \setminus |D|, \emptyset)$ #### Definition ${\bf CI}^{\tau}={\bf cat}\ {\bf of}\ G\in {\bf \underline{M}PST}\ {\bf with}\ {\bf cube-invariance}\ {\bf and}\ {\bf M-reciprocity}$ ${\bf CI}^{\tau,sp}\ {\bf subcat}\ {\bf of}\ {\bf semi-pure}\ {\bf objects}$ $$ightharpoonup$$ adjoint pair $\underline{\omega}_! : \mathbf{CI}^{\tau} \rightleftarrows \mathbf{RSC} : \underline{\omega}^{\mathbf{CI}}$ with $\underline{\omega}^{\mathbf{CI}}(F) = \widetilde{F} \in \mathbf{CI}^{\tau,sp}$ $ightharpoonup \underline{\omega}_! h_0^{\square}(\mathcal{X}) \in \mathbf{RSC}$ (\mathcal{X} proper) #### Modulus sheaves #### Definition $G \in \underline{\mathsf{M}}\mathsf{PST}$ is a (Nisnevich) sheaf \iff $$(U \xrightarrow{\operatorname{\acute{e}t}} X) \mapsto G(U, D_{|U}) =: G_{\mathcal{X}}(U)$$ is a Nisnevich sheaf on X, all $\mathcal{X} = (X, D)$. #### Modulus sheaves #### Definition $G \in \underline{MPST}$ is a (Nisnevich) sheaf \iff $$(U \xrightarrow{\operatorname{\acute{e}t}} X) \mapsto G(U, D_{|U}) =: G_{\mathcal{X}}(U)$$ is a Nisnevich sheaf on X, all $\mathcal{X} = (X, D)$. Remark: There is a site with a Grothendieck topoloy generated by a regular and complete cd-structure, such that $G \in \underline{M}PST$ is a sheaf in the above sense if it is a sheaf on this site. #### Modulus sheaves #### Definition $G \in \underline{MPST}$ is a (Nisnevich) sheaf \iff $$(U \xrightarrow{\operatorname{\acute{e}t}} X) \mapsto G(U, D_{|U}) =: G_{\mathcal{X}}(U)$$ is a Nisnevich sheaf on X, all $\mathcal{X} = (X, D)$. Remark: There is a site with a Grothendieck topoloy generated by a regular and complete cd-structure, such that $G \in \underline{M}PST$ is a sheaf in the above sense if it is a sheaf on this site. $\rightsquigarrow \underline{\mathsf{M}}\mathsf{NST}$ Note: $\underline{\omega}_!$ restricts to $\underline{\omega}_!$: $\underline{\mathsf{M}}\mathsf{NST} \to \mathsf{NST}$ # Theorem (Kahn-Miyazaki-Saito-Yamazaki) There exists a sheafification functor $\underline{a}_{Nis} : \underline{M}PST \to \underline{M}NST$. There exists a sneapproachon junction $\underline{a}_{Nis} : \underline{m}_{FS1} \to \underline{m}_{NS1}$. It sends presheaves with M-reciprocity to sheaves with M-reciprocity. The second part of the Theorem is the hard one. # Theorem (Kahn-Miyazaki-Saito-Yamazaki) There exists a sheafification functor $\underline{a}_{Nis}: \underline{M}PST \to \underline{M}NST$. It sends presheaves with M-reciprocity to sheaves with M-reciprocity. The second part of the Theorem is the hard one. We have • $$\underline{a}_{\mathsf{Nis}}(G)_{(X,D)} = \varinjlim f_*(G_{(Y,f^*D),\mathsf{Nis}}),$$ colimit over directed set: $f: Y \to X$ proper with $Y \setminus |f^*D| \cong X \setminus |D|$ # Theorem (Kahn-Miyazaki-Saito-Yamazaki) There exists a sheafification functor $\underline{a}_{Nis}: \underline{MPST} \to \underline{MNST}$. It sends presheaves with M-reciprocity to sheaves with M-reciprocity. The second part of the Theorem is the hard one. We have • $$\underline{a}_{Nis}(G)_{(X,D)} = \varinjlim f_*(G_{(Y,f^*D),Nis}),$$ colimit over directed set: $f: Y \to X$ proper with $Y \setminus |f^*D| \cong X \setminus |D|$ collinit over directed set. $$j: r \to x$$ proper with $r \setminus |j| |D| = x \setminus |D|$ $\Rightarrow \underline{\omega}_1(a_{\text{Nis}}(G)) = (\underline{\omega}_1 G)_{\text{Nis}}$ # Theorem (Kahn-Miyazaki-Saito-Yamazaki) There exists a sheafification functor $\underline{a}_{Nis} : \underline{M}PST \to \underline{M}NST$. It sends presheaves with M-reciprocity to sheaves with M-reciprocity. The second part of the Theorem is the hard one. We have • $$\underline{a}_{\mathsf{Nis}}(G)_{(\mathsf{X},D)} = \varinjlim f_*(G_{(\mathsf{Y},f^*D),\mathsf{Nis}}),$$ colimit over directed set: $f: \mathsf{Y} \to \mathsf{X}$ proper with $\mathsf{Y} \setminus |f^*D| \cong \mathsf{X} \setminus |D|$ $\leadsto \underline{\omega}_\mathsf{I}(a_{\mathsf{Nis}}(G)) = (\underline{\omega}_\mathsf{I}G)_{\mathsf{Nis}}$ $$(\underline{\omega}_{i} \circ)$$ (*) $$\operatorname{Ext}_{\operatorname{\underline{M}NST}}^{i}(\mathbb{Z}_{\operatorname{tr}}(X,D),G) = \varinjlim H^{i}(Y_{\operatorname{Nis}},G_{(Y,f^{*}D)})$$ ## Theorem (Kahn-Miyazaki-Saito-Yamazaki) There exists a sheafification functor $\underline{a}_{Nis} : \underline{M}PST \to \underline{M}NST$. It sends presheaves with M-reciprocity to sheaves with M-reciprocity. The second part of the Theorem is the hard one. We have $$\begin{array}{l} \cdot \ \underline{a}_{\mathsf{Nis}}(G)_{(X,D)} = \varinjlim f_*(G_{(Y,f^*D),\mathsf{Nis}}), \\ \text{colimit over directed set: } f:Y \to X \text{ proper with } Y \setminus |f^*D| \cong X \setminus |D| \\ \\ \leadsto \ \underline{\omega}_!(\underline{a}_{\mathsf{Nis}}(G)) = (\underline{\omega}_!G)_{\mathsf{Nis}} \\ \cdot \end{array}$$ (*) $$\operatorname{Ext}_{\operatorname{\underline{M}NST}}^{i}(\mathbb{Z}_{\operatorname{tr}}(X,D),G) = \varinjlim H^{i}(Y_{\operatorname{Nis}},G_{(Y,f^{*}D)})$$ ## Question Does (*) stabilize for $G \in \mathbf{CI}^{\tau,sp}$? ### Theorem (S. Saito) $$\underline{a}_{\mathsf{Nis}}(\mathsf{CI}^{\tau,\mathsf{sp}}) \subset \mathsf{CI}^{\tau,\mathsf{sp}} \cap \underline{\mathsf{M}} \mathsf{NST} =: \mathsf{CI}^{\tau,\mathsf{sp}}_{\mathsf{Nis}}$$ Generalization of: $(HI)_{Nis} \subset HI$ (Voevodsky) # Theorem (S. Saito) $$\underline{a}_{\mathsf{Nis}}(\mathsf{CI}^{\tau,\mathsf{SP}}) \subset \mathsf{CI}^{\tau,\mathsf{SP}} \cap \underline{\mathsf{M}} \mathsf{NST} =: \mathsf{CI}^{\tau,\mathsf{SP}}_{\mathsf{Nis}}$$ Generalization of: $(HI)_{Nis} \subset HI$ (Voevodsky) #### Corollary $$F \in \mathsf{RSC} \Longrightarrow F_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$ In particular $RSC_{Nis} \subset NST$ full abelian subcategory #### Theorem (S. Saito) $$\underline{a}_{\mathsf{Nis}}(\mathsf{CI}^{\tau,\mathsf{Sp}}) \subset \mathsf{CI}^{\tau,\mathsf{Sp}} \cap \underline{\mathsf{M}}\mathsf{NST} =: \mathsf{CI}^{\tau,\mathsf{Sp}}_{\mathsf{Nis}}$$ Generalization of: $(HI)_{Nis} \subset HI$ (Voevodsky) #### Corollary $$F \in \mathsf{RSC} \Longrightarrow F_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$ In particular $RSC_{Nis} \subset NST$ full abelian subcategory Proof (Cor): $$\mathsf{Thm} \Rightarrow G := \underline{a}_{\mathsf{Nis}}(\widetilde{F}) \in \mathsf{CI}^{\tau,\mathsf{sp}}_{\mathsf{Nis}} \Rightarrow F_{\mathsf{Nis}} = \underline{\omega}_!(G) \in \underline{\omega}_!(\mathsf{CI}^{\tau,\mathsf{sp}}_{\mathsf{Nis}}) = \mathsf{RSC}_{\mathsf{Nis}}$$ ## Theorem (S. Saito) $$\textit{F} \in RSC_{Nis} \Longrightarrow$$ $$H_X^i(X,F)=0, \quad X\in X^{(c)}, i\neq c$$ and $$H_{x}^{c}(X,F) \simeq F_{-c}(X) := \frac{F((A^{1} \setminus \{0\})^{c} \times X)}{\sum_{i=1}^{n} F((A^{1} \setminus \{0\})^{i-1} \times A^{1} \times (A^{1} \setminus \{0\})^{c-i} \times X)}$$ # Theorem (S. Saito) $$F \in \mathsf{RSC}_{\mathsf{Nis}} \Longrightarrow H_{\mathsf{x}}^{i}(X,F) = 0, \quad \mathsf{x} \in \mathsf{X}^{(c)}, i \neq c$$ and $$H_{\mathsf{x}}^{c}(X,F) \simeq F_{-c}(\mathsf{x}) := \frac{F((\mathsf{A}^{1} \setminus \{0\})^{c} \times \mathsf{x})}{\sum_{i=1}^{n} F((\mathsf{A}^{1} \setminus \{0\})^{i-1} \times \mathsf{A}^{1} \times (\mathsf{A}^{1} \setminus \{0\})^{c-i} \times \mathsf{x})}$$ Depends on a choice of $k(x)\{t_1,\ldots,t_c\} \stackrel{\simeq}{\to} \mathcal{O}_{X,x}^h$ ## Theorem (S. Saito) $$F \in \mathsf{RSC}_{\mathsf{Nis}} \Longrightarrow H_{\mathsf{X}}^{i}(X,F) = 0, \quad X \in \mathsf{X}^{(c)}, i \neq c$$ and $$H_{\mathsf{X}}^{c}(X,F) \simeq F_{-c}(X) := \frac{F((\mathsf{A}^{1} \setminus \{0\})^{c} \times X)}{\sum_{i=1}^{n} F((\mathsf{A}^{1} \setminus \{0\})^{i-1} \times \mathsf{A}^{1} \times (\mathsf{A}^{1} \setminus \{0\})^{c-i} \times X)}$$ - Depends on a choice of $k(x)\{t_1,\ldots,t_c\} \xrightarrow{\simeq} \mathcal{O}_{X,x}^h$ - · Generalizes A¹-invariant case (Voevodsky) ## Theorem (S. Saito) $\textit{F} \in RSC_{Nis} \Longrightarrow$ $$H_X^i(X,F) = 0, \quad X \in X^{(c)}, i \neq c$$ and $$H_{X}^{c}(X,F) \simeq F_{-c}(X) := \frac{F((\mathbf{A}^{1} \setminus \{0\})^{c} \times X)}{\sum_{i=1}^{n} F((\mathbf{A}^{1} \setminus \{0\})^{i-1} \times \mathbf{A}^{1} \times (\mathbf{A}^{1} \setminus \{0\})^{c-i} \times X)}$$ # Depends on a choice of $k(x)\{t_1,\ldots,t_c\} \xrightarrow{\simeq} \mathcal{O}_{X,x}^h$ - · Generalizes A¹-invariant case (Voevodsky) - $\cdot \rightsquigarrow$ Cousin resolution (\leftrightarrow Gersten) $$0 \to F \to \bigoplus_{x \in X^{(0)}} i_{x*} H_x^0(F) \to \ldots \to \bigoplus_{x \in X^{(c)}} i_{x*} H_x^c(F) \to \ldots$$ ## Theorem (S. Saito) $$\textit{F} \in RSC_{Nis} \Longrightarrow$$ $$H_X^i(X,F)=0, \quad X\in X^{(c)}, i\neq c$$ and $$H_{X}^{c}(X,F) \simeq F_{-c}(X) := \frac{F((\mathbf{A}^{1} \setminus \{0\})^{c} \times X)}{\sum_{i=1}^{n} F((\mathbf{A}^{1} \setminus \{0\})^{i-1} \times \mathbf{A}^{1} \times (\mathbf{A}^{1} \setminus \{0\})^{c-i} \times X)}$$ # Depends on a choice of $k(x)\{t_1,\ldots,t_c\} \xrightarrow{\simeq} \mathcal{O}_{X,X}^h$ - · Generalizes A¹-invariant case (Voevodsky) - → Cousin resolution (↔ Gersten) $$0 \to F \to \bigoplus_{x \in X^{(0)}} i_{x*} H_x^0(F) \to \ldots \to \bigoplus_{x \in X^{(c)}}
i_{x*} H_x^c(F) \to \ldots$$ Injectivity also proved before by Kahn-Saito-Yamazaki - Denote by $\textbf{Shv}_{\rm dNis}^{ltr}$ the category of dividing Nisnevich sheaves with log-transfers on $\textit{l}\,\textbf{Sm}$ - Denote by $\textbf{Shv}_{\rm dNis}^{ltr}$ the category of dividing Nisnevich sheaves with log-transfers on $\textit{l}\,\textbf{Sm}$ - $F \in \mathsf{RSC}_{\mathsf{Nis}}$. For $(X, \mathcal{M}_X) \in l \, \mathsf{Sm}$ define $$F^{log}(X,\mathcal{M}_X)=\varinjlim_f \widetilde{F}(Y,\operatorname{supp}(\mathcal{M}_Y)),$$ where f runs through log-modifications $f:(Y, \mathcal{M}_Y) \to (X, \mathcal{M}_X)$ with $(Y, \operatorname{supp}(\mathcal{M}_Y)) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls}$ - Denote by $\textbf{Shv}_{\rm dNis}^{ltr}$ the category of dividing Nisnevich sheaves with log-transfers on $\textit{l}\,\textbf{Sm}$ - $F \in \mathsf{RSC}_{\mathsf{Nis}}$. For $(X, \mathcal{M}_X) \in l \, \mathsf{Sm}$ define $$F^{log}(X,\mathcal{M}_X)=\varinjlim_f \widetilde{F}(Y,\operatorname{supp}(\mathcal{M}_Y)),$$ where f runs through log-modifications $f: (Y, \mathcal{M}_Y) \to (X, \mathcal{M}_X)$ with $(Y, \operatorname{supp}(\mathcal{M}_Y)) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls}$ #### Theorem (S. Saito) \cdot RSC $_{ m Nis} ightarrow$ Sh $v_{ m dNis}^{ m ltr}$, F \mapsto F $^{ m log}$ exact, fully faithful functor - Denote by $\textbf{Shv}_{\rm dNis}^{ltr}$ the category of dividing Nisnevich sheaves with log-transfers on $l\,\textbf{Sm}$ - $F \in \mathsf{RSC}_{\mathsf{Nis}}$. For $(X, \mathcal{M}_X) \in l \, \mathsf{Sm}$ define $$F^{\mathsf{log}}(X,\mathcal{M}_X) = \varinjlim_{f} \widetilde{F}(Y, \mathrm{supp}(\mathcal{M}_Y)),$$ where f runs through log-modifications $f:(Y, \mathcal{M}_Y) \to (X, \mathcal{M}_X)$ with $(Y, \operatorname{supp}(\mathcal{M}_Y)) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls}$ #### Theorem (S. Saito) - \cdot RSC $_{ m Nis} ightarrow$ Sh $v_{ m dNis}^{ m ltr}$, F \mapsto F $^{ m log}$ exact, fully faithful functor - $\cdot \ H^i_{\mathrm{dNis}}((X,\mathcal{M}_X),F^{log}) = H^i_{\mathrm{dNis}}((X,\mathcal{M}_X)\times \square^{log},F^{log})$ - Denote by $\textbf{Shv}_{\rm dNis}^{tr}$ the category of dividing Nisnevich sheaves with log-transfers on $\textit{l}\,\textbf{Sm}$ - $F \in \mathsf{RSC}_{\mathsf{Nis}}$. For $(X, \mathcal{M}_X) \in l \, \mathsf{Sm}$ define $$F^{\mathrm{log}}(X,\mathcal{M}_X) = \varinjlim_f \widetilde{F}(Y, \mathrm{supp}(\mathcal{M}_Y)),$$ where f runs through log-modifications $f:(Y, \mathcal{M}_Y) \to (X, \mathcal{M}_X)$ with $(Y, \operatorname{supp}(\mathcal{M}_Y)) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls}$ ## Theorem (S. Saito) - \cdot RSC_{Nis} o Shv $_{ m dNis}^{ltr}$, F \mapsto F log exact, fully faithful functor - $\cdot \ H^i_{\mathrm{dNis}}((X,\mathcal{M}_X),F^{log}) = H^i_{\mathrm{dNis}}((X,\mathcal{M}_X)\times \square^{log},F^{log})$ - $\cdot \ H^i(X,F_X) \cong \mathsf{Hom}_{\mathsf{logDM}^{\mathrm{eff}}(k)}(M(X,\mathcal{O}_X^\times),F^{\mathrm{log}}[i])$ De Rham-Witt sheaves as reciprocity sheaves $X ext{ sm proj}/\mathbf{F}_{p^n}$ $$X \quad \text{sm proj/} F_{p^n}$$ $$\rightsquigarrow H^i := H^i_{\operatorname{crys}}(X/W(F_{p^n}))[\tfrac{1}{p}] \text{ is an } F := (F_X^n)^*\text{-crystal}$$ ``` X sm proj/\mathbf{F}_{p^n} \leadsto H^i := H^i_{\operatorname{crys}}(X/W(\mathbf{F}_{p^n}))[\frac{1}{p}] is an F := (F_X^n)^*-crystal \leadsto slope