Exercise sheet 6 for Algebra II

Kay Rülling ${ }^{1}$

Exercise 1. Let R be a ring. Show that any R-module is a filtered direct limit over its finitely generated submodules. (Hint: First show that the set of all finitely generated submodules of a given R-module M form a directed partially ordered set, with the partial order given by the inclusion. Then go to the limit!)

Exercise 2. Let R be a ring, I a filtered category and $M: I \rightarrow$ (R-mod) a functor. Denote by $\alpha_{i}^{M}: M_{i} \rightarrow \underset{\longrightarrow}{\lim } M$ the natural R-linear maps.
(i) Show that for R-modules N there is a natural R-linear map

$$
\theta(N): \underset{I}{\lim }\left(\operatorname{Hom}_{R}(N, M)\right) \rightarrow \operatorname{Hom}_{R}(N, \underset{I}{\lim } M),
$$

which is unique with the property that we have the following equality
$\theta(N) \circ \alpha_{i}^{\operatorname{Hom}_{R}(N, M)}=\operatorname{Hom}_{R}\left(N, \alpha_{i}^{M}\right): \operatorname{Hom}_{R}\left(N, M_{i}\right) \rightarrow \operatorname{Hom}_{R}(N, \underset{I}{\lim } M)$.
(ii) Show that if $\varphi: N^{\prime} \rightarrow N$ is an R-linear map then we have the following equality of maps between $\lim _{I}\left(\operatorname{Hom}_{R}(N, M)\right) \rightarrow$ $\operatorname{Hom}_{R}\left(N^{\prime}, \lim _{I} M\right)$
$\theta\left(N^{\prime}\right) \circ \underset{I}{\lim }\left(\operatorname{Hom}_{R}(\varphi, M)\right)=\operatorname{Hom}_{R}(\varphi, \underset{I}{\lim } M) \circ \theta(N)$.
(iii) Show that for all natural numbers $n \geq 0$ the R-linear map $\theta\left(R^{n}\right): \lim _{I}\left(\operatorname{Hom}_{R}\left(R^{n}, M\right)\right) \xrightarrow{\simeq} \operatorname{Hom}_{R}\left(R^{n}, \underset{\longrightarrow}{\lim _{I}} M\right)$ is an isomorphism. (Hint: Use the compatibility of $\operatorname{Hom}_{R}(-,-)$ and $\xrightarrow{\lim _{I}}$ with direct sums proved in the lecture.)
(iv) Show that $\theta(N): \lim _{I}\left(\operatorname{Hom}_{R}(N, M)\right) \rightarrow \operatorname{Hom}_{R}\left(N, \underline{\lim }_{I} M\right)$ is injective if N is finitely generated and bijective if N is finitely presented. (Hint: If N is finitely generated we find a free presentation $R^{\oplus \Sigma} \rightarrow R^{n} \rightarrow N \rightarrow 0$, with Σ a finite set in case

[^0]N is finitely presented. Then use the exactness properties of $\operatorname{Hom}_{R}, \xrightarrow{\lim }$, the Snake Lemma and the above.)
Exercise 3. Let A be an R-algebra.
(i) Show that there is a well defined R-linear map $\mu: A \otimes_{R} A \rightarrow A$ such that $\mu(a \otimes b)=a b$.
(ii) Show that $\mu: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow \mathbb{Q}$ is an isomorphism.
(iii) Show that $\mu: R[x] \otimes_{R} R[x] \rightarrow R[x]$ is surjective but not injective.

Exercise 4. Let M and N be free R-modules with respective bases $\left\{m_{\lambda}\right\}_{\lambda \in \Lambda}$ and $\left\{n_{\sigma}\right\}_{\sigma \in \Sigma}$. Show that $M \otimes_{R} N$ is free with basis $\left\{m_{\lambda} \otimes\right.$ $\left.n_{\sigma}\right\}_{(\lambda, \sigma) \in \Lambda \times \Sigma}$. In particular, $R^{m} \otimes_{R} R^{n} \cong R^{m n}$.

[^0]: ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103(RUD25) on Tue/Thu/Fri.

