Exercise sheet 3 for Algebra II

Kay Rülling

Exercise 1. (i) Show that $\mathbb{Z}[i] := \mathbb{Z}[x] / \langle x^2 + 1 \rangle$ and $\mathbb{Z}[\sqrt{-5}] := \mathbb{Z}[x] / \langle x^2 + 5 \rangle$ are domains (*Hint:* Use Exercise sheet 2.)

- (ii) Show that $\mathbb{Z}[i]$ is an euclidean domain. In particular, it is a UFD.
- (iii) Show that if $p \in \mathbb{Z}$ is a prime number, then $p \cdot \mathbb{Z}[i]$ is a prime ideal if and only if -1 is not a square in $\mathbb{Z}/\langle p \rangle$.
- (iv) Show that $2 \in \mathbb{Z}[\sqrt{-5}]$ is irreducible but not prime. Hence $\mathbb{Z}[\sqrt{-5}]$ is not a UFD. (*Hint:* To show that 2 is not prime try to factor $6 \in \mathbb{Z}[\sqrt{-5}]$ in two different ways.)

Exercise 2. Let R be an integral domain and R[X, Y] the polynomial ring in two variables with coefficients in R. Let $m, n \in \mathbb{Z}_{\geq 1}$ be positive integers.

- (i) Show that the ideal $\langle X^m Y^n \rangle$ is prime in R[X,Y] if and only if m and n are coprime, i.e. $\langle m, n \rangle = \mathbb{Z}$. (*Hint:* For the "if" direction: Show that the map $\varphi : R[X,Y] \rightarrow R[T], f(X,Y) \mapsto f(T^n,T^m)$ is a ring homomorphism, which factors over a ring homomorphism $\bar{\varphi} : R[X,Y] / \langle X^m - Y^n \rangle \rightarrow R[T]$. Then show that $\bar{\varphi}$ is injective.)
- (ii) Let K be a field. Show that $y = \overline{Y} \in K[X, Y] / \langle Y^2 X^3 \rangle$ is irreducible but not prime.

Exercise 3. For a ring R we denote by Spec R its set of prime ideals. Let $\varphi : R \to R'$ be a ring homomorphism. From the lecture we know that this induces a map (of sets) $\varphi^{-1} : \operatorname{Spec} R' \to \operatorname{Spec} R, \mathfrak{p} \mapsto f^{-1}(\mathfrak{p})$.

(i) Let R_1, \ldots, R_n be rings, denote by $R = R_1 \times \ldots \times R_n$ their product and by $\pi_i : R \to R_i$, $(a_1, \ldots, a_n) \mapsto a_i$, $i = 1, \ldots, n$, the projection maps.

Show that π_i^{-1} : Spec $R_i \to$ Spec R maps bijectively onto $\pi_i^{-1}(\operatorname{Spec} R_i)$ and that we have the following decomposition of Spec R into disjoint sets

Spec $R = \pi_1^{-1}(\operatorname{Spec} R_1) \sqcup \ldots \sqcup \pi_n^{-1}(\operatorname{Spec} R_n) \xleftarrow{\operatorname{bij.}} \operatorname{Spec} R_1 \sqcup \ldots \sqcup \operatorname{Spec} R_n.$

(ii) Let $\pi : R \to R_{\text{red}} := R/\text{nil}(R)$ be the canonical surjection. Show that $\pi^{-1} : \operatorname{Spec} R_{\text{red}} \to \operatorname{Spec} R$ is bijective. **Exercise 4.** Let *R* be a reduced ring with minimal prime ideals \mathfrak{p}_{λ} , $\lambda \in \Lambda$. Show that the ring homomorphism $R \to \prod_{\lambda \in \Lambda} R/\mathfrak{p}_{\lambda}, x \mapsto (x \mod \mathfrak{p}_{\lambda})$ is injective.