decomposition H^i = \bigoplus H^i_{\lambda} ``` $$X ext{ sm proj/}\mathbf{F}_{p^n}$$ $\Rightarrow H^i := H^i_{\operatorname{crys}}(X/W(\mathbf{F}_{p^n}))[\frac{1}{p}] ext{ is an } F := (F_X^n)^* - \operatorname{crystal}$ $\Rightarrow ext{ slope decomposition } H^i = \bigoplus H^i_{\lambda}$ Bloch, Deligne-Illusie ↔ The de Rham-Witt complex computes crystalline cohomology and gives a cohomological description of the slopes, i.e., $$X ext{ sm proj/}\mathbf{F}_{p^n}$$ $\Rightarrow H^i := H^i_{\operatorname{crys}}(X/W(\mathbf{F}_{p^n}))[\frac{1}{p}] ext{ is an } F := (F_X^n)^* - \operatorname{crystal}$ $\Rightarrow ext{ slope decomposition } H^i = \bigoplus H^i_{\lambda}$ Bloch, Deligne-Illusie ↔ The de Rham-Witt complex computes crystalline cohomology and gives a cohomological description of the slopes, i.e., • $$H^i = H^i(X_{Zar}, W\Omega^*)[\frac{1}{p}]$$ $$X$$ sm proj/ F_{p^n} $Arr H^i := H^i_{\operatorname{crys}}(X/W(F_{p^n}))[\frac{1}{p}]$ is an $F := (F_X^n)^*$ -crystal $Arr \operatorname{slope}$ decomposition $H^i = \bigoplus H^i_{\lambda}$ Bloch, Deligne-Illusie ↔ The de Rham-Witt complex computes crystalline cohomology and gives a cohomological description of the slopes, i.e., • $$H^i = H^i(X_{Zar}, W\Omega^*)[\frac{1}{p}]$$ • $$E_1^{j,i} = H^i(X, W\Omega^j)[\frac{1}{p}] \Rightarrow H^*$$ degenerates to give $$\bigoplus_{j \leq \lambda < j+1} H^i_{\lambda} = H^{i-j}(X, W\Omega^j)[\tfrac{1}{p}]$$ $A = \mathbf{F}_p$ -algebra $W_n(A)$, $n \ge 1$, family of rings with • $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set) $A = \mathbf{F}_p$ -algebra - $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set) - $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map) $A = \mathbf{F}_p$ -algebra - $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set) - $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map) - $F: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0^p, ..., a_{n-1}^p)$ (ring map) $A = \mathbf{F}_p$ -algebra - $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set) - $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map) - $F: W_{n+1}(A) \to W_n(A), (a_0, \dots, a_n) \mapsto (a_0^p, \dots, a_{n-1}^p)$ (ring map) - · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a}) \text{ (group map)}$ $A = \mathbf{F}_p$ -algebra - $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set) - $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map) - $F: W_{n+1}(A) \to W_n(A), (a_0, \dots, a_n) \mapsto (a_0^p, \dots, a_{n-1}^p)$ (ring map) - · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a}) \text{ (group map)}$ - $[-]: A \rightarrow W_n(A), a \mapsto [a] = (a, 0, \dots, 0)$ (multiplicative) $A = \mathbf{F}_p$ -algebra $W_n(A)$, $n \ge 1$, family of rings with - $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set) - $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map) - $F: W_{n+1}(A) \to W_n(A), (a_0, \dots, a_n) \mapsto (a_0^p, \dots, a_{n-1}^p)$ (ring map) - · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a}) \text{ (group map)}$ - $[-]: A \to W_n(A), a \mapsto [a] = (a, 0, \dots, 0)$ (multiplicative) satisfying • $W_1(A) = A$ (as ring) $A = \mathbf{F}_p$ -algebra $W_n(A)$, $n \ge 1$, family of rings with - $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set) - $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map) - $F: W_{n+1}(A) \to W_n(A), (a_0, \dots, a_n) \mapsto (a_0^p, \dots, a_{n-1}^p)$ (ring map) - · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a})$ (group map) - $[-]: A \to W_n(A), a \mapsto [a] = (a, 0, \dots, 0)$ (multiplicative) satisfying - $W_1(A) = A$ (as ring) - $\cdot (a_0,\ldots,a_{n-1}) = \sum_{i=0}^{n-1} V^i([a_i])$ $A = \mathbf{F}_p$ -algebra $W_n(A)$, $n \ge 1$, family of rings with - $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set) - $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map) - $F: W_{n+1}(A) \to W_n(A), (a_0, \dots, a_n) \mapsto (a_0^p, \dots, a_{n-1}^p)$ (ring map) - · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a})$ (group map) - $[-]: A \to W_n(A), a \mapsto [a] = (a, 0, \dots, 0)$ (multiplicative) satisfying - $W_1(A) = A$ (as ring) - $(a_0,\ldots,a_{n-1})=\sum_{i=0}^{n-1}V^i([a_i])$ - FV = VF = p $A = \mathbf{F}_p$ -algebra $W_n(A)$, $n \ge 1$, family of rings with - $W_n(A) = \{(a_0, \dots, a_{n-1}) \mid a_i \in A\}$ (as a set) - $R: W_{n+1}(A) \to W_n(A), (a_0, ..., a_n) \mapsto (a_0, ..., a_{n-1})$ (ring map) - $F: W_{n+1}(A) \to W_n(A), (a_0, \ldots, a_n) \mapsto (a_0^p, \ldots, a_{n-1}^p)$ (ring map) - · $V: W_n(A) \to W_{n+1}(A), \underline{a} \mapsto (0,\underline{a})$ (group map) - $[-]: A \to W_n(A), a \mapsto [a] = (a, 0, \dots, 0)$ (multiplicative) satisfying - $W_1(A) = A$ (as ring) - $(a_0,\ldots,a_{n-1})=\sum_{i=0}^{n-1}V^i([a_i])$ - FV = VF = p - $V(a) \cdot b = V(a \cdot F(b))$ • $$W(F_p) := \varprojlim W_n(F_p) = \mathbb{Z}_p$$ • $$W(F_p) := \varprojlim W_n(F_p) = \mathbb{Z}_p$$ • A perfect $\rightsquigarrow W_n(A) = \text{the unique flat } \mathbb{Z}/p^n\mathbb{Z}\text{-lift of } A/F_p$ • $$W(F_p) := \underline{\lim} W_n(F_p) = \mathbb{Z}_p$$ - A perfect $\rightsquigarrow W_n(A)$ = the unique flat $\mathbb{Z}/p^n\mathbb{Z}$ -lift of A/\mathbf{F}_p - $\operatorname{Sch}/\mathsf{F}_p \ni X \mapsto H^0(X, W_n \mathcal{O}_X)$ is represented by a ring scheme $\rightsquigarrow W_n$ - · $W(F_p) := \underline{\lim} W_n(F_p) = \mathbb{Z}_p$ - A perfect $\rightsquigarrow W_n(A)$ = the unique flat $\mathbb{Z}/p^n\mathbb{Z}$ -lift of A/\mathbf{F}_p - $\operatorname{Sch}/\mathsf{F}_p \ni X \mapsto H^0(X, W_n \mathcal{O}_X)$ is represented by a ring scheme $\rightsquigarrow W_n$ - Any commutative unipotent \mathbf{F}_p -group scheme $\subset \oplus_{n_i} W_{n_i}$ The de Rham-Witt complex over an F_p -scheme X is a pro-dga $$((W_n\Omega^*,d)_{n\geq 1},R)$$ The de Rham-Witt complex over an F_p -scheme X is a pro-dga $$((W_n\Omega^*,d)_{n\geq 1},R)$$ • $$W_n\Omega^0 = W_n\mathcal{O}_X$$ The de Rham-Witt complex over an F_p -scheme X is a pro-dga $$((W_n\Omega^*,d)_{n\geq 1},R)$$ - · $W_n\Omega^0 = W_n\mathcal{O}_X$ - $F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$ (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$) The de Rham-Witt complex over an \mathbf{F}_p -scheme X is a pro-dga $$((W_n\Omega^*,d)_{n\geq 1},R)$$ - $W_n\Omega^0 =
W_n\mathcal{O}_X$ - $F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$ (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$) - $V:W_{ullet}\Omega_X^* \to W_{ullet+1}\Omega_X^*$ (map of pro-gr-groups, ext. V on $W_{ullet}\mathcal{O}_X$) The de Rham-Witt complex over an \mathbf{F}_p -scheme X is a pro-dga $$((W_n\Omega^*,d)_{n\geq 1},R)$$ with · $$W_n\Omega^0 = W_n\mathcal{O}_X$$ • $$F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$$ (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$) • $$V:W_{\bullet}\Omega_{\chi}^* \to W_{\bullet+1}\Omega_{\chi}^*$$ (map of pro-gr-groups, ext. V on $W_{\bullet}\mathcal{O}_X$) such that • $$FV = p$$, $V(\alpha) \cdot \beta = V(\alpha \cdot F(\beta))$ The de Rham-Witt complex over an \mathbf{F}_p -scheme X is a pro-dga $$((W_n\Omega^*,d)_{n\geq 1},R)$$ with - $W_n\Omega^0 = W_n\mathcal{O}_X$ - $F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$ (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$) - $V:W_{\bullet}\Omega_{\chi}^* \to W_{\bullet+1}\Omega_{\chi}^*$ (map of pro-gr-groups, ext. V on $W_{\bullet}\mathcal{O}_{\chi}$) such that - FV = p, $V(\alpha) \cdot \beta = V(\alpha \cdot F(\beta))$ - FdV = d The de Rham-Witt complex over an F_p -scheme X is a pro-dga $$((W_n\Omega^*,d)_{n\geq 1},R)$$ with • $$W_n\Omega^0 = W_n\mathcal{O}_X$$ • $$F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$$ (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$) • $$V:W_{\bullet}\Omega_{\chi}^* \to W_{\bullet+1}\Omega_{\chi}^*$$ (map of pro-gr-groups, ext. V on $W_{\bullet}\mathcal{O}_{\chi}$) such that • $$FV = p$$, $V(\alpha) \cdot \beta = V(\alpha \cdot F(\beta))$ • $$FdV = d$$ • $$Fd[a] = [a]^{p-1}d[a]$$ The de Rham-Witt complex over an F_p -scheme X is a pro-dga $$((W_n\Omega^*,d)_{n\geq 1},R)$$ with · $$W_n\Omega^0 = W_n\mathcal{O}_X$$ • $$F: W_{\bullet+1}\Omega_{\chi}^* \to W_{\bullet}\Omega_{\chi}^*$$ (map of pro-gr-rings, ext. F on $W_{\bullet+1}\mathcal{O}_{\chi}$) • $$V:W_{ullet}\Omega_X^* \to W_{ullet+1}\Omega_X^*$$ (map of pro-gr-groups, ext. V on $W_{ullet}\mathcal{O}_X$) such that • $$FV = p$$, $V(\alpha) \cdot \beta = V(\alpha \cdot F(\beta))$ • $$FdV = d$$ • $$Fd[a] = [a]^{p-1}d[a]$$ $W_ullet \Omega_\chi^* = \text{initial object in the category of pro-dga's as above}$ # **Properties** • $$W_1\Omega_X^* = \Omega_{X/F_p}^*$$ # **Properties** $$\begin{array}{c} \cdot \ W_1\Omega_X^* = \Omega_{X/\mathbb{F}_p}^* \\ \cdot \\ & W_{n+1}\Omega_X^j \stackrel{F}{\longrightarrow} W_n\Omega_X^j \\ & \downarrow \qquad \qquad \downarrow \\ & \Omega_X^j \stackrel{C^{-1}}{\longrightarrow} \Omega_X^j/d\Omega_X^{j-1} \qquad a\,\mathrm{dlog}\,b \longmapsto a^p\,\mathrm{dlog}\,b \end{array}$$ F lifts the inverse Cartier operator · Bloch, Kato · Bloch, Kato $$W_{\bullet}\Omega_R^q \cong \mathsf{T} \overset{\mathsf{S}}{\longrightarrow} \mathsf{Ker}\left(K_{q+1}(R[T]/T^{\bullet}) \xrightarrow{T \mapsto 0} K_{q+1}(R)\right)$$ as pro-object p -typical part symbolic part • Illusie: quotient of $\Omega^q_{W_n\mathcal{O}_X/W_n(\mathbf{F}_p)}$ s.t. V exits $(\Rightarrow F$ exists) · Bloch, Kato $$W_{\bullet}\Omega_R^q \cong T \underset{\text{symbolic part}}{\text{S Ker}} \left(K_{q+1}(R[T]/T^{\bullet}) \xrightarrow{T \mapsto 0} K_{q+1}(R) \right)$$ as pro-object - Illusie: quotient of $\Omega^q_{W_n\mathcal{O}_X/W_n(\mathbf{F}_n)}$ s.t. V exits $(\Rightarrow F$ exists) - Katz, Illusie-Raynaud: X/k smooth with smooth lift $X_n/W_n(k)$ $$W_n\Omega_X^q \cong \mathcal{H}^q(\Omega_{X_n/W_n(k)}^*)$$ Bloch, Kato $$W_{\bullet}\Omega_R^q \cong \mathsf{T} \overset{\mathsf{S}}{\longrightarrow} \mathsf{Ker}\left(K_{q+1}(R[T]/T^{\bullet}) \xrightarrow{T\mapsto 0} K_{q+1}(R)\right)$$ as pro-object p -typical part symbolic part - Illusie: quotient of $\Omega^q_{W_n\mathcal{O}_X/W_n(\mathbf{F}_n)}$ s.t. V exits $(\Rightarrow F$ exists) - Katz, Illusie-Raynaud: X/k smooth with smooth lift $X_n/W_n(k)$ $$W_n\Omega_X^q \cong \mathcal{H}^q(\Omega_{X_n/W_n(k)}^*)$$ many more... (Hesselholt-Madsen, Cuntz-Deninger, Bhatt-Lurie-Mathew...) #### Theorem (Bloch, Illusie) $$X/k \text{ sm}$$ $u: (X/W_n(k))_{\text{crys}} \to X_{\text{Zar}}$ $\Longrightarrow Ru_* \mathcal{O}_{X/W_n(k),\text{crys}} \cong W_n \Omega_X^*$ # Theorem (Bloch, Illusie) $$X/k \text{ sm}$$ $u: (X/W_n(k))_{\text{crys}} \to X_{\text{Zar}}$ $\Longrightarrow Ru_* \mathcal{O}_{X/W_n(k),\text{crys}} \cong W_n \Omega_X^*$ # X/k sm $\pi_n: W_n X = (|X|, W_n \mathcal{O}_X) \to \text{Spec } W_n(k) \text{ (not smooth/flat)}$ Theorem (Ekedahl) # X/k sm $u: (X/W_n(k))_{\text{crys}} \to X_{\text{Zar}}$ Theorem (Bloch, Illusie) $$\Longrightarrow Ru_*\mathcal{O}_{X/W_n(k),\operatorname{crys}} \cong W_n\Omega_X^*$$ $\pi_n^! W_n(k) \cong W_n \Omega_x^{\dim X} [\dim X],$ # Theorem (Ekedahl) $$X/k \text{ sm}$$ $\pi_n: W_n X = (|X|, W_n \mathcal{O}_X) \to \text{Spec } W_n(k) \text{ (not smooth/flat)}$ $X/R SM \quad \pi_n : W_n X =$ # X/k sm $u: (X/W_n(k))_{crvs} \to X_{Zar}$ Theorem (Bloch, Illusie) $$\Longrightarrow Ru_*\mathcal{O}_{X/W_n(R),\operatorname{crys}} \cong W_n\Omega_X^*$$ # Theorem (Ekedahl) $$X/k \text{ sm}$$ $\pi_n: W_n X = (|X|, W_n \mathcal{O}_X) \to \text{Spec } W_n(k) \text{ (not smooth/flat)}$ $\pi_n^! W_n(k) \cong W_n \Omega_{\mathsf{v}}^{\mathsf{dim} \, \mathsf{X}} [\mathsf{dim} \, \mathsf{X}],$ $W_n\Omega_X^j \xrightarrow{\simeq} R\mathcal{H}om_{W_n\mathcal{O}_X}(W_n\Omega_X^{\dim X-j}, W_n\Omega_X^{\dim X})$ # Theorem (Bloch, Illusie) $$X/k \text{ sm}$$ $u: (X/W_n(k))_{\text{crys}} \to X_{\text{Zar}}$ $\Longrightarrow Ru_* \mathcal{O}_{X/W_n(k),\text{crys}} \cong W_n \Omega_X^*$ #### Theorem (Ekedahl) $$X/k \text{ sm}$$ $\pi_n: W_n X = (|X|, W_n \mathcal{O}_X) \to \operatorname{Spec} W_n(k) \text{ (not smooth/flat)}$ $$\pi_n^! W_n(k) \cong W_n \Omega_X^{\dim X} [\dim X],$$ $$W_n\Omega_X^j \xrightarrow{\simeq} R\mathcal{H}om_{W_n\mathcal{O}_X}(W_n\Omega_X^{\dim X-j}, W_n\Omega_X^{\dim X})$$ $$\leadsto$$ proper pushforward (Gros): for $f: Y \to X$ proper in Sm $f_*: Rf_*W_n\Omega_Y^{j} \to W_n\Omega_X^{j-r}[-r], \quad r = \text{rel-dim}(f)$ # $\leadsto W_n\Omega^j \in \mathsf{RSC}_{\mathsf{Nis}}$ #### $\rightsquigarrow W_n\Omega^j \in \mathsf{RSC}_{\mathsf{Nis}}$ indeed • $W_n\Omega^j \in \mathbf{NST}$ (Chatzistamatiou-R): $Z \in \mathbf{Cor}(X, Y)$ $$Z^*: W_n\Omega^j(Y) \xrightarrow{p_Y^*} W_n\Omega^j(X \times Y)$$ $$\xrightarrow{\bigcup Cl_Z} H_Z^{\dim Y}(X \times Y, W_n\Omega^{j+\dim Y})$$ $$\xrightarrow{p_{X*}} W_n\Omega^j(X)$$ $$\rightsquigarrow W_n\Omega^j \in \mathsf{RSC}_{\mathsf{Nis}}$$ indeed • $W_n\Omega^j \in \mathbf{NST}$ (Chatzistamatiou-R): $Z \in \mathbf{Cor}(X, Y)$ $$Z^*: W_n\Omega^j(Y) \xrightarrow{p_Y^*} W_n\Omega^j(X \times Y)$$ $$\xrightarrow{\bigcup Cl_Z} H_Z^{\dim Y}(X \times Y, W_n\Omega^{j+\dim Y})$$ $$\xrightarrow{p_{X*}} W_n\Omega^j(X)$$ • any $a \in W_n\Omega^j(X)$ has a modulus: similar as in case of Kähler differentials in char 0 $$\rightsquigarrow W_n\Omega^j \in \mathsf{RSC}_{\mathsf{Nis}}$$ indeed • $W_n\Omega^j \in \mathbf{NST}$ (Chatzistamatiou-R): $Z \in \mathbf{Cor}(X, Y)$ $$Z^*: W_n\Omega^j(Y) \xrightarrow{p_*^*} W_n\Omega^j(X \times Y)$$ $$\xrightarrow{\bigcup cl_Z} H_Z^{\dim Y}(X \times Y, W_n\Omega^{j+\dim Y})$$ $$\xrightarrow{p_{X*}} W_n\Omega^j(X)$$ • any $a \in W_n\Omega^j(X)$ has a modulus: similar as in case of Kähler differentials in char 0 Remark: F, V, R, d are morphisms in RSC_{Nis} • $W_n\Omega^*\in \operatorname{Comp}^+(\operatorname{RSC}_{\operatorname{Nis}})$ represents $\operatorname{Sm}\ni X\mapsto Ru_*\mathcal{O}_{X/W_n,\operatorname{crys}}$ - $W_n\Omega^* \in \operatorname{Comp}^+(\operatorname{RSC}_{\operatorname{Nis}})$ represents $\operatorname{Sm} \ni X \mapsto Ru_*\mathcal{O}_{X/W_n,\operatorname{crys}}$ - $B_{\infty}W_{n}\Omega^{j}:=\bigcup_{r\geq 0}F^{r}dW_{n+r}\Omega^{j-1}\in \mathsf{RSC}_{\mathsf{Nis}}$ - $W_n\Omega^* \in \operatorname{Comp}^+(\mathsf{RSC}_\mathsf{Nis})$ represents $\mathsf{Sm} \ni X \mapsto Ru_*\mathcal{O}_{X/W_n,\operatorname{crys}}$ - $B_{\infty}W_{n}\Omega^{j}:=\bigcup_{r\geq 0}F^{r}dW_{n+r}\Omega^{j-1}\in \mathsf{RSC}_{\mathsf{Nis}}$ - · generalized Artin-Schreier-Witt on Xét $$0 \to W_n \Omega_{X, \log}^j \to W_n \Omega_X^j / B_\infty \xrightarrow{\overline{F} - 1} W_n \Omega_X^j / B_\infty \to 0$$ \Longrightarrow - $W_n\Omega^* \in \operatorname{Comp}^+(\mathsf{RSC}_\mathsf{Nis})$ represents $\mathsf{Sm} \ni X \mapsto Ru_*\mathcal{O}_{X/W_n,\operatorname{crys}}$ - $B_{\infty}W_{n}\Omega^{j}:=\bigcup_{r\geq 0}F^{r}dW_{n+r}\Omega^{j-1}\in \mathsf{RSC}_{\mathsf{Nis}}$ - generalized Artin-Schreier-Witt on X_{ét} $$0 \to W_n \Omega_{X,\log}^j \to W_n \Omega_X^j / B_\infty \xrightarrow{\bar{F}-1} W_n \Omega_X^j / B_\infty \to 0$$ + Geisser-Levine ⇒ $$R\varepsilon_*\mathbb{Z}/p^n(j)\cong (W_n\Omega^j/B_\infty\xrightarrow{\bar{F}-1}W_n\Omega^j/B_\infty)[-j]\in \mathrm{Comp}^b(\mathsf{RSC}_\mathsf{Nis})$$ where $\varepsilon: \mathsf{Sm}_{\mathsf{\acute{e}t}} o \mathsf{Sm}_{\mathsf{Nis}}$, $$\Longrightarrow$$ - $W_n\Omega^* \in \operatorname{Comp}^+(\mathsf{RSC}_\mathsf{Nis})$ represents $\mathsf{Sm} \ni X \mapsto Ru_*\mathcal{O}_{X/W_n,\operatorname{crys}}$ - $B_{\infty}W_{n}\Omega^{j}:=\bigcup_{r\geq 0}F^{r}dW_{n+r}\Omega^{j-1}\in \mathsf{RSC}_{\mathsf{Nis}}$ - generalized Artin-Schreier-Witt on X_{ét} $$0 \to W_n \Omega_{X,\log}^j \to W_n \Omega_X^j / B_\infty \xrightarrow{\bar{F}-1} W_n \Omega_X^j / B_\infty \to 0$$ + Geisser-Levine ⇒ $$R\varepsilon_*\mathbb{Z}/p^n(j)\cong (W_n\Omega^j/B_\infty\xrightarrow{\bar{F}-1}W_n\Omega^j/B_\infty)[-j]\in \mathrm{Comp}^b(\mathsf{RSC}_\mathsf{Nis})$$ where $\varepsilon: \mathsf{Sm}_{\mathsf{\acute{e}t}} \to \mathsf{Sm}_{\mathsf{Nis}}$, + Voevodsky $\Rightarrow R^i \varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) \in \mathsf{RSC}_\mathsf{Nis}$ (all i,j) In particular $X \mapsto \mathrm{Br}(X) = H^0(X, R^2 \varepsilon_*(\mathbb{Q}/\mathbb{Z}(1))) \in \mathsf{RSC}_\mathsf{Nis}$ # Computation of the
modulus (Saito-R) · L henselian dvf of geometric type/k, i.e., $$L = \operatorname{Frac} \mathcal{O}_{U,x}^h \quad \big(U \in \mathsf{Sm}, \, x \in U^{(1)}\big)$$ · L henselian dvf of geometric type/k, i.e., $$L = \operatorname{Frac} \mathcal{O}_{U,x}^h \quad (U \in \operatorname{Sm}, x \in U^{(1)})$$ • For $F \in \mathbf{RSC}_{Nis}$ set $$F(L) := F(\operatorname{Spec} L), \quad \widetilde{F}(\mathcal{O}_L, \mathfrak{m}^{-n}) := \widetilde{F}(\operatorname{Spec} \mathcal{O}_L, n \cdot \{\operatorname{closed pt}\})$$ L henselian dvf of geometric type/k, i.e., $$L = \operatorname{Frac} \mathcal{O}_{U,x}^h \quad (U \in \operatorname{Sm}, x \in U^{(1)})$$ • For $F \in \mathbf{RSC}_{Nis}$ set $$F(L) := F(\operatorname{Spec} L), \quad \widetilde{F}(\mathcal{O}_L, \mathfrak{m}^{-n}) := \widetilde{F}(\operatorname{Spec} \mathcal{O}_L, n \cdot \{\operatorname{closed} \operatorname{pt}\})$$ · Have: $$\widetilde{F}(\overline{X}, D) = \left\{ a \in F(\overline{X} \setminus |D|) \middle| \begin{array}{l} \rho^* a \in \widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-\mathsf{v}_L(\rho^*D)}), \\ \forall \rho \in (\overline{X} \setminus |D|)(L) \end{array} \right\}$$ · L henselian dvf of geometric type/k, i.e., $$L = \operatorname{Frac} \mathcal{O}_{U,x}^h \quad (U \in \operatorname{Sm}, x \in U^{(1)})$$ • For $F \in \mathbf{RSC}_{\mathsf{Nis}}$ set $$F(L) := F(\operatorname{Spec} L), \quad \widetilde{F}(\mathcal{O}_L, \mathfrak{m}^{-n}) := \widetilde{F}(\operatorname{Spec} \mathcal{O}_L, n \cdot \{\operatorname{closed} \operatorname{pt}\})$$ · Have: $$\widetilde{F}(\overline{X}, D) = \left\{ a \in F(\overline{X} \setminus |D|) \, \middle| \, \begin{array}{l} \rho^* a \in \widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-\mathsf{v}_L(\rho^*D)}), \\ \forall \rho \in (\overline{X} \setminus |D|)(L) \end{array} \right\}$$ → suffices to understand for all L the filtration $$F(\mathcal{O}_L) \subset \widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-1}) \subset \ldots \subset \widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-n}) \subset \ldots \subset F(L)$$ • F has level $n \Leftrightarrow \text{it suffices to consider } \operatorname{trdeg}(L/k) \leq n$ • F has level $$n \Leftrightarrow$$ it suffices to consider $\operatorname{trdeg}(L/k) \leq n$ • (Criterion for level *n*) F has level $$n \Longleftrightarrow$$ for all $X \in \mathbf{Sm}$ $$\left\{ a \in F(\mathbf{A}_X^1) \middle| \begin{array}{l} \rho_X^* a \in \widetilde{F}(\mathcal{O}_{\mathbf{p}_X^1,\infty}^h,\mathfrak{m}_\infty^{-1}), \\ \forall x \in X_{\leq n-1} \end{array} \right\} = F(X)$$ where ρ_X : Spec Frac $(\mathcal{O}^h_{\mathsf{P}^1} _{\infty}) \to \mathsf{A}^1_X \hookrightarrow \mathsf{A}^1_X$ F has level $$n \iff$$ for all $X \in \mathbf{Sm}$ ### char(k) = 0 #### Theorem $$\cdot \ \widetilde{\Omega^{j}}_{/\mathbb{Z}}$$ has level $j+1$ and $$\widehat{\Omega^j_{/\mathbb{Z}}}(\mathcal{O}_L,\mathfrak{m}_L^{-n}) = \tfrac{1}{t^{n-1}} \cdot \Omega^j_{\mathcal{O}_L/\mathbb{Z}}(\log t), \quad \mathfrak{m}_L = (t)$$ ## char(k) = 0 #### **Theorem** • $\widetilde{\Omega^{j}}_{/\mathbb{Z}}$ has level j+1 and $$\widehat{\Omega^j_{/\mathbb{Z}}}(\mathcal{O}_L,\mathfrak{m}_L^{-n}) = \tfrac{1}{t^{n-1}} \cdot \Omega^j_{\mathcal{O}_L/\mathbb{Z}}(\log t), \quad \mathfrak{m}_L = (t)$$ • $\operatorname{Conn}^1_{int}(X) := iso\text{-}classes integrable rank 1 connections on X}$ ## char(k) = 0 #### **Theorem** • $\widetilde{\Omega^{j}}_{/\mathbb{Z}}$ has level j+1 and $$\widehat{\Omega^j_{/\mathbb{Z}}}(\mathcal{O}_L,\mathfrak{m}_L^{-n}) = \tfrac{1}{t^{n-1}} \cdot \Omega^j_{\mathcal{O}_L/\mathbb{Z}}(\log t), \quad \mathfrak{m}_L = (t)$$ - $\operatorname{Conn}^1_{int}(X) := iso\text{-classes integrable rank 1 connections on } X$ - · $\operatorname{Conn}_{int}^1 \in RSC_{Nis}$ has level 2 (resp. 1) - $\cdot \ \widetilde{\operatorname{Conn}^1_{int}}(\overline{X},D) = \underset{X \ whose \ non-log \ irregularity \ is \ bounded \ by \ D }{\text{iso-classes of integrable rank 1 connections on}}$ In order to define the Albanese with modulus in higher dimension Kato-Russell (building on work of Brylinski, Kato, Matsuda) define $$\mathsf{fil}_r^F W_n(L) := \sum_{j \geq 0} F^j \left(\mathsf{fil}_{r-1}^{\log} W_n(L) + V^{n-s} (\mathsf{fil}_r^{\log} W_s(L)) \right)$$ - $\operatorname{fil}_r^{\log} W_n(L) = \{(a_0, \dots, a_{n-1}) \mid p^{n-1-i} v_L(a_i) \ge -r \ \forall i\}$ - $S = \min\{n, \operatorname{ord}_p(r)\}$ In order to define the Albanese with modulus in higher dimension Kato-Russell (building on work of Brylinski, Kato, Matsuda) define $$\mathsf{fil}_r^F W_n(L) := \sum_{j \geq 0} F^j \left(\mathsf{fil}_{r-1}^{\log} W_n(L) + V^{n-s} (\mathsf{fil}_r^{\log} W_s(L)) \right)$$ - $fil_r^{\log}W_n(L) = \{(a_0, \dots, a_{n-1}) \mid p^{n-1-i}v_L(a_i) \ge -r \ \forall i\}$ - $S = \min\{n, \operatorname{ord}_p(r)\}$ #### Theorem W_n has level 1 and $$\widetilde{W_n}(\mathcal{O}_L, \mathfrak{m}_L^{-r}) = \operatorname{fil}_r^F W_n(L)$$ In order to define the Albanese with modulus in higher dimension Kato-Russell (building on work of Brylinski, Kato, Matsuda) define $$\mathsf{fil}_r^F W_n(L) := \sum_{j \geq 0} F^j \left(\mathsf{fil}_{r-1}^{\log} W_n(L) + V^{n-s} (\mathsf{fil}_r^{\log} W_s(L)) \right)$$ - $fil_r^{\log}W_n(L) = \{(a_0, \dots, a_{n-1}) \mid p^{n-1-i}v_L(a_i) \ge -r \ \forall i\}$ - $s = \min\{n, \operatorname{ord}_p(r)\}$ #### Theorem W_n has level 1 and $$\widetilde{W}_n(\mathcal{O}_L, \mathfrak{m}_L^{-r}) = \operatorname{fil}_r^F W_n(L)$$ In particular $$\widetilde{\mathbb{G}}_{a}(\mathcal{O}_{L}, \mathfrak{m}_{L}^{-r}) = \begin{cases} \mathcal{O}_{L} & r \leq 1\\ \sum_{j} F^{j}(\frac{1}{t^{r-1}}\mathcal{O}_{L}) & (p, r) = 1\\ \sum_{j} F^{j}(\frac{1}{t^{r}}\mathcal{O}_{L}) & p|r \end{cases}$$ Brylinski-Kato-Matsuda filtration on $H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z})$ defined by $(r\geq 1)$ $$\mathsf{fil}_r H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z}) := \bigoplus_{\ell \neq n} H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}_\ell/\mathbb{Z}_\ell) \oplus \bigcup_n \mathsf{Im}(\mathsf{fil}_r^F W_n(L) \to H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z}))$$ Brylinski-Kato-Matsuda filtration on $H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z})$ defined by $(r\geq 1)$ $$\mathsf{fil}_r H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z}) := \bigoplus_{\ell \neq p} H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}_\ell/\mathbb{Z}_\ell) \oplus \bigcup_n \mathsf{Im}(\mathsf{fil}_r^F W_n(L) \to H^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z}))$$ #### **Theorem** $$\varepsilon: \mathsf{Sm}_{\mathsf{\acute{e}t}} o \mathsf{Sm}_{\mathsf{Nis}} \Longrightarrow$$ $R^1 \varepsilon_* \mathbb{Q}/\mathbb{Z} \in \mathbf{RSC_{Nis}}$ has level 1 and $$\widetilde{R^1\varepsilon_*\mathbb{Q}/\mathbb{Z}}(\mathcal{O}_L,\mathfrak{m}_L^{-r})=\mathrm{fil}_rH^1_{\mathrm{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z})$$ Brylinski-Kato-Matsuda filtration on $H^1_{\operatorname{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z})$ defined by $(r\geq 1)$ $$\mathsf{fil}_r H^1_{\text{\'et}}(L,\mathbb{Q}/\mathbb{Z}) := \bigoplus_{\ell \neq p} H^1_{\text{\'et}}(L,\mathbb{Q}_\ell/\mathbb{Z}_\ell) \oplus \bigcup_n \mathsf{Im}(\mathsf{fil}_r^F W_n(L) \to H^1_{\text{\'et}}(L,\mathbb{Q}/\mathbb{Z}))$$ #### **Theorem** $$\varepsilon: \mathsf{Sm}_{\mathsf{\acute{e}t}} o \mathsf{Sm}_{\mathsf{Nis}} \Longrightarrow$$ $R^1 \varepsilon_* \mathbb{Q}/\mathbb{Z} \in \mathbf{RSC_{Nis}}$ has level 1 and $$\widetilde{R^1\varepsilon_*\mathbb{Q}/\mathbb{Z}}(\mathcal{O}_L,\mathfrak{m}_L^{-r})=fil_rH^1_{\text{\'et}}(L,\mathbb{Q}/\mathbb{Z})$$ Remark: We have $H^1_{\text{\'et}}(L, \mathbb{Q}/\mathbb{Z}) = \text{Hom}_{\text{cts}}(G_L, \mathbb{Q}/\mathbb{Z})$ Yatagawa ⇒ $$\operatorname{fil}_{r}H^{1}_{\operatorname{\acute{e}t}}(L,\mathbb{Q}/\mathbb{Z})=\operatorname{\mathsf{Hom}}_{\operatorname{cts}}(G_{L}/G_{L}^{r+},\mathbb{Q}/\mathbb{Z})$$ where $\{G_L^j\}_{j\in\mathbb{Q}_{\geq 0}}=$ Abbes-T. Saito ramification filtration of G_L (decreasing) and $G_L^{r+}=\overline{\bigcup_{S>r}G_L^S}$ in progress, char(k) = p > 0 ${\tt Voevodsky+Geisser-Levine} \Longrightarrow$ • $$R^i \varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) \in \mathsf{HI}_{\mathsf{Nis}}$$ for $i \neq j+1$ # in progress, char(k) = p > 0 $Voevodsky + Geisser-Levine \Longrightarrow$ • $$R^i \varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) \in \mathsf{HI}_{\mathsf{Nis}}$$ for $i \neq j+1$ $$\cdot \ R^{j+1}\varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) = \underbrace{R^{j+1}\varepsilon_*(\mathbb{Q}/\mathbb{Z}(j))'}_{\in \mathsf{HI}_{\mathsf{Nis}}} \oplus \underbrace{R^{j+1}\varepsilon_*(\mathbb{Q}_p/\mathbb{Z}_p(j))}_{:=H^{j+1}\in \mathsf{RSC}_{\mathsf{Nis}}}$$ in progress, char(k) = p > 0 Voevodsky + Geisser-Levine \Longrightarrow • $$R^i \varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) \in \mathsf{HI}_{\mathsf{Nis}}$$ for $i \neq j+1$ $$\cdot \ R^{j+1}\varepsilon_*(\mathbb{Q}/\mathbb{Z}(j)) = \underbrace{R^{j+1}\varepsilon_*(\mathbb{Q}/\mathbb{Z}(j))'}_{\in \mathsf{HI}_{\mathsf{Nis}}} \oplus \underbrace{R^{j+1}\varepsilon_*(\mathbb{Q}_p/\mathbb{Z}_p(j))}_{:=H^{j+1}\in \mathsf{RSC}_{\mathsf{Nis}}}$$ → filtration which measures the difference to A¹-invariance $$H^j(\mathcal{O}_L) \subset \widetilde{H}^j(\mathcal{O}_L,\mathfrak{m}_L^{-1}) \subset \ldots \subset \widetilde{H}^j(\mathcal{O}_L,\mathfrak{m}_L^{-r}) \subset \ldots \subset H^j(L)$$ Above we determined $\widetilde{H}^1(\mathcal{O}_L, \mathfrak{m}_L^{-r})$ $$\begin{split} \cdot & r, n \geq 1, \, \text{set s} = \min\{n, \operatorname{ord}_{p}(r)\} \\ & \quad \text{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) := \\ & \quad \text{Im} \left(\text{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\text{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty} \right) \end{split}$$ $$\begin{split} \cdot & r, n \geq 1, \text{ set } s = \min\{n, \operatorname{ord}_{\rho}(r)\} \\ & \text{ fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) := \\ & \text{ Im} \left(\text{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus
