Exercise sheet 4 for Algebra II

Kay Rülling

Exercise 1. Let R be a ring and $I \subset R$ an ideal. Show that I is free as an R-module if and only if I = (x), where $x \in R$ is a nonzerodivisor.

Exercise 2. Let R be a ring and A = R[x, y] the polynomial ring in two variables with coefficients in R. Give free finite presentations of the ideals (x, y) and (x^2, xy, y^2) , viewed as A-modules.

Exercise 3. Let $M' \xrightarrow{\alpha} M \xrightarrow{\beta} M''$ be an exact sequence of R modules. Assume α is injective and β has a section, i.e. there is an R-linear map $\sigma: M'' \to M$ such that $\beta \circ \sigma = \operatorname{id}_{M''}$. Show that then β is surjective, α has a retraction and the sequence splits.

Exercise 4. Let $0 \to N' \xrightarrow{a} N \xrightarrow{b} N''$ be a sequence of *R*-modules. Show that it is exact if and only if for all *R*-modules *M* the sequence $0 \to \operatorname{Hom}_R(M, N') \xrightarrow{a_*} \operatorname{Hom}_R(M, N) \xrightarrow{b_*} \operatorname{Hom}_R(M, N'')$ is exact. (Here $a_*(\varphi) = a \circ \varphi$ and similar with b_* .)

Exercise 5. Let R be a ring, $x \in R$ a nonzerodivisor and $r, s \geq 1$ positive integers. Show that there is a well-defined R-linear map \underline{x}^r : $R/(x^s) \to R/(x^{s+r})$, $a \mod (x^s) \mapsto x^r a \mod (x^{r+s})$, which fits in a short exact sequence of R-modules

$$0 \to R/(x^s) \xrightarrow{\underline{x}^r} R/(x^{r+s}) \to R/(x^r) \to 0.$$

Can this sequence be split?