Exercise sheet 5 for Algebra II

Kay Rülling¹

Exercise 1. Let R be a ring. Denote by $A = R[x_i | i \in \mathbb{N}]$ the polynomial ring in countably many variables and by $I = \langle x_i, i \in \mathbb{N} \rangle \subset A$ the ideal generated by all the variables. Set M := A/I; it has a natural A-module structure (via the quotient map) and via the inclusion $R \hookrightarrow A$ also an R-module structure.

- (i) Is *M* finitely presented as *A*-module?
- (ii) Is *M* finitely presented as *R*-module?

Exercise 2. Let $F : C \to D$ and $G : D \to C$ be two functors between categories.

- (i) Assume that F is left adjoint to G, i.e. we have a bijection $\varphi_{X,Y}$: Hom_D(F(X), Y) $\xrightarrow{\simeq}$ Hom_C(X, G(Y)), for all $X \in C$ and $Y \in D$, which is natural in the sense discussed in the lecture.
 - (a) Show that there is a natural transformation of functors $\eta : \operatorname{id}_C \to G \circ F$, such that $\eta(X) = \varphi_{X,F(X)}(\operatorname{id}_{F(X)}) : X \to G(F(X)).$
 - (b) Show that for any morphism $g: X \to G(Y)$ in C there is a unique morphism $f: F(X) \to Y$ in D such that $g = G(f) \circ \eta(X)$.
- (ii) Assume there is a natural transformation $\eta : \mathrm{id}_C \to G \circ F$ as in (a) satisfying (b). Show that in this case F is left adjoint to G.

Exercise 3. Let R be a ring and $I \subset R$ an ideal. Denote by $\pi : R \to R/I$ the quotient map. Recall that if M is an R/I-module then we denote by π_*M the R-module whose underlying abelian group is the one from M and scalar multiplication is defined by $x \cdot m := \pi(x)m, x \in R, m \in M$. Show that we obtain a functor $\pi_* : (R/I - \text{mod}) \to (R - \text{mod})$ and that it has a left adjoint, which is on objects given by

 $\pi^* : (R - \text{mod}) \to (R/I - \text{mod}), \quad N \mapsto \pi^*(N) := N/IN.$

 $^{^1 \}rm Questions$ or comments to kay.ruelling@fu-berlin.de or come to $1.103 (\rm RUD25)$ on Tue/Thu/Fri.