Exercise sheet 7 for Algebra II

Kay Rülling¹

Exercise 1. Let R be a ring and $I, J \subset R$ two ideals. Show that $R/I \otimes_R R/J \cong R/(I+J)$.

Exercise 2. Let K be a field and $f \in K[X]$ an irreducible polynomial. Let L/K be a field extension which contains all roots of f, i.e., $f = \prod_{i=1}^{n} (X - a_i)$ with $a_i \in L$. Assume that f is separable, i.e., $a_i \neq a_j$, for all $i \neq j$. Set $K_f := K[X]/(f)$, from Exercise sheet 2 we know that K_f is a field. Denote by $\alpha \in K_f$ the class of $X \mod (f)$.

- (i) Show that there are unique K-algebra homomorphisms σ_i : $K_f \to L$ such that $\sigma_i(\alpha) = a_i, i = 1, ..., n$.
- (ii) Show that there is a unique isomorphism of K-algebras $K_f \otimes_K L \xrightarrow{\simeq} \prod_{i=1}^n L$ sending $b \otimes \lambda$ to $(\sigma_1(b)\lambda, \ldots, \sigma_n(b)\lambda)$.

Exercise 3. Let $\varphi : R \to R'$ be a ring homomorphism. Recall we that have the functor $\varphi_* : (R'\text{-mod}) \to (R\text{-mod})$ which sends an R'-module N to the R-module with the same underlying group and scalar multiplication induced via φ . In the following we view R' as an R-module via φ .

- (i) Let M be an R-module. Show that $M \otimes_R R'$ is naturally an R'-module.
- (ii) Show that we get a functor $(R-\text{mod}) \to (R'-\text{mod}), M \mapsto \varphi^*(M) := M \otimes_R R'.$
- (iii) Show that there is a natural transformation η : $\mathrm{id}_{(R-\mathrm{mod})} \to \varphi_* \circ \varphi^*$ such that $\eta(M): M \to \varphi_* \varphi^* M = M \otimes_R R'$ is given by $m \mapsto m \otimes 1$.
- (iv) Show that φ^* is left adjoint to φ_* . (*Hint:* Use Exercise 5.2, (b).)
- (v) Show that for R-modules M and M' and an R'-module N we have the following formulas:

$$\varphi_*(\varphi^*M \otimes_{R'} N) \cong M \otimes_R \varphi_*N, \quad \varphi^*(M \otimes_R M') \cong \varphi^*M \otimes_{R'} \varphi^*(M').$$

 $^{^1 \}rm Questions$ or comments to kay.ruelling@fu-berlin.de or come to $1.103 (\rm RUD25)$ on Tue/Thu/Fri.

Exercise 4. Let R and R' be two rings and $F : (R-mod) \to (R'-mod)$ be a functor. Show that the following statements are equivalent:

- (i) F is exact.
- (ii) If $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of R-modules, then $0 \to F(M') \to F(M) \to F(M'') \to 0$ is a short exact sequence of R'-modules.
- (iii) F is left exact, and, if $M \to M''$ is surjective, then so is $F(M) \to F(M'')$.
- (iv) F is right exact, and, if $M' \to M$ is injective, then so is $F(M') \to F(M)$.
- (v) If $\alpha : M \to N$ is an *R*-linear map, then $F(\text{Ker}(\alpha)) = \text{Ker}(F(\alpha))$ and $F(\text{Im}(\alpha)) = \text{Im}(F(\alpha))$.