V^{n-s}(\text{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty} \right) \end{split}$$ • $$\operatorname{fil}_r H^j(L) = \varinjlim_n \operatorname{Im}(\operatorname{fil}_r(W_n\Omega_L^{j-1}/B_\infty) \to H^j(L))$$ $$\begin{aligned} \cdot & r, n \geq 1, \, \text{set } s = \min\{n, \operatorname{ord}_{p}(r)\} \\ & \quad \text{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) := \\ & \quad \text{Im} \left(\operatorname{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\operatorname{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty} \right) \\ & \quad \cdot & \quad \text{fil}_{r}H^{j}(L) = \varinjlim_{n} \operatorname{Im}(\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) \to H^{j}(L)) \\ & \quad \cdot & \quad \cdot \\ & \quad \hat{H^{j}}(\overline{X}, D) := \left\{ a \in H^{j}(\overline{X} \setminus |D|) \middle| \begin{array}{c} \rho^{*}a \in \operatorname{fil}_{r}H^{j}(L), \\ \forall \, o \in (\overline{X} \setminus |D|)(I) \end{array} \right\} \end{aligned}$$ $$\begin{aligned} \cdot & r, n \geq 1, \, \text{set } s = \min\{n, \operatorname{ord}_{p}(r)\} \\ & \quad \text{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) := \\ & \quad \text{Im} \left(\operatorname{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\operatorname{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty} \right) \\ & \quad \cdot & \quad \text{fil}_{r}H^{j}(L) = \varinjlim_{n} \operatorname{Im}(\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) \to H^{j}(L)) \\ & \quad \cdot & \quad \cdot \\ & \quad \hat{H^{j}}(\overline{X}, D) := \left\{ a \in H^{j}(\overline{X} \setminus |D|) \middle| \begin{array}{c} \rho^{*}a \in \operatorname{fil}_{r}H^{j}(L), \\ \forall a \in (\overline{X} \setminus |D|)(L) \end{array} \right\} \end{aligned}$$ # Proposition • $\widehat{H}^{j} \in \mathbf{Cl}_{\mathsf{Nis}}^{\tau,\mathsf{Sp}}$ $$\cdot r, n \geq 1, \text{ set } s = \min\{n, \operatorname{ord}_{p}(r)\}$$ $$\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) :=$$ $$\operatorname{Im}\left(\operatorname{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\operatorname{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty}\right)$$ $$\cdot \operatorname{fil}_{r}H^{j}(L) = \underline{\lim}_{n} \operatorname{Im}(\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) \to H^{j}(L))$$ $$\cdot \widehat{H^{j}}(\overline{X}, D) := \left\{a \in H^{j}(\overline{X} \setminus |D|) \middle| \begin{array}{c} \rho^{*}a \in \operatorname{fil}_{r}H^{j}(L), \\ \forall a \in (\overline{X} \setminus |D|)(L) \end{array}\right\}$$ # Proposition • $$\widehat{H}^{j} \in \mathsf{CI}_{\mathsf{Nis}}^{\tau,\mathsf{sp}}$$ • $\underline{\omega}_{!}\widehat{H}^{j} = H^{j}$ $$\cdot r, n \geq 1, \operatorname{set} s = \min\{n, \operatorname{ord}_{\rho}(r)\}$$ $$\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) :=$$ $$\operatorname{Im}\left(\operatorname{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\operatorname{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty}\right)$$ $$\cdot \operatorname{fil}_{r}H^{j}(L) = \underline{\lim}_{n} \operatorname{Im}(\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) \to H^{j}(L))$$ $$\cdot \widehat{H^{j}}(\overline{X}, D) := \left\{a \in H^{j}(\overline{X} \setminus |D|) \middle| \begin{array}{c} \rho^{*}a \in \operatorname{fil}_{r}H^{j}(L), \\ \forall \alpha \in (\overline{X} \setminus |D|)(L) \end{array}\right\}$$ # Proposition $$\bullet \ \ \widehat{H^{j}} \in \mathbf{CI}^{\tau,sp}_{\mathbf{Nis}} \qquad \bullet \ \ \underline{\omega}_{!} \widehat{H^{j}} = H^{j} \qquad \bullet \ \ \widehat{H^{j}} \subset \widetilde{H}^{j}$$ $$\begin{aligned} \cdot & r, n \geq 1, \, \text{set } s = \min\{n, \operatorname{ord}_{\rho}(r)\} \\ & \quad \text{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) := \\ & \quad \text{Im} \left(\operatorname{fil}_{r-1}^{\log}W_{n}(L) \otimes K_{j-1}^{M}(L) \oplus V^{n-s}(\operatorname{fil}_{r}^{\log}W_{s}(L)) \otimes K_{j-1}^{M}(\mathcal{O}_{L}) \to W_{n}\Omega_{L}^{j-1}/B_{\infty} \right) \\ & \quad \cdot & \quad \text{fil}_{r}H^{j}(L) = \varinjlim_{n} \operatorname{Im}(\operatorname{fil}_{r}(W_{n}\Omega_{L}^{j-1}/B_{\infty}) \to H^{j}(L)) \\ & \quad \cdot & \quad \\ & \quad \cdot & \quad \hat{H^{j}}(\overline{X}, D) := \left\{ a \in H^{j}(\overline{X} \setminus |D|) \middle| \begin{array}{c} \rho^{*}a \in \operatorname{fil}_{r}H^{j}(L), \\ \forall a \in (\overline{X} \setminus |D|)(L) \end{array} \right\} \end{aligned}$$ # Proposition • $$\widehat{H}^{j} \in \mathbf{CI}_{\mathbf{Nis}}^{\tau,sp}$$ • $\underline{\omega}_{!}\widehat{H}^{j} = H^{j}$ • $\widehat{H}^{j} \subset \widetilde{H}^{j}$ *Remark*: Kato defined a filtration $\operatorname{fil}_r^K H^j(L)$, which satisfies $$\operatorname{fil}_{r-1}^K H^j(L) \subset \operatorname{fil}_r H^j(L) \subset \operatorname{fil}_r^K H^j(L)$$ • G finite k-group - G finite k-group - We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$) - G finite k-group - We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$) - $\cdot X \mapsto H^1(G)(X) := H^1_{\mathrm{fppf}}(X,G)$ - G finite k-group - We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$) - $X \mapsto H^1(G)(X) := H^1_{\mathrm{fppf}}(X,G)$ #### **Theorem** • $H^1(G) \in \mathsf{RSC}_{\mathsf{Nis}}$ - G finite k-group - We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$) - $X \mapsto H^1(G)(X) := H^1_{\text{fppf}}(X, G)$ #### **Theorem** - $H^1(G) \in \mathsf{RSC}_{\mathsf{Nis}}$ - $H^1(G)$ has level 2 and if $G_{iu}=0$ it has level 1 - G finite k-group - We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$) - $X \mapsto H^1(G)(X) := H^1_{\text{fppf}}(X, G)$ #### **Theorem** - $H^1(G) \in \mathsf{RSC}_{\mathsf{Nis}}$ - $H^1(G)$ has level 2 and if $G_{\rm iu}=0$ it has level 1 - $H^1(G_{\mathrm{em}} \times G_{\mathrm{im}}) \in \mathsf{HI}_{\mathsf{Nis}}$ - G finite k-group - We can write $G = G_{\rm em} \times G_{\rm eu} \times G_{\rm im} \times G_{\rm iu}$ (e.g., $G_{\rm em} = \mathbb{Z}/\ell$, $G_{\rm eu} = \mathbb{Z}/p$, $G_{\rm im} = \mu_p$, $G_{\rm iu} = \alpha_p$) - $X \mapsto H^1(G)(X) := H^1_{\text{fppf}}(X, G)$ #### **Theorem** - $H^1(G) \in \mathsf{RSC}_{\mathsf{Nis}}$ - $H^1(G)$ has level 2 and if $G_{\rm iu}=0$ it has level 1 - · $H^1(G_{\mathrm{em}} \times G_{\mathrm{im}}) \in \mathsf{HI}_{\mathsf{Nis}}$ - $H^1(\mathbb{Z}/p\mathbb{Z})(\mathcal{O}_L, \mathfrak{m}_L^{-r})$ and $H^1(\bar{\alpha}_p)(\mathcal{O}_L, \mathfrak{m}_L^{-r})$ are induced by $\widehat{\mathbb{G}}_a(\mathcal{O}_L, \mathfrak{m}_L^{-r})$ Tensor products and twists • $F,G \in \mathsf{RSC}_\mathsf{Nis} \leadsto \mathsf{define}$ $$(F,G)_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! (h_0^{\overline{\square}}(\widetilde{F} \otimes_{\operatorname{\underline{M}PST}} \widetilde{G}))_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$ • $F, G \in \mathsf{RSC}_\mathsf{Nis} \leadsto \mathsf{define}$ $$(\mathit{F},\mathit{G})_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! \big(\mathit{h}_0^{\overline{\square}} \big(\widetilde{\mathit{F}} \otimes_{\underline{\mathsf{M}} \mathsf{PST}} \widetilde{\mathit{G}} \big) \big)_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$ monoidal structure? (associativity is not clear) • $F,G \in \mathsf{RSC}_\mathsf{Nis} \leadsto \mathsf{define}$ $$(\mathit{F},\mathit{G})_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! (\mathit{h}_0^{\overline{\square}}(\widetilde{\mathit{F}} \otimes_{\operatorname{\underline{M}PST}} \widetilde{\mathit{G}}))_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$ - monoidal structure? (associativity is not clear) - · right exact? (not clear since $\underline{\omega}^{\text{CI}}$ is not right exact) • $F,G \in \mathsf{RSC}_\mathsf{Nis} \leadsto \mathsf{define}$ $$(\mathit{F},\mathit{G})_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! (\mathit{h}_0^{\overline{\square}}(\widetilde{\mathit{F}} \otimes_{\operatorname{\underline{M}PST}} \widetilde{\mathit{G}}))_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$ - · monoidal structure? (associativity is not clear) - · right exact? (not clear since $\underline{\omega}^{\text{CI}}$ is not right exact) # Theorem (R-Sugiyama-Yamazaki) • $F, G \in \mathsf{HI}_{\mathsf{Nis}} \Rightarrow (F, G)_{\mathsf{RSC}_{\mathsf{Nis}}} = F \otimes_{\mathsf{HI}_{\mathsf{Nis}}} G$ • $F, G \in \mathsf{RSC}_{\mathsf{Nis}} \leadsto \mathsf{define}$ $$(F,G)_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! (h_0^{\overline{\square}}(\widetilde{F} \otimes_{\operatorname{\underline{M}PST}} \widetilde{G}))_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$ - monoidal structure? (associativity is not clear) - · right exact? (not clear since $\underline{\omega}^{\text{CI}}$ is not right exact) ### Theorem (R-Sugiyama-Yamazaki) - $F, G \in \mathsf{HI}_{\mathsf{Nis}} \Rightarrow (F, G)_{\mathsf{RSC}_{\mathsf{Nis}}} = F \otimes_{\mathsf{HI}_{\mathsf{Nis}}} G$ - char(k) = 0 - · G unipotent, A abelian variety \Rightarrow $(G, A)_{RSC_{Nis}} = 0$ • $F, G \in \mathsf{RSC}_{\mathsf{Nis}} \leadsto \mathsf{define}$
$$(\mathit{F},\mathit{G})_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! \big(\mathit{h}_0^{\overline{\square}} \big(\widetilde{\mathit{F}} \otimes_{\underline{\mathsf{M}} \mathsf{PST}} \widetilde{\mathit{G}} \big) \big)_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$ - monoidal structure? (associativity is not clear) - · right exact? (not clear since $\underline{\omega}^{\text{CI}}$ is not right exact) #### Theorem (R-Sugiyama-Yamazaki) - $F, G \in \mathsf{HI}_{\mathsf{Nis}} \Rightarrow (F, G)_{\mathsf{RSC}_{\mathsf{Nis}}} = F \otimes_{\mathsf{HI}_{\mathsf{Nis}}} G$ - char(k) = 0 - G unipotent, A abelian variety \Rightarrow $(G, A)_{RSC_{Nis}} = 0$ - $\cdot \ (\mathbb{G}_a,\mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}} = \Omega^1_{/\mathbb{Z}}$ • $F, G \in \mathsf{RSC}_{\mathsf{Nis}} \leadsto \mathsf{define}$ $$(\mathit{F},\mathit{G})_{\mathsf{RSC}_{\mathsf{Nis}}} := \underline{\omega}_! \big(h_0^{\overline{\square}} \big(\widetilde{\mathit{F}} \otimes_{\underline{\mathsf{M}} \mathsf{PST}} \widetilde{\mathit{G}} \big) \big)_{\mathsf{Nis}} \in \mathsf{RSC}_{\mathsf{Nis}}$$ - monoidal structure? (associativity is not clear) - · right exact? (not clear since $\underline{\omega}^{\text{CI}}$ is not right exact) ### Theorem (R-Sugiyama-Yamazaki) - $F, G \in \mathsf{HI}_{\mathsf{Nis}} \Rightarrow (F, G)_{\mathsf{RSC}_{\mathsf{Nis}}} = F \otimes_{\mathsf{HI}_{\mathsf{Nis}}} G$ - char(k) = 0 - G unipotent, A abelian variety \Rightarrow $(G, A)_{RSC_{Nis}} = 0$ - $\cdot \ (\mathbb{G}_a,\mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}} = \Omega^1_{/\mathbb{Z}}$ - $\cdot \ (\mathbb{G}_a, \mathbb{G}_a)_{\mathsf{RSC}_{\mathsf{Nis}}}(X) = H^0(X, \mathcal{O}_{X \times_{\mathbb{Z}} X} / I_{\Delta_X}^2)$ ### **Twists** • $G \in \mathbf{CI}^{\tau,sp}_{\mathbf{Nis}}$ define $$\cdot G(n) := h_0^{\overline{\square}}(G \otimes_{\underline{MPST}} \widetilde{K_n^M})_{Nis}^{sp} \in Cl_{Nis}^{\tau,sp}$$ ### **Twists** - $G \in \mathbf{CI}_{Nis}^{\tau,Sp}$ define - $\cdot G(n) := h_0^{\overline{\square}} (G \otimes_{\underline{M}PST} \widetilde{K_n^M})_{Nis}^{\operatorname{sp}} \in \mathbf{Cl}_{Nis}^{\tau,sp}$ - $\cdot \ \gamma^{n} \mathsf{G} := \underline{\mathsf{Hom}}_{\underline{\mathsf{M}}\mathsf{PST}}(\widetilde{\mathsf{K}_{n}^{\mathsf{M}}},\mathsf{G}) \in \mathsf{CI}_{\mathsf{Nis}}^{\tau,\mathsf{Sp}}$ #### **Twists** - $G \in \mathbf{CI}_{\mathbf{Nis}}^{\tau, \mathsf{Sp}}$ define - $\cdot G(n) := h_0^{\overline{\square}} (G \otimes_{\underline{MPST}} \widetilde{K_n^M})_{Nis}^{sp} \in \mathbf{CI}_{Nis}^{\tau,sp}$ - $\boldsymbol{\cdot}\ \boldsymbol{\gamma}^{\boldsymbol{n}}\boldsymbol{G}:=\underline{\mathrm{Hom}}_{\underline{\mathrm{M}}\mathrm{PST}}(\widetilde{K_{\boldsymbol{n}}^{\mathrm{M}}},\boldsymbol{G})\in\mathbf{CI}_{\mathrm{Nis}}^{\tau,\mathrm{sp}}$ - $F \in \mathbf{RSC}_{Nis}$ define - $\cdot \ \, F\langle 1 \rangle := (F, \mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}}, \, F\langle n \rangle := (F\langle n-1 \rangle) \langle 1 \rangle \in \mathsf{RSC}_{\mathsf{Nis}}$ #### **Twists** - $G \in \mathbf{CI}_{\mathbf{Nis}}^{\tau, \mathsf{Sp}}$ define - $\boldsymbol{\cdot} \ \ G(n) := h_0^{\overline{\square}} (G \otimes_{\operatorname{\underline{MPST}}} \widetilde{K_n^M})_{\operatorname{Nis}}^{\operatorname{sp}} \in \mathbf{CI}_{\operatorname{Nis}}^{\tau,\operatorname{sp}}$ - $\cdot \ \gamma^n G := \underline{\mathsf{Hom}}_{\underline{\mathsf{M}}\mathsf{PST}}(\widetilde{K_n^\mathsf{M}},G) \in \mathsf{CI}^{\tau,\mathsf{Sp}}_{\mathsf{Nis}}$ - $F \in \mathbf{RSC}_{Nis}$ define - $\cdot \ \, F\langle 1 \rangle := (F, \mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}}, \, F\langle n \rangle := (F\langle n-1 \rangle) \langle 1 \rangle \in \mathsf{RSC}_{\mathsf{Nis}}$ - $\cdot \ \gamma^n F := \underline{\mathsf{Hom}}_{\mathsf{PST}}(K^{\mathsf{M}}_n, F) \in \mathsf{RSC}_{\mathsf{Nis}}$ #### **Twists** - $G \in \mathbf{CI}_{\mathbf{Nis}}^{\tau, \mathsf{Sp}}$ define - $G(n) := h_0^{\overline{\square}} (G \otimes_{\underline{M}PST} \widetilde{K_n^M})_{Nis}^{sp} \in Cl_{Nis}^{\tau,sp}$ - $\boldsymbol{\cdot} \ \gamma^n \mathbf{G} := \underline{\mathbf{Hom}}_{\underline{\mathbf{M}}\mathbf{PST}}(\widetilde{\mathbf{K}_n^{\mathbf{M}}}, \mathbf{G}) \in \mathbf{CI}_{\mathbf{Nis}}^{\tau, \mathrm{sp}}$ - $F \in \mathbf{RSC}_{Nis}$ define - $\cdot \ \, F\langle 1 \rangle := (F,\mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}}, \, F\langle n \rangle := (F\langle n-1 \rangle) \langle 1 \rangle \in \mathsf{RSC}_{\mathsf{Nis}}$ - $\cdot \ \gamma^n F := \underline{\mathsf{Hom}}_{\mathsf{PST}}(\mathit{K}^{\mathsf{M}}_n, \mathit{F}) \in \mathsf{RSC}_{\mathsf{Nis}}$ #### Theorem (Merici-Saito) $$F \in \mathsf{RSC}_\mathsf{Nis} \Longrightarrow$$ $$\gamma^n(\widetilde{F}(n)) \cong \widetilde{F}$$ and $\gamma^n(F\langle n \rangle) = F$ #### **Twists** - $G \in \mathbf{CI}^{\tau,sp}_{\mathbf{Nis}}$ define - $G(n) := h_0^{\overline{\square}} (G \otimes_{\underline{M}PST} \widetilde{K_n^M})_{Nis}^{sp} \in Cl_{Nis}^{\tau,sp}$ - $\boldsymbol{\cdot} \ \gamma^{n} \mathbf{G} := \underline{\mathbf{Hom}}_{\underline{\mathbf{M}}\mathbf{PST}}(\widetilde{\mathbf{K}_{n}^{\mathbf{M}}}, \mathbf{G}) \in \mathbf{CI}_{\mathbf{Nis}}^{\tau, \mathrm{sp}}$ - $F \in \mathbf{RSC}_{Nis}$ define - $\cdot \ \, F\langle 1 \rangle := (F,\mathbb{G}_m)_{\mathsf{RSC}_{\mathsf{Nis}}}, \, F\langle n \rangle := (F\langle n-1 \rangle) \langle 1 \rangle \in \mathsf{RSC}_{\mathsf{Nis}}$ - $\cdot \ \gamma^n F := \underline{\mathsf{Hom}}_{\mathsf{PST}}(K^{\mathsf{M}}_n, F) \in \mathsf{RSC}_{\mathsf{Nis}}$ #### Theorem (Merici-Saito) $$F \in \mathsf{RSC}_\mathsf{Nis} \Longrightarrow$$ $$\gamma^n(\widetilde{F}(n)) \cong \widetilde{F}$$ and $\gamma^n(F\langle n \rangle) = F$ Generalizes part of Voevodsky's cancellation theorem . $$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* K_n^M \text{ in } \mathrm{CI}_{\mathrm{Nis}}^{\tau, sp}, \qquad \mathbb{Z}\langle n \rangle = K_n^M \text{ in } \mathrm{RSC}_{\mathrm{Nis}}$$. $$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{CI}_{\mathsf{Nis}}^{\tau, sp}, \qquad \mathbb{Z}\langle n \rangle = \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{RSC}_{\mathsf{Nis}}$$ • $$(char(k) = 0)$$ $$\widetilde{\mathbb{G}_{a}}(n) = \widetilde{\Omega_{/\mathbb{Z}}^{n}} \text{ in } \operatorname{Cl}_{\operatorname{Nis}}^{\tau,\operatorname{Sp}}, \qquad \mathbb{G}_{a}\langle n \rangle = \Omega_{/\mathbb{Z}}^{n} \text{ in } \operatorname{RSC}_{\operatorname{Nis}}$$. $$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{CI}_{\mathsf{Nis}}^{ au, \mathit{SP}}, \qquad \mathbb{Z}\langle n \rangle = \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathsf{RSC}_{\mathsf{Nis}}$$ $\cdot (\operatorname{char}(k) = 0)$ $$\widetilde{\mathbb{G}_a}(n) = \widetilde{\Omega^n_{/\mathbb{Z}}} \text{ in } \operatorname{Cl}_{\operatorname{Nis}}^{\tau,\operatorname{Sp}}, \qquad \mathbb{G}_a\langle n \rangle = \Omega^n_{/\mathbb{Z}} \text{ in } \operatorname{RSC}_{\operatorname{Nis}}$$ • $(char(k) = p \neq 0, 2, 3, 5)$ $$\mathbb{G}_a\langle n\rangle=\Omega^n/B_\infty$$ in $\mathsf{RSC}_\mathsf{Nis}$. $$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{CI}_{\mathsf{Nis}}^{ au, \mathit{SP}}, \qquad \mathbb{Z}\langle n \rangle = \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathsf{RSC}_{\mathsf{Nis}}$$ • (char(k) = 0) $$\widetilde{\mathbb{G}_a}(n) = \widetilde{\Omega^n_{/\mathbb{Z}}} \ \text{in} \ \operatorname{Cl}_{\operatorname{Nis}}^{\tau,\operatorname{Sp}}, \qquad \mathbb{G}_a\langle n \rangle = \Omega^n_{/\mathbb{Z}} \ \text{in} \ \operatorname{RSC}_{\operatorname{Nis}}$$ • $(char(k) = p \neq 0, 2, 3, 5)$ $$\mathbb{G}_a\langle n\rangle = \Omega^n/B_{\infty}$$ in RSC_{Nis} Proofs use computation of $\widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-r})$ for various F . $$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{CI}_{\mathsf{Nis}}^{ au, \mathit{SP}}, \qquad \mathbb{Z}\langle n \rangle = \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathsf{RSC}_{\mathsf{Nis}}$$ • (char(k) = 0) $$\widetilde{\mathbb{G}_a}(n) = \widetilde{\Omega^n_{/\mathbb{Z}}} \ \text{in} \ \operatorname{Cl}_{\operatorname{Nis}}^{\tau,\operatorname{Sp}}, \qquad \mathbb{G}_a\langle n \rangle = \Omega^n_{/\mathbb{Z}} \ \text{in} \ \operatorname{RSC}_{\operatorname{Nis}}$$ • $(char(k) = p \neq 0, 2, 3, 5)$ $$\mathbb{G}_a\langle n\rangle = \Omega^n/B_{\infty}$$ in RSC_{Nis} Proofs use computation of $\widetilde{F}(\mathcal{O}_L,\mathfrak{m}_L^{-r})$ for various FFurthermore $$\cdot \gamma^n(W_r\Omega^q) = W_r\Omega^{q-n}$$. $$\widetilde{\mathbb{Z}}(n) = \underline{\omega}^* \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathbf{CI}_{\mathsf{Nis}}^{ au, \mathit{SP}}, \qquad \mathbb{Z}\langle n \rangle = \mathcal{K}_n^{\mathsf{M}} \text{ in } \mathsf{RSC}_{\mathsf{Nis}}$$ • (char(k) = 0) $$\widetilde{\mathbb{G}_a}(n) = \widetilde{\Omega^n_{/\mathbb{Z}}}$$ in $\mathsf{Cl}_{\mathsf{Nis}}^{ au,\mathsf{sp}}, \qquad \mathbb{G}_a\langle n \rangle = \Omega^n_{/\mathbb{Z}}$ in $\mathsf{RSC}_{\mathsf{Nis}}$ • $(char(k) = p \neq 0, 2, 3, 5)$ $$\mathbb{G}_a\langle n\rangle = \Omega^n/B_{\infty}$$ in RSC_{Nis} Proofs use computation of $\widetilde{F}(\mathcal{O}_L, \mathfrak{m}_L^{-r})$ for various FFurthermore • $$\gamma^n(W_r\Omega^q) = W_r\Omega^{q-n} \ (\Leftarrow R^1\pi_*F_{X\times P^1} = (\gamma^1F)_X$$, where $\pi: P_X^1 \to X$) # Cohomology of reciprocity sheaves (Binda-R-Saito) ## Nice pairs #### We say • $\mathcal{X} = (X, D)$ is an ls modulus pair or write $\mathcal{X} \in \underline{\mathsf{M}}\mathsf{Cor}_{ls}$ $\iff X \in \mathsf{Sm} \text{ and } |D| \mathsf{SNCD}$ #### Nice pairs #### We say - $\mathcal{X} = (X, D)$ is an ls modulus pair or write $\mathcal{X} \in \underline{\mathbf{M}}\mathbf{Cor}_{ls}$ $\iff X \in \mathbf{Sm} \text{ and } |D| \text{ SNCD}$ - $f: Y \to X$ in **Sm** is transversal to $D \iff f^{-1}(D_1 \cap \ldots \cap D_r) \hookrightarrow Y$ regular, closed, codim r, for all
irred cpts D_1, \ldots, D_r of |D|. # Projective bundle formula #### Theorem $$G \in \mathbf{CI}_{\mathsf{Nis}}^{\tau,\mathsf{SP}}$$ $\mathcal{X} = (\mathsf{X},\mathsf{D}) \in \underline{\mathsf{M}}\mathbf{Cor}_{\mathsf{ls}}$ $\pi : \mathsf{P} \to \mathsf{X}$ proj bdle, rk n $\mathcal{P} = (\mathsf{P},\mathsf{D}_{|\mathsf{P}})$ $$\Longrightarrow$$ $$R\pi_*G_{\mathcal{P}} \cong \bigoplus_{i=0}^n (\gamma^i G)_{\mathcal{X}}[-i] \quad in \ D(X_{\mathsf{Nis}})$$ # Projective bundle formula #### Theorem $$G \in \mathbf{CI}_{\mathsf{Nis}}^{\tau,\mathsf{SP}}$$ $\mathcal{X} = (\mathsf{X},\mathsf{D}) \in \underline{\mathsf{M}}\mathbf{Cor}_{\mathsf{ls}}$ $\pi : \mathsf{P} \to \mathsf{X}$ proj bdle, rk n $\mathcal{P} = (\mathsf{P},\mathsf{D}_{|\mathsf{P}})$ \Longrightarrow $$R\pi_*G_{\mathcal{P}} \cong \bigoplus_{i=0}^n (\gamma^i G)_{\mathcal{X}}[-i] \quad in \ D(X_{\mathsf{Nis}})$$ #### Example • $$(char(k) = 0)$$ $$R\pi_*\Omega^{j}_{P/\mathbb{Z}}(\log D_{|P})(D_{|P}-|D_{|P}|) = \bigoplus_{i=0}^{n} \Omega^{j-i}_{X/\mathbb{Z}}(\log D)(D-|D|)[-i]$$ # Projective bundle formula #### Theorem $$G \in \mathbf{CI}^{ au,\mathrm{SP}}_{\mathsf{Nis}}$$ $\mathcal{X} = (X,D) \in \underline{\mathsf{M}} \mathsf{Cor}_{\mathsf{ls}}$ $\pi: P \to X$ proj bdle, rk n $\mathcal{P} = (P,D_{|P})$ \Longrightarrow $$R\pi_*G_{\mathcal{P}}\cong\bigoplus_{i=0}^n(\gamma^iG)_{\mathcal{X}}[-i]$$ in $D(X_{\mathsf{Nis}})$ #### Example • $$(\operatorname{char}(k) = 0)$$ $$R\pi_*\Omega^{j}_{P/\mathbb{Z}}(\log D_{|P})(D_{|P}-|D_{|P}|) = \bigoplus_{i=0}^{n} \Omega^{j-i}_{X/\mathbb{Z}}(\log D)(D-|D|)[-i]$$ • (char($$k$$) = $p > 0$, $D = \emptyset$, (also Gros)) $$R\pi_* \left(R^{j+1} \varepsilon_* \mathbb{Z}/p^r(j) \right)_p = \bigoplus_{i=1}^n \left(R^{j-i+1} \varepsilon_* \mathbb{Z}/p^r(j-i) \right)_X [-i]$$ # Blow-up formula #### **Theorem** $$G \in Cl_{\mathsf{Nis}}^{ au, \mathit{Sp}} \ \mathcal{X} = (\mathit{X}, \mathit{D}) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls} \ i : \mathit{Z} \hookrightarrow \mathit{X} \ codim \ \mathit{c}, \ transversal \ to \ \mathit{D}$$ $$\rho: \tilde{X} \to X \text{ blow-up in } Z \quad \tilde{\mathcal{X}} = (\tilde{X}, D_{|\tilde{X}}) \quad \mathcal{Z} = (Z, D_{|Z})$$ ## Blow-up formula #### **Theorem** $$G \in Cl_{\mathsf{Nis}}^{\tau,sp} \quad \mathcal{X} = (X,D) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls} \quad i:Z \hookrightarrow X \ codim \ c, \ transversal \ to \ D$$ $$\rho: \tilde{X} \to X \text{ blow-up in } Z \quad \tilde{\mathcal{X}} = (\tilde{X}, D_{|\tilde{X}}) \quad \mathcal{Z} = (Z, D_{|Z}) \implies$$ $$R\rho_*G_{\tilde{\mathcal{X}}} \cong G_{\mathcal{X}} \oplus \bigoplus_{i=1}^{c-1} i_*\gamma^i G_{\mathcal{Z}}[-i]$$ # Blow-up formula #### **Theorem** $$G \in Cl_{\mathsf{Nis}}^{ au, \mathit{Sp}} \ \mathcal{X} = (\mathit{X}, \mathit{D}) \in \underline{\mathsf{M}}\mathsf{Cor}_{ls} \ i : \mathit{Z} \hookrightarrow \mathit{X} \ codim \ \mathit{c}, \ transversal \ to \ \mathit{D}$$ $$\rho: \tilde{X} \to X \text{ blow-up in } Z \quad \tilde{\mathcal{X}} = (\tilde{X}, D_{|\tilde{X}}) \quad \mathcal{Z} = (Z, D_{|Z}) \implies$$ $$R\rho_*G_{\tilde{\mathcal{X}}} \cong G_{\mathcal{X}} \oplus \bigoplus_{i=1}^{c-1} i_*\gamma^i G_{\mathcal{Z}}[-i]$$ #### **Examples** as above ... proofs of pbf and buf are enmeshed - proofs of pbf and buf are enmeshed - main point: $L \subset A^2$ line through 0, $Y \to A^2$ blow-up in 0, $\pi: Y \to P^1_s$ paramterizes lines through $0 \in A^2$ to show $$H^{1}(\mathbf{P}_{s}^{1}, \pi_{*}G_{(Y, \rho^{*}L)}) = 0$$ - proofs of pbf and buf are enmeshed - main point: $L \subset A^2$ line through 0, $Y \to A^2$ blow-up in 0, $\pi: Y \to P^1_s$ paramterizes lines through $0 \in A^2$ to show $$H^1(\mathbf{P}_s^1, \pi_* G_{(Y, \rho^* L)}) = 0$$ • this relies on the following: set $\overline{\Box}^{(n)} = (\mathbf{P}^1, n \cdot \{0\} + n \cdot \{\infty\})$ - proofs of pbf and buf are enmeshed - main point: $L \subset A^2$ line through 0, $Y \to A^2$ blow-up in 0, $\pi: Y \to P^1_s$ paramterizes lines through $0 \in A^2$ to show $$H^{1}(\mathbf{P}_{s}^{1}, \pi_{*}G_{(Y, \rho^{*}L)}) = 0$$ • this relies on the following: set $\overline{\Box}^{(n)} = (\mathbf{P}^1, n \cdot \{0\} + n \cdot \{\infty\})$ $$h_{0,\mathsf{Nis}}^{\overline{\square},\mathrm{sp}}(\overline{\square}_{y}^{(1)} \otimes \overline{\square}_{s}^{(1)})$$ $$\uparrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$ $$\longleftarrow \underline{\omega}_! h_{0,\mathsf{Nis}}^{\overline{\square},\mathrm{sp}} (\overline{\square}_{\mathsf{X}}^{(1)} \otimes \overline{\square}_{\mathsf{S}}^{(1)}) = K_2^{\mathsf{M}} \oplus \mathbb{G}_m \oplus \mathbb{G}_m \oplus \mathbb{Z} \in \mathsf{HI}_{\mathsf{Nis}} \tag{RSY}$$ - proofs of pbf and buf are enmeshed - main point: $L \subset A^2$ line through 0, $Y \to A^2$ blow-up in 0, $\pi: Y \to P_S^1$ paramterizes lines through $0 \in A^2$ to show $$H^{1}(\mathbf{P}_{s}^{1}, \pi_{*}G_{(Y, \rho^{*}L)}) = 0$$ • this relies on the following: set $\overline{\Box}^{(n)} = (\mathbf{P}^1, n \cdot \{0\} + n \cdot \{\infty\})$ $$h_{0,\mathsf{Nis}}^{\square,\mathrm{sp}}(\square_{y}^{(1)} \otimes \square_{s}^{(1)})$$ $$\uparrow \qquad \qquad \downarrow \qquad$$ $$\longleftarrow \qquad \underline{\omega}_! h_{0,\operatorname{Nis}}^{\overline{\square},\operatorname{sp}} (\overline{\square}_{\mathsf{x}}^{(1)} \otimes \overline{\square}_{\mathsf{s}}^{(1)}) = \mathit{K}_2^{\mathsf{M}} \oplus \mathbb{G}_m \oplus \mathbb{G}_m \oplus \mathbb{Z} \in \mathsf{HI}_{\mathsf{Nis}} \qquad (\mathsf{RSY})$$ splitting in blow-up sequence constructed as by Voevodsky # Gysin sequence \leadsto define a Gysin map similarly as Voevodsky \leadsto ## Gysin sequence → define a Gysin map similarly as Voevodsky → #### Theorem $$G \in Cl_{Nis}^{\tau,sp}$$ $\mathcal{X} = (X,D) \in \underline{M}Cor_{ls}$ $i: Z \hookrightarrow X$ codim c, transversal to D $$\mathcal{Z} = (Z, D_{|Z}) \quad \rho : \tilde{X} \to X \text{ blow-up in } Z \quad E = \rho^{-1}(Z)$$ ## Gysin sequence → define a Gysin map similarly as Voevodsky → #### **Theorem** $$G \in \mathbf{Cl}_{\mathsf{Nis}}^{\tau,sp} \quad \mathcal{X} = (\mathsf{X},\mathsf{D}) \in \underline{\mathsf{M}} \mathsf{Cor}_{ls} \quad i : \mathsf{Z} \hookrightarrow \mathsf{X} \ codim \ c, \ transversal \ to \ \mathsf{D}$$ $$\mathcal{Z} = (Z, D_{|Z})$$ $\rho : \tilde{X} \to X$ blow-up in Z $E = \rho^{-1}(Z)$ \Rightarrow exact triangle $$i_*\gamma^c G_{\mathcal{Z}}[-c] \xrightarrow{g_{\mathcal{Z}/\mathcal{X}}} G_{\mathcal{X}} \xrightarrow{\rho^*} R\rho_* G_{(\tilde{X},D_{|\tilde{X}}+E)} \xrightarrow{\partial} i_*\gamma^c G_{\mathcal{Z}}[-c+1]$$ • (char(k) = 0) $$\cdot$$ (char(k) = 0) $$\cdot \ \, c = 1$$ $$0 \to \widetilde{\operatorname{Conn}}^1(X,D) \to \widetilde{\operatorname{Conn}}^1(X,D+Z) \to H^0(Z,\mathcal{O}_Z(i^*D-|i^*D|))/\mathbb{Z}$$ $$\xrightarrow{g_{\mathcal{Z}/\mathcal{X}}} H^1\left(X, \frac{\Omega^1_{X/k}(\log D)(D-|D|)}{\operatorname{dlog}(j_*\mathcal{O}_{X\setminus |D|}^X)}\right) \to H^1\left(X, \frac{\Omega^1_{X/k}(\log D+Z)(D-|D|)}{\operatorname{dlog}(j_*\mathcal{O}_{X\setminus |D+Z|}^X)}\right) \to \dots$$ $$\cdot$$ (char(k) = 0) • $$c = 1$$ $$0 \to \operatorname{Conn}^{1}(X, D) \to \operatorname{Conn}^{1}(X, D + Z) \to H^{0}(Z, \mathcal{O}_{Z}(i^{*}D - |i^{*}D|))/\mathbb{Z}$$ $$\xrightarrow{g_{Z/X}} H^{1}\left(X, \frac{\Omega_{X/k}^{1}(\log D)(D - |D|)}{\operatorname{dlog}(j_{*}\mathcal{O}_{X\setminus D|D}^{\times})}\right) \to H^{1}\left(X, \frac{\Omega_{X/k}^{1}(\log D + Z)(D - |D|)}{\operatorname{dlog}(j_{*}\mathcal{O}_{X\setminus D|D + Z}^{\times})}\right) \to \dots$$ • $$c > 2$$ $$\operatorname{Conn}^1(X, D) \cong \operatorname{Conn}^1(\tilde{X}, \rho^*D + E)$$ $$\cdot (\operatorname{char}(k) = 0)$$ $$\cdot c = 1$$ • c > 2 $$0 \to \operatorname{Conn}^{1}(X, D) \to \operatorname{Conn}^{1}(X, D + Z) \to H^{0}(Z, \mathcal{O}_{Z}(i^{*}D - |i^{*}D|))/\mathbb{Z}$$ $$\xrightarrow{g_{\mathcal{Z}/\mathcal{X}}} H^{1}\left(X, \frac{\Omega_{X/k}^{1}(\log D)(D - |D|)}{\operatorname{dlog}(j_{*}\mathcal{O}_{X \setminus D|D}^{\times})}\right) \to H^{1}\left(X, \frac{\Omega_{X/k}^{1}(\log D + Z)(D - |D|)}{\operatorname{dlog}(j_{*}\mathcal{O}_{X \setminus D|D + Z}^{\times})}\right) \to \dots$$ $\operatorname{Conn}^1(X, D) \cong \operatorname{Conn}^1(\tilde{X}, \rho^*D + E)$ • (char(k) = p > 0, $\ell \neq p$, $c \ge 2$) Lisse¹ $\in \mathbf{RSC_{Nis}}$ sheaf whose sections over X are the lisse \mathbb{Q}_{ℓ} sheaves of rank 1. $$\widetilde{\mathrm{Lisse}^1}(X,D) = \frac{\mathsf{lisse}\,\bar{\mathbb{Q}}_\ell\text{-sheaves of rank 1 on } X \setminus |D|}{\mathsf{with Artin conductor} \leq D}$$ and $$\widetilde{\mathrm{Lisse}^1}(X,D)\cong\widetilde{\mathrm{Lisse}^1}(\tilde{X},\rho^*D+E)$$ • S finite type, sep/k - S finite type, sep/k - C_S=category of proper (Chow) correspondences with - S finite type, sep/k - C_S=category of proper (Chow) correspondences with • obj($$C_S$$): $\underbrace{(f: X \to S)}_{\cong X}$, X quasi-proj, sm/k, f finite type - S finite type, sep/k - C_S=category of proper (Chow) correspondences with - obj (C_S) : $\underbrace{(f: X \to S)}_{S,X}$, X quasi-proj, sm/k, f finite type - · $C_S(X,Y) = \mathbf{CH}_{\dim X}(\operatorname{closed} \subset X \times_S Y, \operatorname{proper}/X), \text{ (for } X, Y \operatorname{conn)}$ - S finite type, sep/k - C_S=category of proper (Chow) correspondences with - obj(C_S): $\underbrace{(f: X \to S)}_{=X}$, X quasi-proj, sm/k, f finite type - · $C_S(X,Y) = CH_{dim X}(closed \subset X \times_S Y, proper/X), (for X, Y conn)$ - Fulton refined intersection \leadsto composition - S finite type, sep/k - C_S=category of proper (Chow) correspondences with • obj $$(C_S)$$: $\underbrace{(f: X \to S)}_{S,X}$, X quasi-proj, sm/k, f finite type - · $C_S(X,Y) = CH_{dim X}(closed \subset X \times_S Y, proper/X), (for X, Y conn)$ - Fulton refined intersection \leadsto composition #### Definition $$F \in \mathbf{RSC}_{\mathsf{Nis}}$$, $(f: X \to S)$,
$(g: Y \to S) \in C_S$, $\alpha \in C_S(X, Y)$ define $$\alpha^*: Rg_*F_Y \to Rf_*F_X \quad \text{in } D(S_{Nis})$$ by ### proper correspondence action on reciprocity sheaves - S finite type, sep/k - · C_S=category of proper (Chow) correspondences with · obj($$C_S$$): $\underbrace{(f: X \to S)}_{\subseteq Y}$, X quasi-proj, sm/k, f finite type - · $C_S(X,Y) = CH_{dim X}(closed \subset X \times_S Y, proper/X), (for X, Y conn)$ - Fulton refined intersection \leadsto composition #### Definition $$F \in \mathsf{RSC}_{\mathsf{Nis}}, \quad (f: X \to S), (g: Y \to S) \in C_S, \quad \alpha \in C_S(X, Y)$$ define $$\alpha^*: Rg_*F_Y \to Rf_*F_X \quad \text{in } D(S_{Nis})$$ by • pullback to $X \times Y$ ### proper correspondence action on reciprocity sheaves - S finite type, sep/k - C_S=category of proper (Chow) correspondences with · obj($$C_S$$): $\underbrace{(f: X \to S)}_{\subseteq Y}$, X quasi-proj, sm/k, f finite type - · $C_S(X,Y) = CH_{dim X}(closed \subset X \times_S Y, proper/X), (for X, Y conn)$ - Fulton refined intersection \leadsto composition #### Definition $$F \in \mathsf{RSC}_{\mathsf{Nis}}, \quad (f: X \to S), (g: Y \to S) \in C_S, \quad \alpha \in C_S(X, Y)$$ define $$\alpha^*: Rg_*F_Y \to Rf_*F_X \quad \text{in } D(S_{Nis})$$ by - pullback to $X \times Y$ - cup with α (minding the support) ### proper correspondence action on reciprocity sheaves - S finite type, sep/k - · C_S=category of proper (Chow) correspondences with • obj $$(C_S)$$: $\underbrace{(f: X \to S)}_{S,X}$, X quasi-proj, sm/k, f finite type - $C_S(X,Y) = CH_{\dim X}(\operatorname{closed} \subset X \times_S Y, \operatorname{proper}/X), \text{ (for } X, Y \operatorname{conn)}$ - Fulton refined intersection → composition #### Definition $$F \in \mathsf{RSC}_{\mathsf{Nis}}, \quad (f: X \to S), (g: Y \to S) \in C_S, \quad \alpha \in C_S(X, Y)$$ define $$\alpha^* : Rg_*F_Y \to Rf_*F_X$$ in $D(S_{Nis})$ by - pullback to $X \times Y$ - cup with α (minding the support) - pushforward to X (using the propernesss of support over X) $$\cdot \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = \mathsf{H}^{e}_{\mathsf{V}}(\mathsf{X} \times \mathsf{Y}, \mathsf{K}^{\mathsf{M}}_{e}), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_{\mathsf{S}} \mathsf{Y} \ \mathsf{proper}/\mathsf{X}$$ $$\begin{array}{l} \cdot \ \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = \mathit{H}^{e}_{\mathsf{V}}(\mathsf{X} \times \mathsf{Y}, \mathit{K}^{\mathsf{M}}_{e}), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_{\mathsf{S}}\,\mathsf{Y}\,\mathsf{proper}/\mathsf{X} \\ \rightsquigarrow \ \alpha : \mathbb{Z}[-e] \to \mathit{R}\underline{\Gamma}_{\mathsf{V}}(\mathit{K}^{\mathsf{M}}_{e}) \end{array}$$ $$\alpha \in \mathsf{CH}_{\mathsf{dim}\,X}(V) = H_V^e(X \times Y, K_e^M), \ e = \mathsf{dim}\,Y, \ V \subset X \times_S Y \ \mathsf{proper}/X$$ $$\alpha : \mathbb{Z}[-e] \to R\underline{\Gamma}_V(K_e^M)$$ $$\alpha : \mathbb{Z}[-e] \to R\underline{\Gamma}_V(K_e^M)$$ $$\begin{split} \gamma^e F[-e] &\xrightarrow{\alpha} \gamma^e F \otimes_{\mathbb{Z}}^L R\underline{\Gamma}_V(K_e^M) \to R\underline{\Gamma}_V(\gamma^e F \otimes_{\underline{M}PST} K_e^M) \\ &= R\underline{\Gamma}_V \left(\underline{\mathsf{Hom}}_{\underline{M}PST}(K_e^M, F) \otimes_{\underline{M}PST} K_e^M \right) \xrightarrow{\mathrm{adj.}} R\underline{\Gamma}_V F \end{split}$$ · Ad cup: $$\begin{array}{l} \cdot \ \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = H^e_\mathsf{V}(\mathsf{X} \times \mathsf{Y}, \mathsf{K}^\mathsf{M}_e), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_\mathsf{S} \mathsf{Y} \ \mathsf{proper}/\mathsf{X} \\ \\ \rightsquigarrow \ \alpha : \mathbb{Z}[-e] \to R\underline{\Gamma}_\mathsf{V}(\mathsf{K}^\mathsf{M}_e) \\ \\ \rightsquigarrow \end{array}$$ $$\begin{split} \gamma^e F[-e] &\xrightarrow{\alpha} \gamma^e F \otimes_{\mathbb{Z}}^{L} R\underline{\Gamma}_{V}(K_e^{M}) \to R\underline{\Gamma}_{V}(\gamma^e F \otimes_{\underline{M}PST} K_e^{M}) \\ &= R\underline{\Gamma}_{V} \left(\underline{\mathsf{Hom}_{\underline{M}PST}}(K_e^{M}, F) \otimes_{\underline{M}PST} K_e^{M} \right) \xrightarrow{\mathrm{adj.}} R\underline{\Gamma}_{V} F \end{split}$$ Ad pushforward(classical): $$\begin{array}{l} \cdot \ \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = \mathit{H}^{e}_{\mathsf{V}}(\mathsf{X} \times \mathsf{Y}, \mathit{K}^{\mathsf{M}}_{e}), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_{\mathsf{S}}\,\mathsf{Y}\,\mathsf{proper}/\mathsf{X} \\ \\ \rightsquigarrow \ \alpha : \mathbb{Z}[-e] \to \mathit{R}\underline{\Gamma}_{\mathsf{V}}(\mathit{K}^{\mathsf{M}}_{e}) \\ \\ \rightsquigarrow \end{array}$$ $$\gamma^{e}F[-e] \xrightarrow{\alpha} \gamma^{e}F \otimes_{\mathbb{Z}}^{L} R\underline{\Gamma}_{V}(K_{e}^{M}) \to R\underline{\Gamma}_{V}(\gamma^{e}F \otimes_{\underline{M}PST} K_{e}^{M})$$ $$= R\underline{\Gamma}_{V} \left(\underline{\mathsf{Hom}}_{\underline{M}PST}(K_{e}^{M}, F) \otimes_{\underline{M}PST} K_{e}^{M} \right) \xrightarrow{\mathrm{adj.}} R\underline{\Gamma}_{V}F$$ - · Ad pushforward(classical): - · uses Gysin map + projective bundle formula + cancellation $$\begin{array}{l} \cdot \ \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = \mathit{H}^{e}_{\mathsf{V}}(\mathsf{X} \times \mathsf{Y}, \mathit{K}^{\mathsf{M}}_{e}), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_{\mathsf{S}}\,\mathsf{Y}\,\mathsf{proper}/\mathsf{X} \\ \\ \rightsquigarrow \ \alpha : \mathbb{Z}[-e] \to \mathit{R}\underline{\Gamma}_{\mathsf{V}}(\mathit{K}^{\mathsf{M}}_{e}) \\ \\ \rightsquigarrow \end{array}$$ $$\gamma^{e}F[-e] \xrightarrow{\alpha} \gamma^{e}F \otimes_{\mathbb{Z}}^{L} R\underline{\Gamma}_{V}(K_{e}^{M}) \to R\underline{\Gamma}_{V}(\gamma^{e}F \otimes_{\underline{M}PST} K_{e}^{M})$$ $$= R\underline{\Gamma}_{V} \left(\underline{\mathsf{Hom}}_{\underline{M}PST}(K_{e}^{M}, F) \otimes_{\underline{M}PST} K_{e}^{M} \right) \xrightarrow{\mathrm{adj.}} R\underline{\Gamma}_{V}F$$ - · Ad pushforward(classical): - · uses Gysin map + projective bundle formula + cancellation - + work carefully with supports $$\begin{array}{l} \cdot \ \alpha \in \mathsf{CH}_{\mathsf{dim}\,\mathsf{X}}(\mathsf{V}) = H^e_{\mathsf{V}}(\mathsf{X} \times \mathsf{Y}, \mathsf{K}^\mathsf{M}_e), \ e = \mathsf{dim}\,\mathsf{Y}, \ \mathsf{V} \subset \mathsf{X} \times_{\mathsf{S}} \mathsf{Y} \ \mathsf{proper}/\mathsf{X} \\ \rightsquigarrow \ \alpha : \mathbb{Z}[-e] \to \mathsf{R}\underline{\Gamma}_{\mathsf{V}}(\mathsf{K}^\mathsf{M}_e) \\ \rightsquigarrow \end{array}$$ $$\gamma^{e}F[-e] \xrightarrow{\alpha} \gamma^{e}F \otimes_{\mathbb{Z}}^{L} R\underline{\Gamma}_{V}(K_{e}^{M}) \to R\underline{\Gamma}_{V}(\gamma^{e}F \otimes_{\underline{M}PST} K_{e}^{M})$$ $$= R\underline{\Gamma}_{V} \left(\underline{\mathsf{Hom}}_{\underline{M}PST}(K_{e}^{M}, F) \otimes_{\underline{M}PST} K_{e}^{M} \right) \xrightarrow{\mathrm{adj.