Some solutions for Exercise sheet 11

Here are the solutions for Exercise 11.1, (iii) and Exercise 11.2, which I could not do in class today. They are a little bit more involved than I thought, sorry!

Exercise 11.1, (iii): Let R be a PID and M a finitely generated torsionfree R-module of rank n. Show that there exists an exact sequence of finitely generated torsion-free R-modules $0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0$, where $\operatorname{rank}(N)=n-1$ and $\operatorname{rank}(M / N)=1$.

Solution: Set $K:=\operatorname{Frac}(R)$ and denote by $\varphi: M \rightarrow M \otimes_{R} K$ the injection given by $\varphi(m)=m \otimes 1$. By part (ii) of the exercise we find $m_{1} \ldots, m_{n} \in M$ such that $\varphi\left(m_{1}\right), \ldots, \varphi\left(m_{n}\right)$ form a basis of $M \otimes_{R}$ K. Denote by $N^{\prime} \subset M \otimes_{R} K$ the K-subvector space generated by $\varphi\left(m_{1}\right), \ldots, \varphi\left(m_{n-1}\right)$. Set $N:=\varphi^{-1}\left(N^{\prime}\right)$. It is an R-submodule of M and hence is torsion-free.

Next we claim that N is finitely generated as R-module. [Indeed, we prove that if R is a PID and M is a finitely generated R-module, then any submodule $N \subset M$ is finitely generated. To this end let x_{1}, \ldots, x_{r} be a set of generators of M. We do induction over r. If $r=1$, then we have a surjection $\alpha: R \rightarrow M, a \mapsto a x_{1}$. Now $\alpha^{-1}(N)$ is an R-submodule of R, hence is an ideal, hence is generated by one element (R is a PID); it follows that N is generated by one element as well. Assume the statement is true for $r-1$ generators. Write $M^{\prime}=\sum_{i=1}^{r-1} R \cdot x_{i}$ and $M^{\prime \prime}=M / M^{\prime}$. Then M^{\prime} and $M^{\prime \prime}$ are generated by $\leq r-1$ elements. Set $N^{\prime}:=M^{\prime} \cap N$ and $N^{\prime \prime}:=N / N^{\prime}$. Then $N^{\prime} \subset M^{\prime}$ and $N^{\prime \prime} \subset M^{\prime \prime}$. By induction N^{\prime} and $N^{\prime \prime}$ are finitely generated, hence so is N as follows from the short exact sequence $0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0$. Back to the proof of Exc 11.1,(iii):]

By definition $N=\left\{m \in M \mid \exists a \in R\right.$ such that $\left.a m \in \sum_{i=1}^{n-1} R \cdot m_{i}\right\}$. It follows that $N \otimes_{R} K=N^{\prime}$. Thus all together N is a finitely generated torsion-free submodule of M of $\operatorname{rank} \operatorname{rk}(N)=n-1$.

Notice that if $m \in M$ and $a \in R$ such that $a m \in N$, then $m \in N$. Hence M / N is torsion-free. It is finitely generated, since M is. Since K is flat over R we have an exact sequence $0 \rightarrow N \otimes_{R} K \rightarrow M \otimes_{R} K \rightarrow$ $M / N \otimes_{R} K \rightarrow 0$. It follows that the K-vector space dimension of

[^0]$M / N \otimes_{R} K$ is 1, i.e. $\operatorname{rk}(M / N)=1$. This proves (iii).
Exercise 11.2: Show that \mathbb{Q} is a flat \mathbb{Z}-module but is not projective.
Solution: $\mathbb{Q}=S^{-1} \mathbb{Z}$ with $S=\mathbb{Z} \backslash\{0\}$. Hence \mathbb{Q} is flat over \mathbb{Z}. Next we prove that it is not projective. Consider the \mathbb{Z}-module \mathbb{Q} / \mathbb{Z}, which by definition is the cokernel of the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$. For $n \in \mathbb{N} \geq 1$ denote by $\alpha_{n}: \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}$ the unique \mathbb{Z}-module homomorphism with $\alpha_{n}(1) \equiv \frac{1}{n} \bmod \mathbb{Z}$. Clearly, $\operatorname{Ker}\left(\alpha_{n}\right)=n \mathbb{Z}$; hence α_{n} factors via $\bar{\alpha}_{n}$: $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}$. By the UMP of the direct sum we get a \mathbb{Z}-linear map $\alpha:=\oplus_{n} \alpha_{n}: \bigoplus_{n>1} \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Q} / \mathbb{Z}$. Clearly α is surjective. Denote by $\pi: \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z}$ the quotient map.

If \mathbb{Q} was a projective \mathbb{Z}-module, then there would exist a map $\pi_{1}: \mathbb{Q} \rightarrow$ $\bigoplus_{n \geq 1} \mathbb{Z} / n \mathbb{Z}$, such that $\alpha \circ \pi_{1}=\pi$. But any \mathbb{Z}-linear homomorphism $\beta: \overline{\mathbb{Q}} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is the zero map. (Since $\beta\left(\frac{a}{b}\right)=\beta\left(\frac{n a}{n b}\right)=n \beta\left(\frac{a}{n b}\right)=0$.) It follows that if $\pi_{1}: \mathbb{Q} \rightarrow \bigoplus_{n \geq 1} \mathbb{Z} / n \mathbb{Z}$ is a \mathbb{Z}-linear map, then its composition with any projection map $\bigoplus_{n \geq 1} \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ is zero; hence π_{1} is zero. Thus $\alpha \circ \pi_{1}=\pi$ would imply $\pi=0$, i.e. $\mathbb{Q} / \mathbb{Z}=0$, i.e. the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is surjective, which is absurd. Hence \mathbb{Q} is not projective as an \mathbb{Z}-module.

[^0]: ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103 (RUD25) on Tue/Thu/Fri.

