Exercise sheet 3 for Algebra II

Kay Rülling

Exercise 1. (i) Show that $\mathbb{Z}[i]:=\mathbb{Z}[x] /<x^{2}+1>$ and $\mathbb{Z}[\sqrt{-5}]:=$ $\mathbb{Z}[x] /<x^{2}+5>$ are domains (Hint: Use Exercise sheet 2.)
(ii) Show that $\mathbb{Z}[i]$ is an euclidean domain. In particular, it is a UFD.
(iii) Show that if $p \in \mathbb{Z}$ is a prime number, then $p \cdot \mathbb{Z}[i]$ is a prime ideal if and only if -1 is not a square in $\mathbb{Z} /\langle p\rangle$.
(iv) Show that $2 \in \mathbb{Z}[\sqrt{-5}]$ is irreducible but not prime. Hence $\mathbb{Z}[\sqrt{-5}]$ is not a UFD. (Hint: To show that 2 is not prime try to factor $6 \in \mathbb{Z}[\sqrt{-5}]$ in two different ways.)
Exercise 2. Let R be an integral domain and $R[X, Y]$ the polynomial ring in two variables with coefficients in R. Let $m, n \in \mathbb{Z}_{\geq 1}$ be positive integers.
(i) Show that the ideal $<X^{m}-Y^{n}>$ is prime in $R[X, Y]$ if and only if m and n are coprime, i.e. $<m, n>=\mathbb{Z}$.
(Hint: For the "if" direction: Show that the map $\varphi: R[X, Y] \rightarrow$ $R[T], f(X, Y) \mapsto f\left(T^{n}, T^{m}\right)$ is a ring homomorphism, which factors over a ring homomorphism $\bar{\varphi}: R[X, Y] /<X^{m}-$ $Y^{n}>\rightarrow R[T]$. Then show that $\bar{\varphi}$ is injective.)
(ii) Let K be a field. Show that $y=\bar{Y} \in K[X, Y] /<Y^{2}-X^{3}>$ is irreducible but not prime.

Exercise 3. For a ring R we denote by $\operatorname{Spec} R$ its set of prime ideals. Let $\varphi: R \rightarrow R^{\prime}$ be a ring homomorphism. From the lecture we know that this induces a map (of sets) $\varphi^{-1}: \operatorname{Spec} R^{\prime} \rightarrow \operatorname{Spec} R, \mathfrak{p} \mapsto f^{-1}(\mathfrak{p})$.
(i) Let R_{1}, \ldots, R_{n} be rings, denote by $R=R_{1} \times \ldots \times R_{n}$ their product and by $\pi_{i}: R \rightarrow R_{i},\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{i}, i=1 \ldots, n$, the projection maps.

Show that $\pi_{i}^{-1}: \operatorname{Spec} R_{i} \rightarrow \operatorname{Spec} R$ maps bijectively onto π_{i}^{-1} (Spec $\left.R_{i}\right)$ and that we have the following decomposition of Spec R into disjoint sets
$\operatorname{Spec} R=\pi_{1}^{-1}\left(\operatorname{Spec} R_{1}\right) \sqcup \ldots \sqcup \pi_{n}^{-1}\left(\operatorname{Spec} R_{n}\right) \stackrel{\text { bij. }}{\leftrightarrows} \operatorname{Spec} R_{1} \sqcup \ldots \sqcup \operatorname{Spec} R_{n}$.
(ii) Let $\pi: R \rightarrow R_{\text {red }}:=R /$ nil(R) be the canonical surjection. Show that $\pi^{-1}: \operatorname{Spec} R_{\text {red }} \rightarrow \operatorname{Spec} R$ is bijective.

Exercise 4. Let R be a reduced ring with minimal prime ideals \mathfrak{p}_{λ}, $\lambda \in \Lambda$. Show that the ring homomorphism $R \rightarrow \prod_{\lambda \in \Lambda} R / \mathfrak{p}_{\lambda}, x \mapsto$ $\left(x \bmod \mathfrak{p}_{\lambda}\right)$ is injective.