}} R\underline{\Gamma}_{V}F$$ - · Ad pushforward(classical): - · uses Gysin map + projective bundle formula + cancellation - + work carefully with supports $$\rightsquigarrow$$ functor $C_S \rightarrow D(S_{Nis}), \quad (f: X \rightarrow S) \mapsto Rf_*F$ Applications (BRS) ### Obstructions for existence of zero cycles of degree 1 #### Theorem $$F \in \mathbf{RSC}_{\mathsf{Nis}}$$ $f: X \to S$ proj, dom in Sm , $K = k(S)$ Assume $$\exists \xi \in CH_0(X_K)^{deg1}$$ $$\Longrightarrow f^*: H^i(S, F_S) \to H^i(X, F_X)$$ is split-injective. ### Obstructions for existence of zero cycles of degree 1 #### **Theorem** $$F \in \mathbf{RSC}_{\mathsf{Nis}}$$ $f: X \to S$ proj, dom in Sm , $K = k(S)$ Assume $$\exists \xi \in CH_0(X_K)^{\text{deg1}}$$ $$\Longrightarrow f^*: H^i(S, F_S) \to H^i(X, F_X)$$ is split-injective. #### Proof: Take $\overline{\xi}$ lift of ξ under $$C_S(S,X) = CH_{dim S}(S \times_S X) \rightarrow CH_0(X_K)$$ ### Obstructions for existence of zero cycles of degree 1 #### **Theorem** $$F \in \mathbf{RSC_{Nis}}$$ $f: X \to S$ proj, dom in Sm, $K = k(S)$ Assume $\exists \xi \in CH_0(X_K)^{\text{deg1}}$ $$\Longrightarrow f^*: H^i(S, F_S) \to H^i(X, F_X)$$ is split-injective. #### Proof: Take $\overline{\xi}$ lift of ξ under $$C_S(S,X) = CH_{dim S}(S \times_S X) \rightarrow CH_0(X_K)$$ and use $$\overline{\xi}^* \circ f^* = (\underbrace{f_* \overline{\xi}}_{=S \in \mathsf{CH}_{\mathsf{dim}\,S}(S)})^* = \mathsf{id} : H^i(S,F) \to H^i(X,F) \to H^i(S,F)$$ • S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$ - S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$ - $\boldsymbol{\cdot} \ \alpha_{v} \in \mathsf{CH}_{0}\big(X_{K_{v}}\big) \ \mathsf{with} \ \mathsf{lift} \ \overline{\alpha}_{v} \in \mathsf{CH}_{1}\big(X_{S_{v}}\big) \qquad (K_{v},\, S_{v} \ \mathsf{hen} \ \mathsf{in} \ v)$ - S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$ - $\cdot \ \alpha_{v} \in CH_{0}(X_{K_{v}}) \text{ with lift } \overline{\alpha}_{v} \in CH_{1}(X_{S_{v}})$ $(K_{v}, S_{v} \text{ hen in } v)$ $$\rightsquigarrow \Phi(\alpha_{\mathsf{v}}) = \overline{\alpha}_{\mathsf{v}}^* : f_* F_{\mathsf{X}_{\mathsf{S}_{\mathsf{v}}}} \to F_{\mathsf{S}_{\mathsf{v}}}$$ - S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$ - $\cdot \ \alpha_{v} \in CH_{0}(X_{K_{v}}) \text{ with lift } \overline{\alpha}_{v} \in CH_{1}(X_{S_{v}})$ $(K_{v}, S_{v} \text{ hen in } v)$ $$\leadsto \Phi(\alpha_{\mathsf{V}}) = \overline{\alpha}_{\mathsf{V}}^* : f_* F_{\mathsf{X}_{\mathsf{S}_{\mathsf{V}}}} \to F_{\mathsf{S}_{\mathsf{V}}}$$ $$\rightsquigarrow H^1_{V}(S, f_*F_X) \xrightarrow{\Phi(\alpha_V)} H^1_{V}(S, F) \rightarrow H^1(S, F)$$ - S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$ - $\alpha_{v} \in CH_{0}(X_{K_{v}})$ with lift $\overline{\alpha}_{v} \in CH_{1}(X_{S_{v}})$ $(K_{v}, S_{v} \text{ hen in } v)$ $$\rightsquigarrow
\Phi(\alpha_{\mathsf{v}}) = \overline{\alpha}_{\mathsf{v}}^* : f_* F_{\mathsf{X}_{\mathsf{S}_{\mathsf{v}}}} \to F_{\mathsf{S}_{\mathsf{v}}}$$ $$\longrightarrow H^1_{\mathcal{V}}(S, f_*F_X) \xrightarrow{\Phi(\alpha_{\mathcal{V}})} H^1_{\mathcal{V}}(S, F) \longrightarrow H^1(S, F)$$ \rightsquigarrow $$\Psi: \prod_{v \in S_{(0)}} \mathsf{CH}_0(X_{K_v}) \to \mathsf{Hom}\left(\bigoplus_{v \in S_{(0)}} H^1_v(S, f_*F_X), H^1(S, F)\right)$$ - S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$ - $\alpha_{v} \in CH_{0}(X_{K_{v}})$ with lift $\overline{\alpha}_{v} \in CH_{1}(X_{S_{v}})$ $(K_{v}, S_{v} \text{ hen in } v)$ $$\leadsto \Phi(\alpha_{\mathsf{v}}) = \overline{\alpha}_{\mathsf{v}}^* : f_* F_{\mathsf{X}_{\mathsf{S}_{\mathsf{v}}}} \to F_{\mathsf{S}_{\mathsf{v}}}$$ $$\longrightarrow H^1_{\mathcal{V}}(S, f_*F_X) \xrightarrow{\Phi(\alpha_{\mathcal{V}})} H^1_{\mathcal{V}}(S, F) \longrightarrow H^1(S, F)$$ ~~ $$\Psi: \prod_{v \in S_{(0)}} \mathsf{CH}_0(X_{K_v}) \to \mathsf{Hom}\left(\bigoplus_{v \in S_{(0)}} H^1_v(S, f_*F_X), H^1(S, F)\right)$$ $$\cdot : F(X_K) \to \bigoplus_{v \in S_{(0)}} H^0(S_v \setminus \{v\}, f_*F_X) \xrightarrow{\partial} \bigoplus_{v \in S_{(0)}} H^1_v(S, f_*F_X)$$ - S reg proj curve/fct field K = k(S) $f: X \to S$ proj, dom $v \in S_{(0)}$ - $\alpha_{v} \in CH_{0}(X_{K_{v}})$ with lift $\overline{\alpha}_{v} \in CH_{1}(X_{S_{v}})$ $(K_{v}, S_{v} \text{ hen in } v)$ $$\rightsquigarrow \Phi(\alpha_{\mathsf{v}}) = \overline{\alpha}_{\mathsf{v}}^* : f_* F_{\mathsf{X}_{\mathsf{S}_{\mathsf{v}}}} \to F_{\mathsf{S}_{\mathsf{v}}}$$ $$\longrightarrow H^1_{\mathsf{V}}(\mathsf{S}, f_* \mathsf{F}_{\mathsf{X}}) \xrightarrow{\Phi(\alpha_{\mathsf{V}})} H^1_{\mathsf{V}}(\mathsf{S}, \mathsf{F}) \longrightarrow H^1(\mathsf{S}, \mathsf{F})$$ **~**→ $$\Psi: \prod_{v \in S_{(0)}} \mathsf{CH}_0(X_{K_v}) \to \mathsf{Hom}\left(\bigoplus_{v \in S_{(0)}} H^1_v(S, f_*F_X), H^1(S, F)\right)$$ • $$i: F(X_K) \to \bigoplus_{v \in S_{(0)}} H^0(S_v \setminus \{v\}, f_*F_X) \xrightarrow{\partial} \bigoplus_{v \in S_{(0)}} H^1_v(S, f_*F_X)$$ #### Theorem $$\Psi((\alpha_{V})_{V}) \circ i \neq 0 \Longrightarrow \nexists \alpha \in CH_{0}(X_{K}) \text{ with } \alpha \mapsto (\alpha_{V})_{V}$$ *Proof:* take $\alpha \mapsto (\alpha_{\nu})$, taking $\bar{\alpha} \in CH_1(X)$ lifting α *Proof:* take $\alpha \mapsto (\alpha_v)$, taking $\bar{\alpha} \in CH_1(X)$ lifting α Remark: If $K = \mathbf{F}_q$ and $F = \operatorname{Br}$ then Ψ becomes (using CFT) $$\prod_{v \in S_{(0)}} CH_0(X_{K_v}) \to Hom \left(\bigoplus_{v \in S_{(0)}} \frac{\operatorname{Br}(X_{K_v})}{\operatorname{Br}(X_{S_v})}, \mathbb{Q}/\mathbb{Z} \right)$$ → classical Brauer-Manin obstruction for zero-cycles (in the function field case) • $$(f: X \to S)$$, $(g: Y \to S) \in C_S$, $X, Y integral$ - $(f: X \to S)$, $(g: Y \to S) \in C_S$, X, Y integral - f and g are properly birational/S $\iff \exists S$ -maps $Z \xrightarrow{\simeq} X$, $Z \xrightarrow{\simeq} Y$ proper birational - $(f: X \to S), (g: Y \to S) \in C_S, X, Y \text{ integral}$ - f and g are properly birational/S $\iff \exists S$ -maps $Z \xrightarrow{\simeq} X$, $Z \xrightarrow{\simeq} Y$ proper birational - f and g are stably properly birational over S $\iff \exists \ vb's \ V \ on \ X \ and \ W \ on \ Y, \ s.t. \ P(V) \ and \ P(W) \ are prop \ bir/S.$ - $(f: X \to S), (g: Y \to S) \in C_S, X, Y \text{ integral}$ - f and g are properly birational/S $\iff \exists S$ -maps $Z \xrightarrow{\simeq} X$, $Z \xrightarrow{\simeq} Y$ proper birational - f and g are stably properly birational over S $\iff \exists \ vb's \ V \ on \ X \ and \ W \ on \ Y, \ s.t. \ P(V) \ and \ P(W) \ are prop \ bir/S.$ #### **Theorem** Any $F \in RSC_{Nis}$ is a stably properly birational invariant over S, i.e., $(f: X \to S)$, $(g: Y \to S) \in C_S$, stably properly birational $$\implies f_*F_X \cong g_*F_Y$$ - $(f: X \to S), (g: Y \to S) \in C_S, X, Y \text{ integral}$ - f and g are properly birational/S $\iff \exists S$ -maps $Z \xrightarrow{\simeq} X$, $Z \xrightarrow{\simeq} Y$ proper birational - f and g are stably properly birational over S $\iff \exists \ vb's \ V \ on \ X \ and \ W \ on \ Y, \ s.t. \ P(V) \ and \ P(W) \ are prop \ bir/S.$ #### **Theorem** Any $F \in RSC_{Nis}$ is a stably properly birational invariant over S, i.e., $(f: X \to S)$, $(g: Y \to S) \in C_S$, stably properly birational $$\implies f_*F_X \cong g_*F_Y$$ *Proof:* pbf+ purity + correspondence action #### **Theorem** $$(f: X \to S)$$, $(g: Y \to S) \in C_S$ properly birational/S. $$F \in \mathsf{RSC}_{\mathsf{Nis}}$$ with $F\langle 1 \rangle_X = 0 = F\langle 1 \rangle_Y$ $$\Longrightarrow$$ $Rg_*F_Y \xrightarrow{\simeq} Rf_*F_X$ #### **Theorem** $$(f: X \to S)$$, $(g: Y \to S) \in C_S$ properly birational/S. $$F \in \mathsf{RSC}_{\mathsf{Nis}}$$ with $F\langle 1 \rangle_X = 0 = F\langle 1 \rangle_Y$ $$\implies$$ $Rg_*F_Y \xrightarrow{\simeq} Rf_*F_X$ *Proof*: Take $Z \subset X \times_S Y$ mapping proper and birationally to X and Y #### **Theorem** $$(f: X \to S)$$, $(g: Y \to S) \in C_S$ properly birational/S. $$F \in \mathsf{RSC}_{\mathsf{Nis}}$$ with $F\langle 1 \rangle_X = 0 = F\langle 1 \rangle_Y$ $$\implies$$ $Rg_*F_Y \xrightarrow{\simeq} Rf_*F_X$ *Proof*: Take $Z \subset X \times_S Y$ mapping proper and birationally to X and Y $\Rightarrow Z \circ Z^t = \Delta_Y + \varepsilon$ with $p_{Y*}\varepsilon \in CH^{\geq 1}(Y)$ #### **Theorem** $$(f: X \to S), (g: Y \to S) \in C_S$$ properly birational/S. $$F \in \mathsf{RSC}_{\mathsf{Nis}}$$ with $F\langle 1 \rangle_X = 0 = F\langle 1 \rangle_Y$ $$\Longrightarrow$$ $Rg_*F_Y \xrightarrow{\simeq} Rf_*F_X$ *Proof*: Take $Z \subset X \times_S Y$ mapping proper and birationally to X and Y $$\Rightarrow Z \circ Z^t = \Delta_Y + \varepsilon$$ with $p_{Y*}\varepsilon \in CH^{\geq 1}(Y)$ $$F\langle 1 \rangle_{|Y} = 0 \Rightarrow \varepsilon^* = 0$$ on Rg_*F_Y #### **Theorem** $$(f: X \to S), (g: Y \to S) \in C_S$$ properly birational/S. $$F \in \mathsf{RSC}_{\mathsf{Nis}}$$ with $F\langle 1 \rangle_X = 0 = F\langle 1 \rangle_Y$ $$\Longrightarrow$$ $Rg_*F_Y \xrightarrow{\simeq} Rf_*F_X$ *Proof*: Take $Z \subset X \times_S Y$ mapping proper and birationally to X and Y $$\Rightarrow$$ $Z \circ Z^t = \Delta_Y + \varepsilon$ with $p_{Y*}\varepsilon \in CH^{\geq 1}(Y)$ $$F\langle 1 \rangle_{|Y} = 0 \Rightarrow \varepsilon^* = 0$$ on Rg_*F_Y \Rightarrow Z* and (Z^t)* are inverse to each other #### Example Assume $\dim X = \dim Y = d \rightsquigarrow$ Theorem applies for F = • (char(k) $$\neq$$ 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M #### Example Assume $\dim X = \dim Y = d \rightsquigarrow$ Theorem applies for F = sume dim $$X = \dim Y = d \rightsquigarrow$$ Theorem applies for $F =$ · (char(k) = $$p \neq 0, 2, 3, 5$$): $W_n \Omega^d / B_\infty$ · (char(k) $$\neq$$ 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M · (char(k) = $p \neq$ 0,2,3,5): $W_n \Omega^d / B_\infty$ #### Example Assume $$\dim X = \dim Y = d \rightsquigarrow$$ Theorem applies for $F =$ sume dim $$X = \dim Y = d \rightsquigarrow$$ Theorem applies for $F = d \rightsquigarrow$ • (char($$k$$) \neq 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M • (char(k) = $p \neq 0, 2, 3, 5$): $W_n \Omega^d / B_{\infty}$ • (char(k) = $p \neq 0, 2, 3, 5$): $R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$ The dim $$X = \dim Y = u \Leftrightarrow \text{Theorem applies for } F \text{Theo$$ Assume $\dim X = \dim Y = d \Leftrightarrow$ Theorem applies for F = $$(2) \neq 2, 3, 5$$: • (char(k) = $p \neq 0, 2, 3, 5$): $R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$ • (char(k) = p > 0): G(d), G sm unip k-group $$ar(k) \neq 2, 3, 5$$): - · (char(k) \neq 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ / dlog K_d^M - (char(k) = $p \neq 0, 2, 3, 5$): $W_n \Omega^d / B_{\infty}$ Assume $\dim X = \dim Y = d \Leftrightarrow$ Theorem applies for F = • (char(k) $$\neq$$ 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ / dlog K_d^M • (char($$R$$) \neq 2,3,5): $\Omega'_{/R}$, $\Omega'_{/R}$ /dlog K''_d • (char(R) = $p \neq$ 0,2,3,5): $W_n \Omega^d / B_\infty$ • (case char(k) = p > 0) $H^1(G)(d)$, G finite p-group/k · (char(k) = $$p \neq 0, 2, 3, 5$$): $W_n \Omega^d / B_\infty$ · (char(k) = $p \neq 0, 2, 3, 5$): $R^i \varepsilon_* (\mathbb{Z}/p^n(d))$ · (char($$k$$) = $p \neq 0, 2, 3, 5$): $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$ · (char(k) = $p > 0$): $G(d)$. G sm unip k -gr · (char($$k$$) = $p \neq 0, 2, 3, 5$): $R'\varepsilon_*(\mathbb{Z}/p''(d))$ · (char(k) = $p > 0$): $G\langle d \rangle$, G sm unip k -group $$(\operatorname{char}(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$ Assume $$\dim X = \dim Y = d \rightsquigarrow$$ Theorem applies for $F =$ · (char($$k$$) \neq 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M · (char(k) = $p \neq$ 0,2,3,5): $W_n \Omega^d / B_\infty$ • (char(k) = $p \neq 0, 2, 3, 5$): $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$ • (case char(k) = p > 0) $H^1(G)\langle d \rangle$, G finite p-group/k · (char($$k$$) = $p \neq 0, 2, 3, 5$): $R^{l} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$ · (char(k) = $p > 0$): $G\langle d \rangle$, G sm unip k -gro · (char($$k$$) = $p \neq 0, 2, 3, 3$). If $\mathcal{E}_*(\mathbb{Z}/p^*(\mathcal{U}))$ · (char(k) = $p > 0$): $G\langle d \rangle$, G sm unip k -group • (k alg closed) $R^d \varepsilon_* \mathbb{Q}/\mathbb{Z}(d)$ Assume $\dim X = \dim Y = d \rightsquigarrow$ Theorem applies for F = $$\cdot$$ (char(k) \neq 2, 3, 5): $\Omega^d_{/k}$, $\Omega^d_{/k}$ / dlog K^M_d • (char(k) = $$p \neq 0, 2, 3, 5$$): $W_n \Omega^d / B_\infty$ · (char($$k$$) = $p \neq 0, 2, 3, 5$): $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$ · (char($$k$$) = $p > 0$): $G\langle d \rangle$, G sm unip k -group • (case char($$k$$) = $p > 0$) $H^1(G)\langle d \rangle$, G finite p -group/ k $$\cdot$$ (k alg closed) $R^d \varepsilon_*
