## Exercise sheet 7 for Algebra II

Kay Rülling ${ }^{1}$

Exercise 1. Let $R$ be a ring and $I, J \subset R$ two ideals. Show that $R / I \otimes_{R} R / J \cong R /(I+J)$.

Exercise 2. Let $K$ be a field and $f \in K[X]$ an irreducible polynomial. Let $L / K$ be a field extension which contains all roots of $f$, i.e., $f=$ $\prod_{i=1}^{n}\left(X-a_{i}\right)$ with $a_{i} \in L$. Assume that $f$ is separable, i.e., $a_{i} \neq a_{j}$, for all $i \neq j$. Set $K_{f}:=K[X] /(f)$, from Exercise sheet 2 we know that $K_{f}$ is a field. Denote by $\alpha \in K_{f}$ the class of $X \bmod (f)$.
(i) Show that there are unique $K$-algebra homomorphisms $\sigma_{i}$ : $K_{f} \rightarrow L$ such that $\sigma_{i}(\alpha)=a_{i}, i=1, \ldots, n$.
(ii) Show that there is a unique isomorphism of $K$-algebras $K_{f} \otimes_{K}$ $L \xrightarrow{\simeq} \prod_{i=1}^{n} L$ sending $b \otimes \lambda$ to $\left(\sigma_{1}(b) \lambda, \ldots, \sigma_{n}(b) \lambda\right)$.

Exercise 3. Let $\varphi: R \rightarrow R^{\prime}$ be a ring homomorphism. Recall we that have the functor $\varphi_{*}:\left(R^{\prime}-\bmod \right) \rightarrow(R$-mod $)$ which sends an $R^{\prime}$ module $N$ to the $R$-module with the same underlying group and scalar multiplication induced via $\varphi$. In the following we view $R^{\prime}$ as an $R$ module via $\varphi$.
(i) Let $M$ be an $R$-module. Show that $M \otimes_{R} R^{\prime}$ is naturally an $R^{\prime}$-module.
(ii) Show that we get a functor $\left(R\right.$-mod) $\rightarrow\left(R^{\prime}-\right.$ mod $), M \mapsto$ $\varphi^{*}(M):=M \otimes_{R} R^{\prime}$.
(iii) Show that there is a natural transformation $\eta: \mathrm{id}_{(R-\bmod )} \rightarrow$ $\varphi_{*} \circ \varphi^{*}$ such that $\eta(M): M \rightarrow \varphi_{*} \varphi^{*} M=M \otimes_{R} R^{\prime}$ is given by $m \mapsto m \otimes 1$.
(iv) Show that $\varphi^{*}$ is left adjoint to $\varphi_{*}$. (Hint: Use Exercise 5.2, (b).)
(v) Show that for $R$-modules $M$ and $M^{\prime}$ and an $R^{\prime}$-module $N$ we have the following formulas:

$$
\varphi_{*}\left(\varphi^{*} M \otimes_{R^{\prime}} N\right) \cong M \otimes_{R} \varphi_{*} N, \quad \varphi^{*}\left(M \otimes_{R} M^{\prime}\right) \cong \varphi^{*} M \otimes_{R^{\prime}} \varphi^{*}\left(M^{\prime}\right)
$$

[^0]Exercise 4. Let $R$ and $R^{\prime}$ be two rings and $F:(R-\bmod ) \rightarrow\left(R^{\prime}-\bmod \right)$ be a functor. Show that the following statements are equivalent:
(i) $F$ is exact.
(ii) If $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is a short exact sequence of $R$-modules, then $0 \rightarrow F\left(M^{\prime}\right) \rightarrow F(M) \rightarrow F\left(M^{\prime \prime}\right) \rightarrow 0$ is a short exact sequence of $R^{\prime}$-modules.
(iii) $F$ is left exact, and, if $M \rightarrow M^{\prime \prime}$ is surjective, then so is $F(M) \rightarrow F\left(M^{\prime \prime}\right)$.
(iv) $F$ is right exact, and, if $M^{\prime} \rightarrow M$ is injective, then so is $F\left(M^{\prime}\right) \rightarrow F(M)$.
(v) If $\alpha: M \rightarrow N$ is an $R$-linear map, then $F(\operatorname{Ker}(\alpha))=\operatorname{Ker}(F(\alpha))$ and $F(\operatorname{Im}(\alpha))=\operatorname{Im}(F(\alpha))$.


[^0]:    ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103(RUD25) on Tue/Thu/Fri.

