Exercise sheet 4 for Algebra II

Kay Rülling

Exercise 1. Let R be a ring and $I \subset R$ an ideal. Show that I is free as an R-module if and only if $I=(x)$, where $x \in R$ is a nonzerodivisor.

Exercise 2. Let R be a ring and $A=R[x, y]$ the polynomial ring in two variables with coefficients in R. Give free finite presentations of the ideals (x, y) and $\left(x^{2}, x y, y^{2}\right)$, viewed as A-modules.

Exercise 3. Let $M^{\prime} \xrightarrow{\alpha} M \xrightarrow{\beta} M^{\prime \prime}$ be an exact sequence of R modules. Assume α is injective and β has a section, i.e. there is an R-linear map $\sigma: M^{\prime \prime} \rightarrow M$ such that $\beta \circ \sigma=\operatorname{id}_{M^{\prime \prime}}$. Show that then β is surjective, α has a retraction and the sequence splits.
Exercise 4. Let $0 \rightarrow N^{\prime} \xrightarrow{a} N \xrightarrow{b} N^{\prime \prime}$ be a sequence of R-modules. Show that it is exact if and only if for all R-modules M the sequence $0 \rightarrow \operatorname{Hom}_{R}\left(M, N^{\prime}\right) \xrightarrow{a_{*}} \operatorname{Hom}_{R}(M, N) \xrightarrow{b_{*}} \operatorname{Hom}_{R}\left(M, N^{\prime \prime}\right)$ is exact. (Here $a_{*}(\varphi)=a \circ \varphi$ and similar with b_{*}.)

Exercise 5. Let R be a ring, $x \in R$ a nonzerodivisor and $r, s \geq 1$ positive integers. Show that there is a well-defined R-linear map \underline{x}^{r} : $R /\left(x^{s}\right) \rightarrow R /\left(x^{s+r}\right), a \bmod \left(x^{s}\right) \mapsto x^{r} a \bmod \left(x^{r+s}\right)$, which fits in a short exact sequence of R-modules

$$
0 \rightarrow R /\left(x^{s}\right) \xrightarrow{\underline{x^{r}}} R /\left(x^{r+s}\right) \rightarrow R /\left(x^{r}\right) \rightarrow 0 .
$$

Can this sequence be split?

