Exercise sheet 5 for Algebra II

Kay Rülling ${ }^{1}$

Exercise 1. Let R be a ring. Denote by $A=R\left[x_{i} \mid i \in \mathbb{N}\right]$ the polynomial ring in countably many variables and by $I=<x_{i}, i \in \mathbb{N}>\subset A$ the ideal generated by all the variables. Set $M:=A / I$; it has a natural A-module structure (via the quotient map) and via the inclusion $R \hookrightarrow A$ also an R-module structure.
(i) Is M finitely presented as A-module?
(ii) Is M finitely presented as R-module?

Exercise 2. Let $F: C \rightarrow D$ and $G: D \rightarrow C$ be two functors between categories.
(i) Assume that F is left adjoint to G, i.e. we have a bijection $\varphi_{X, Y}: \operatorname{Hom}_{D}(F(X), Y) \xrightarrow{\simeq} \operatorname{Hom}_{C}(X, G(Y))$, for all $X \in C$ and $Y \in D$, which is natural in the sense discussed in the lecture.
(a) Show that there is a natural transformation of functors $\eta: \operatorname{id}_{C} \rightarrow G \circ F$, such that $\eta(X)=\varphi_{X, F(X)}\left(\operatorname{id}_{F(X)}\right):$ $X \rightarrow G(F(X))$.
(b) Show that for any morphism $g: X \rightarrow G(Y)$ in C there is a unique morphism $f: F(X) \rightarrow Y$ in D such that $g=G(f) \circ \eta(X)$.
(ii) Assume there is a natural transformation $\eta: \mathrm{id}_{C} \rightarrow G \circ F$ as in (a) satisfying (b). Show that in this case F is left adjoint to G.

Exercise 3. Let R be a ring and $I \subset R$ an ideal. Denote by $\pi: R \rightarrow$ R / I the quotient map. Recall that if M is an R / I-module then we denote by $\pi_{*} M$ the R-module whose underlying abelian group is the one from M and scalar multiplication is defined by $x \cdot m:=\pi(x) m, x \in R$, $m \in M$. Show that we obtain a functor $\pi_{*}:(R / I-\bmod) \rightarrow(R-\bmod)$ and that it has a left adjoint, which is on objects given by

$$
\pi^{*}:(R-\bmod) \rightarrow(R / I-\bmod), \quad N \mapsto \pi^{*}(N):=N / I N .
$$

[^0]
[^0]: ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103 (RUD25) on Tue/Thu/Fri.

