Exercise sheet 2 for Algebra II

Kay Rülling

2.1. We recall the following definitions (e.g. from Algebra I): Let R be a domain.

- R is an euclidean domain if there exists a function $\varphi: R \rightarrow$ $\mathbb{N}_{0} \cup\{-\infty\}$ with $\varphi(a)=-\infty \Leftrightarrow a=0$, and such that for all $a, b \in R, b \neq 0$, there exist $q, r \in R$ with

$$
a=q b+r, \quad \varphi(r)<\varphi(b) .
$$

- R is a principal ideal domain (PID) if every ideal in R is principal.
- R is a unique factorization domain (UFD) if every element $a \in R$ which is neither zero nor a unit can be written as a product of prime elements $a=p_{1} \cdots p_{n}$. (An element $p \in R$ is prime iff the ideal $(p) \subset R$ is a prime ideal.)

Exercise 1. (i) Show that an euclidean domain is a PID.

(ii) Show that \mathbb{Z} and $K[x]$, with K a field, are euclidean domains.

Exercise 2. (i) Let R be a PID and $\mathfrak{p} \subset R$ a prime ideal. Then either $\mathfrak{p}=<0>$ or there exists a prime element $p \in R$ such that $\mathfrak{p}=<p>$.
(ii) Any non-zero prime ideal in a PID is maximal.
(iii) Show that a PID is a UFD. (Hint: First show that in a PID any ascending chain of ideals $I_{1} \subset I_{2} \subset \ldots$ becomes stationary, i.e. we have $I_{n}=I_{n+1}$ for all n large enough. Then show that in a PID any non-zero element a which is not a unit can be written as $a=p a_{1}$ with p a prime. Continue with a_{1} and so on and deduce the statement.)

Exercise 3. Let R be a domain.
(i) Assume we can write $a \in R$ as a product of prime elements $a=$ $p_{1} \cdots p_{n}$. Then this presentation is unique up to permutation and multiplication with units, i.e. if $a=p_{1}^{\prime} \cdots p_{m}^{\prime}$ with prime elements $p_{i}^{\prime} \in R$, then $n=m$ and there exists a bijection $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ and units $u_{i} \in R^{\times}$such that $p_{i}^{\prime}=u_{i} p_{\sigma(i)}$.
(ii) Let R be a domain. Recall that an element $a \in R \backslash\{0\}$ is irreducible if it is not a unit and if we can write $a=b c$, then either $b \in R^{\times}$or $c \in R^{\times}$.

Show that a prime element in R is always irreducible. Show that if R is a UFD, then an irreducible element is also prime.
(iii) (Gauss Lemma) We say a polynomial $f=\sum_{i=0}^{n} a_{i} X^{i} \in R[X]$ is primitive if the coefficients a_{1}, \ldots, a_{n} are not divisible by a common prime element. Let R be a UFD.

Show that if $f, g \in R[X]$ are primitive then so is $f g$.
Exercise 4. Let R be a domain.
(i) We say $(a, b),\left(a^{\prime}, b^{\prime}\right) \in R \times R \backslash\{0\}$ are equivalent if $a b^{\prime}=a^{\prime} b$. Denote by K the set of equivalence classes of the pairs (a, b). We write $\frac{a}{b} \in K$ for the equivalence class of (a, b). Show that the operations

$$
\frac{a}{b}+\frac{a^{\prime}}{b^{\prime}}:=\frac{a b^{\prime}+b a^{\prime}}{b b^{\prime}}, \quad \frac{a}{b} \cdot \frac{a^{\prime}}{b^{\prime}}:=\frac{a a^{\prime}}{b b^{\prime}}, \quad-\frac{a}{b}:=\frac{-a}{b}
$$

are well-defined and give K the structure of a field with neutral elements $0_{K}=\frac{0}{1}$ and $1_{K}=\frac{1}{1}$. Further show that $R \rightarrow K$, $a \mapsto \frac{a}{1}$ is an injective ring homomorphism. (In the following we will view $R \subset K$ as a subring and identify the elements a and $\frac{a}{1}$.)
(ii) Show that any $f \in R[X] \backslash\{0\}$ can be written as $f=a f_{0}$ where $f_{0} \in R[X]$ is primitive (in the sense of Ex.1, (iii)) and $a \in R \backslash\{0\}$.
(iii) Show that if $p \in R$ is a prime element in R, then it is also a prime element in $R[X]$.
(iv) Assume that R is a UFD. Show that if $f \in R[X]$ is primitive and its image in $K[X]$ is prime, then $f \in R[X]$ is also prime. (Hint: Use (iii) of Ex. 3 and (ii) above.)
(v) Deduce from (ii), (iii) and (iv) above that if R is a UFD, then so is $R[X]$. (Hint: Notice that we know that $K[X]$ is a PID and hence by Ex. 2, (iii) also a UFD.)
Remark 1. Ex. 1, (iv) and Ex. 2(v) together imply that $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ and $K\left[X_{1}, \ldots, X_{n}\right]$ (K a field) are UFD's.