\mathbb{Q}/\mathbb{Z}(d)$ ### Remark: \cdot case $\Omega^d_{/k}$ known before (CR, Kovács) Assume $\dim X = \dim Y = d \rightsquigarrow$ Theorem applies for F = $$\cdot \text{ (char(}k\text{)} \neq 2,3,5\text{): } \Omega^d_{/k}, \quad \Omega^d_{/k}/\operatorname{dlog} K^M_d$$ • (char(k) = $$p \neq 0, 2, 3, 5$$): $W_n \Omega^d / B_\infty$ · (char($$k$$) = $p \neq 0, 2, 3, 5$): $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$ • (char($$k$$) = $p > 0$): $G\langle d \rangle$, G sm unip k -group • (case char(k) = $p > 0$) $H^1(G)\langle d \rangle$, G finite p -group/ k · (k alg closed) $$R^d \varepsilon_* \mathbb{Q}/\mathbb{Z}(d)$$ #### Remark: - \cdot case $\Omega^d_{/k}$ known before (CR, Kovács) - · last three cases use Bloch-Kato-Gabber and Voevodsky (Milnor-Bloch-Kato Conj) to check $F\langle 1\rangle_X=0$ Assume $\dim X = \dim Y = d \Leftrightarrow$ Theorem applies for F = • (char(k) $$\neq$$ 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M • (char(k) = $p \neq$ 0,2,3,5): $W_n \Omega^d / B_\infty$ · (char(k) = $$p \neq 0, 2, 3, 5$$): $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$ • (char($$k$$) = $p > 0$): $G\langle d \rangle$, G sm unip k -group • (case char(k) = $$p > 0$$) $H^1(G)\langle d \rangle$, G finite p-group/k · (k alg closed) $$R^d \varepsilon_* \mathbb{Q}/\mathbb{Z}(d)$$ #### Remark: - · case $\Omega^d_{/k}$ known before (CR, Kovács) - last three cases use Bloch-Kato-Gabber and Voevodsky (Milnor-Bloch-Kato Conj) to check $F\langle 1\rangle_X=0$ - there is a version of theorem with $F(1) \leftrightarrow \gamma F$ but in this we only get results if resolutions of singularities are available (in dim d) #### Corollary $(\sim \text{Pic}_{X/S}, \text{Pic}_{Y/S} \text{ representable})$ Assume X and Y are stably properly birational/S $\Longrightarrow \operatorname{Pic}_{X/S}[n] \cong \operatorname{Pic}_{Y/S}[n]$ on S_{Nis} , all n. $S, X, Y \in \mathbf{Sm}$ $X \to S, Y \to S$ flat, geom int, proj, gen fiber index 1 #### Corollary $S, X, Y \in \mathbf{Sm}$ $X \to S, Y \to S$ flat, geom int, proj, gen fiber index 1 $(\sim \text{Pic}_{X/S}, \text{Pic}_{Y/S} \text{ representable})$ $\Longrightarrow \operatorname{Pic}_{X/S}[n] \cong \operatorname{Pic}_{Y/S}[n]$ on S_{Nis} , all n. Remark: Was known at least for $S = \operatorname{Spec} k$ with k alg closed • K/k function field $X \operatorname{sm}/K \operatorname{dim} X = d$ - K/k function field $X \operatorname{sm}/K \operatorname{dim} X = d$ - diagonal of X decomposes :< (*) $$[\Delta_X] = p_2^* \xi + (i \times id)_* \beta \quad \text{in } CH^d(X \times_K X)$$ where $\xi \in CH_0(X)$, $\beta \in CH_d(Z \times_K X)$ with $codim(Z,X) \ge 1$ - K/k function field $X \operatorname{sm}/K \operatorname{dim} X = d$ - diagonal of X decomposes :< (*) $$[\Delta_X] = p_2^* \xi + (i \times id)_* \beta \quad \text{in } CH^d(X \times_K X)$$ where $\xi \in CH_0(X)$, $\beta \in CH_d(Z \times_K X)$ with $codim(Z, X) \ge 1$ • this condition was first considered by Bloch-Srinivas (with $\otimes \mathbb{Q}$) - K/k function field $X \operatorname{sm}/K \operatorname{dim} X = d$ - diagonal of X decomposes : \iff (*) $$[\Delta_X] = p_2^* \xi + (i \times id)_* \beta \quad \text{in } CH^d(X \times_K X)$$ where $\xi \in CH_0(X)$, $\beta \in CH_d(Z \times_K X)$ with $codim(Z, X) \ge 1$ - · this condition was first considered by Bloch-Srinivas (with $\otimes \mathbb{Q}$) - Colliot-Thélène-Pirutka → satisfied if X sm proj/K and retract rational (i.e. ∃ dense open U ⊂ X, V ⊂ Pⁿ_k, and a map V → U with section) - K/k function field $X \operatorname{sm}/K \operatorname{dim} X = d$ - diagonal of X decomposes :< (*) $$[\Delta_X] = p_2^* \xi + (i \times id)_* \beta \quad \text{in } CH^d(X \times_K X)$$ where $\xi \in CH_0(X)$, $\beta \in CH_d(Z \times_K X)$ with $codim(Z, X) \ge 1$ - this condition was first considered by Bloch-Srinivas (with $\otimes \mathbb{Q}$) - Colliot-Thélène-Pirutka → satisfied if X sm proj/K and retract rational (i.e. ∃ dense open U ⊂ X, V ⊂ Pⁿ_K, and a map V → U with section) - Implications of (*) on cohomology yield obstructions for X being retract rational over K $$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,x}^h & U \in \operatorname{Sm}, x \in U^{(1)} & \text{or} \\ \operatorname{reg \ conn \ aff \ finite \ type/K} & \dim S \leq 1 \end{cases}$$ $$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,x}^h & U \in \operatorname{Sm}, x \in U^{(1)} & \text{or} \\ \operatorname{reg \ conn \ aff \ finite \ type/K} & \operatorname{dim} S \leq 1 \end{cases}$$ $$f : X \to S \quad \operatorname{sm \ proi}$$ Assume the diagonal of the generic fiber of f decomposes $f: X \to S$ sm proj, $$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,x}^h & U \in \operatorname{Sm}, x \in U^{(1)} \\ \operatorname{reg\ conn\ aff\ finite\ type}/K & \dim S \leq 1 \end{cases}$$ $$f: X \to S \quad \operatorname{sm\ proj},$$ \implies F(S) = F(X) any $F \in RSC_{Nis}$ $$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,x}^h & U \in \operatorname{Sm}, x \in U^{(1)} \\ \operatorname{reg \ conn \ aff \ finite \ type}/K & \dim S \leq 1 \end{cases}$$ $$f: X \to S \quad \operatorname{sm \ proj},$$ Assume the diagonal of the generic fiber of f decomposes $$\implies$$ $F(S) = F(X)$ any $F \in \mathbf{RSC}_{Nis}$ Remark: Auel-Bigazzi-Böhning-Graf-von-Bothmer posed the problem: $$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,x}^h & U \in \operatorname{Sm}, x \in U^{(1)} & \text{or} \\ \operatorname{reg \ conn \ aff \ finite \ type/K} & \dim S \le 1 \end{cases}$$ $$f: X \to S$$ sm proj, Assume the diagonal of the generic fiber of f decomposes \implies F(S) = F(X) any $F \in RSC_{Nis}$ Remark: Auel-Bigazzi-Böhning-Graf-von-Bothmer posed the problem: $$k$$ alg closed char $(k) = p > 0$ X sm proper $/k$ with decomp. diag Do we have $H^0(X, R^i \varepsilon_* \mathbb{Z}/p(j)) = 0$ for $i \neq 0$? $$S = \begin{cases} \operatorname{Spec} \mathcal{O}_{U,X}^h & U \in \operatorname{Sm}, x \in U^{(1)} & \text{or} \\ reg \ conn \ aff \ finite \ type/K & \dim S \le 1 \end{cases}$$ $$f: X \to S \quad sm \ proj,$$ Assume the diagonal of the generic fiber of f decomposes $$\implies$$ $F(S) = F(X)$ any $F \in \mathbf{RSC}_{Nis}$ Remark: Auel-Bigazzi-Böhning-Graf-von-Bothmer posed the problem: $$k$$ alg closed char $(k) = p > 0$ X sm proper $/k$ with decomp. diag Do we have $H^0(X, R^i \varepsilon_* \mathbb{Z}/p(j)) = 0$ for $i \neq 0$? Thm \rightsquigarrow Yes (if X/k proj) Indeed in Thm take $S = \operatorname{Spec} k F = R^i \varepsilon_* \mathbb{Z}/p(j)$ and observe F(k) = 0 $f: X \to S \text{ in } Sm \quad \text{flat proj} \quad \dim X = d \quad \dim S = e$ Assume the diagonal of the generic fiber of f decomposes \Longrightarrow $$f: X \to S$$ in **Sm** flat proj dim $X = d$ dim $S = e$ Assume the diagonal of the generic fiber of f decom Assume the diagonal of the generic fiber of f decomposes \Longrightarrow $$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$ is an isomorphism, if F^d is one of the following sheaves $f: X \to S$ in **Sm** flat proj dim X = d dim S = e Assume the diagonal of the generic fiber of $$f$$ decomposes \Longrightarrow Assume the diagonal of the generic fiber of f decomposes $$\Longrightarrow$$ $$f_*: Rf_*\mathsf{F}_\mathsf{X}^d \xrightarrow{\simeq} \mathsf{F}_\mathsf{S}^e[\mathsf{e}-\mathsf{d}]$$ $$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$ • $(char(k) \neq 2,3,5)$: $\Omega_{/k}^d$, $\Omega_{/k}^d$ / $dlog K_d^M$ $f: X \to S$ in **Sm** flat proj dim X = d dim S = eAssume the diagonal of the generic fiber of f decomposes \Longrightarrow $$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$ $$J_*: KJ_*F_{\bar{X}} \to F_{\bar{S}}[e-u]$$ is an isomorphism, if F^d is one of the following sheaves • (char(k) $$\neq$$ 2,3,5): $\Omega^d_{/k}$, $\Omega^d_{/k}$ /dlog K^M_d · (char(k) $$\neq$$ 2,3,5): $\Omega^d_{/k}$, $\Omega^d_{/k}$ /dlog K^M_d • $(char(k) = p \neq 0, 2, 3, 5)$: $W_n \Omega^d / B_{\infty}$ $f: X \to S$ in Sm flat proj $\dim X = d$ $\dim S = e$ Assume the diagonal of the generic fiber of $$f$$ decomposes \Longrightarrow $f_*: Rf_*F_*^d \stackrel{\sim}{\to} F_*^e[e-d]$ $$f_*: Rf_*F_X^u \xrightarrow{\longrightarrow} F_S^e[e-d]$$ • (char(k) $$\neq$$ 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ /dlog K_d^M • $$(char(k) \neq 2,3,5)$$: $\Omega_{/k}^d$, $\Omega_{/k}^d$ / $dlog K_d^M$ • $(char(k) = p \neq 0,2,3,5)$: $W_d \Omega_d^d/R$ $$\cdot \text{ (char(k) = p \neq 0,2,3,5): } W_n \Omega^d / B_{\infty}$$ • $$(char(R) = p \neq 0, 2, 3, 5)$$: $W_n \Omega^n / B_\infty$ • $(char(R) = p \neq 0, 2, 3, 5)$: $R^i \varepsilon_* (\mathbb{Z}/p^n(d))$ $$\cdot (char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$ $f: X \to S$ in **Sm** flat proj dim X = d dim S = eAssume the diagonal of the generic fiber of f decomposes \Longrightarrow $$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$ is an isomorphism, if F^d is one of the following sheaves • (char(k) $$\neq$$ 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ / dlog K_d^M • $$(char(k) \neq 2,3,5)$$: $\Omega_{/k}^d$, $\Omega_{/k}^d$ / $dlog K_d^M$ $$\cdot (char(k) = p \neq 0, 2, 3, 5): W_n \Omega^d / B_\infty$$ $$\cdot (char(k) = p \neq 0, 2, 3, 5): Pic (\mathbb{Z}/p^n(d))$$ • $$(char(k) = p \neq 0, 2, 3, 5)$$. $W_n \Omega / B_\infty$ • $(char(k) = p \neq 0, 2, 3, 5)$: $R^i \varepsilon_* (\mathbb{Z}/p^n(d))$ $$\cdot (char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$ $$\cdot (char(k) = p > 0): G(d) = G(m) \cdot (char(k) = p > 0)$$ • $$(char(k) = p \neq 0, 2, 3, 5)$$: $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$ • $(char(k) = p > 0)$: $G(d)$, G sm unip k -group $f: X \to S$ in **Sm** flat proj dim X = d dim S = eAssume the diagonal of the generic fiber of f decomposes \Longrightarrow $$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$ is an isomorphism, if F^d is one of the following sheaves • (char(k) $$\neq$$ 2,3,5): $\Omega^d_{/k}$, $\Omega^d_{/k}$ / dlog K^M_d
• $$(cnar(R) \neq 2, 3, 5)$$: $\Omega_{/k}^{e}$, $\Omega_{/k}^{e}/d\log K_{d}^{e}$ • $(char(k) = p \neq 0, 2, 3, 5)$: $W_{n}\Omega^{d}/B_{\infty}$ $$\cdot (char(k) = p \neq 0, 2, 3, 5): W_n \Omega^d / B_{\infty}$$ $$\cdot (char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$ • $$(char(k) = p \neq 0, 2, 3, 5)$$: $R^i \varepsilon_*(\mathbb{Z}/p^n(d))$ • $(char(k) = p \geq 0)$: $G(d)$ $G(smunin h, around)$ • $$(char(k) = p \neq 0, 2, 3, 5)$$: $R^l \varepsilon_*(\mathbb{Z}/p^n(d))$ • $(char(k) = p > 0)$: $G\langle d \rangle$, G sm unip k -group $$(char(k) = p \neq 0, 2, 3, 3)$$. $k \in_*(\mathbb{Z}/p^*(d))$ $(char(k) = p > 0)$: $G\langle d \rangle$, G sm unip k -group • $$(char(k) = p > 0)$$: $G\langle d \rangle$, G sm unip k -group • $(case char(k) = p > 0)$ $H^1(G)\langle d \rangle$, G finite p -group/ k ### Theorem $f: X \to S$ in **Sm** flat proj dim X = d dim S = e Assume the diagonal of the generic fiber of f decomposes \Longrightarrow $$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$ is an isomorphism, if F^d is one of the following sheaves • $$(char(k) \neq 2,3,5)$$: $\Omega_{/k}^d$, $\Omega_{/k}^d$ / $dlog K_d^M$ • $(char(k) = p \neq 0,2,3,5)$: $W_0 \Omega^d / B_{ab}$ • $$(char(k) = p \neq 0, 2, 3, 5)$$: $W_n \Omega^d / B_\infty$ • $(char(k) = p \neq 0, 2, 3, 5)$: $Pic_n(\mathbb{Z}/p_n^n(d))$ $$(char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$ $$\cdot (char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$ $$\cdot (char(k) = p > 0): G/d \setminus G \text{ sm unip } k\text{-aroun}$$ • $$(char(k) = p \neq 0, 2, 3, 5)$$: $R^{i}\varepsilon_{*}(\mathbb{Z}/p^{n}(d))$ • $(char(k) = p > 0)$: $G(d)$, G sm unip k -group · (k alg closed) $R^d \varepsilon_* \mathbb{Q}/\mathbb{Z}(d)$ • $$(char(k) = p \neq 0, 2, 3, 3)$$. $k \in_*(\mathbb{Z}/p)(d)$ • $(char(k) = p > 0)$: $G\langle d \rangle$, G sm unip k -group • $(case\ char(k) = p > 0)$ $H^1(G)\langle d \rangle$, G finite p -group/ k $f: X \to S$ in Sm flat proj $\dim X = d$ $\dim S = e$ Assume the diagonal of the generic fiber of f decomposes \Longrightarrow $$f_*: Rf_*F_X^d \xrightarrow{\simeq} F_S^e[e-d]$$ is an isomorphism, if F^d is one of the following sheaves • (char(k) $$\neq$$ 2,3,5): $\Omega_{/k}^d$, $\Omega_{/k}^d$ / dlog K_d^M $$\cdot (char(k) = p \neq 0, 2, 3, 5): W_n \Omega^d / B_\infty$$ $$\cdot (char(k) = p \neq 0, 2, 3, 5): R^{i} \varepsilon_{*}(\mathbb{Z}/p^{n}(d))$$ • $$(char(k) = p \neq 0, 2, 3, 3)$$. $k \in_*(\mathbb{Z}/p^*(d))$ • $(char(k) = p > 0)$: $G\langle d \rangle$, $G \text{ sm unip } k\text{-group}$ • (case char(k) = $$p > 0$$) $H^1(G)\langle d \rangle$, G finite p-group/k • (k ala closed) $R^d \varepsilon_* \emptyset / \mathbb{Z}(d)$ ### _ Example k alg closed X/k sm proj $\dim X = d$ diagonal of X decomposes k alg closed X/k sm proj $\dim X = d$ diagonal of $X \to H^i(X, \mathbb{R}^{d+1} \varepsilon_* \mathbb{Z}/p^n(d)) = 0$ all i