Exercise sheet 9 for Algebra II

Kay Rülling ${ }^{1}$

Exercise 1 (Faithfully flat descent). Let $\varphi: A \rightarrow B$ be a ring homomorphism, which is faithfully flat (i.e., if we view B as an A-algebra via φ, then B is faithfully flat over A.) Define $d: B \rightarrow B \otimes_{A} B$ by $d(b)=1 \otimes b-b \otimes 1$; it is an A-linear map. Show that the sequence

$$
(*) \quad 0 \rightarrow A \xrightarrow{\varphi} B \xrightarrow{d} B \otimes_{A} B
$$

is an exact sequence of A-modules, in particular $A \cong \operatorname{Ker}(d)$. To this end proceed as follows:
(i) Consider the sequence $(*) \otimes_{A} B$, i.e.,

$$
(2 *) \quad 0 \rightarrow B \xrightarrow{d_{0}} B \otimes_{A} B \xrightarrow{d_{1}} B \otimes_{A} B \otimes_{A} B,
$$

where d_{0} is the composition of the isomorphism $B \cong A \otimes_{A} B$ with $\varphi \otimes \mathrm{id}_{B}$ and $d_{1}=d \otimes \mathrm{id}_{B}$. Show that there are well defined A-linear maps $s_{0}: B^{\otimes 2} \rightarrow B$, with $s_{0}\left(b_{1} \otimes b_{2}\right)=b_{1} b_{2}$, and $s_{1}: B^{\otimes 3} \rightarrow B^{\otimes 2}$, with $s_{1}\left(b_{1} \otimes b_{2} \otimes b_{3}\right)=b_{1} \otimes b_{2} b_{3}$.
(ii) Show that $\mathrm{id}_{B}=s_{0} \circ d_{0}$ and $\mathrm{id}_{B^{\otimes 2}}=d_{0} \circ s_{0}-s_{1} \circ d_{1}$.
(iii) Conclude that $(2 *)$ is exact.
(iv) Conclude that $(*)$ is exact.

Exercise 2. Let L / K be a finite field extension which is Galois, i.e., $L \cong K[x] /(f)$, where $f \in K[x]$ is an irreducible polynomial of degree n such that $f=\prod_{i}\left(x-a_{i}\right) \in L[x]$, with $a_{i} \neq a_{j}$, for $i \neq j$. Set $\operatorname{Gal}(L / K)=\{K$-algebra automorphisms of $L\}$. Show

$$
L^{\operatorname{Gal}(L / K)}:=\{b \in L \mid \sigma(b)=b \text { for all } \sigma \in \operatorname{Gal}(L / K)\}=K
$$

This is one of the main statements of Galois theory. (Hint: Show that L / K is faithfully flat. Then use the description of $L \otimes_{K} L$ from Exercise 2 on sheet 7 and Exercise 1 above.)

Exercise 3. Let R be a ring and $S \subset R$ a multiplicative subset.
(i) Show that $S^{-1} R$ is a flat R-algebra. (Hint: Ideal criterion for flatness.)

[^0](ii) Let M be an R-module. Show that
$\operatorname{Ker}\left(M \rightarrow S^{-1} R \otimes_{R} M\right)=\{m \in M \mid \exists s \in S$ such that $s m=0\}$.
Exercise 4. Let A be a local domain, i.e. a local ring which is a domain, with maximal ideal \mathfrak{m}, residue field $k=A / \mathfrak{m}$ and fraction field $K=\operatorname{Frac}(A)$. Let M be a finitely generated A-module. Assume that we have the equality of vector space dimensions $\operatorname{dim}_{K}\left(M \otimes_{A} K\right)=$ $\operatorname{dim}_{k}\left(M \otimes_{A} k\right)=: n$. Show that M is a free A-module of rank n. (Hint: Use a Corollary of Nakayama's Lemma to see that M is generated by n elements. This yields an exact sequence $0 \rightarrow L \rightarrow A^{n} \rightarrow M \rightarrow 0$. Use Exercise 3, (i) to conclude $L \otimes_{A} K=0$ and Exercise 3, (ii) to conclude $L=0$.)

Definition 5. Let R be a domain with fraction field $K=\operatorname{Frac}(R)$. The normalization \tilde{R} of R is the integral closure of R in K. We say that R is normal if it integrally closed in K, i.e. if $R=\tilde{R}$.

Exercise 6. Let R be a domain and $S \subset R$ a multiplicative subset with $0 \notin S$. Show that the normalization of $S^{-1} R$ is the localization at S of the normalization, i.e., $\widetilde{S^{-1} R}=S^{-1} \tilde{R}$. In particular, if R is normal, then so is $S^{-1} R$.

Exercise 7. Show that a UFD is normal.
Exercise 8. Let k be a field and set $R:=k[X, Y] /\left(Y^{2}-X^{2}-X^{3}\right)$ and denote by $x=\bar{X}$ and $y=\bar{Y}$ the images of X and Y in R.
(i) Show that R is a domain.
(ii) Set $t:=y / x \in \operatorname{Frac}(R)=: K$. Show that $k[t] \subset K$ is isomorphic as k-algebra to the polynomial ring with one variable and coefficients in k.
(iii) Show that $\operatorname{Frac}(R)=k(t)$. Here $k(t)=\operatorname{Frac}(k[t])$.
(iv) Show that $k[t]$ is the normalization of R. (Hint: First observe using 7 that it suffices to show that $k[t]$ contains R and is integral over R.)

[^0]: ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103(RUD25) on Tue/Thu/Fri.

