Exercise sheet 14 for Algebra II

Kay Rülling ${ }^{1}$

Exercise 1. Let k be an algebraically closed field. We say a subset $X \subset k^{n}$ is algebraic if there are polynomials $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $X=\left\{a \in k^{n} \mid f_{i}(a)=0, i=1, \ldots, r\right\}$. Show that there is an inclusion inversing bijection of sets
$\left\{\right.$ algebraic subsets in $\left.k^{n}\right\} \xrightarrow{1: 1}\left\{I \subset k\left[x_{1}, \ldots, x_{n}\right]\right.$ ideal, wtih $\left.\sqrt{I}=I\right\}$ given by

$$
X \mapsto I(X):=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f(a)=0, \text { for all } a \in X\right\}
$$

and with inverse given by

$$
Z(I):=\left\{a \in k^{n} \mid f(a)=0, \text { for all } f \in I\right\} \hookleftarrow I .
$$

(Hint: Essentially you have to show $I(Z(I))=I$. To this end first use Hilbert's Nullstellensatz to show that if $\mathfrak{m}_{a}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ is the maxiaml ideal corresponding to $a=\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$, then $\left.\sqrt{I}=\bigcap_{a \in Z(I)} \mathfrak{m}_{a}.\right)$

Exercise 2. Let R be a domain with fraction field $K=\operatorname{Frac}(R)$. Then we say that R is a discrete valuation ring (DVR) if there exists a surjective function -called discrete valuation- $v: K^{\times} \rightarrow \mathbb{Z}$ satisfying i) $v(a b)=v(a)+v(b)$ and ii) $v(a+b) \geq \min (v(a), v(b))$, such that $R=\left\{a \in K^{\times} \mid v(a) \geq 0\right\} \cup\{0\}$. Show that the following statements for a domain R are equivalent:
(i) R is local ring and a PID.
(ii) R is a DVR.
(Hint: For (i) \Rightarrow (ii) use the Krull Intersection Theorem to show that if π is a generator of the maximal ideal of R, then any element $x \in R \backslash\{0\}$ can be written uniquely written as $x=\pi^{n} u$, where $n \in \mathbb{N}_{0}$ and $u \in R^{\times}$; then show that there is a unique discrete valuation v on $\operatorname{Frac}(K)^{\times}$ satisfying $v(x)=n$. For (ii) \Rightarrow (i) first show that $R^{\times}=\left\{a \in K^{\times} \mid v(a)=\right.$ $0\}$; deduce that if $\pi \in R$ satisfies $v(\pi)=1$, then any element in R can be written as $\pi^{n} u$ with $n \in \mathbb{N}_{0}$ and $u \in R^{\times}$; conclude.)

[^0]Exercise 3. Let R be a ring.
(i) Let $x \in R$ be an element which is neither a unit nor a zerodivisor. Show that for all $n \geq 1$ we have $\operatorname{Ass}_{R}\left(R / x^{n} R\right)=$ $\operatorname{Ass}_{R}(R / x R)$. (Hint: Consider the short exact sequence $0 \rightarrow$ $R / x R \xrightarrow{x^{n-1}} R / x^{n} R \rightarrow R / x^{n-1} R \rightarrow 0$.)
(ii) Let $\mathfrak{p} \subset R$ be a prime ideal. Show $\operatorname{Ass}_{R}(R / \mathfrak{p})=\{\mathfrak{p}\}$.
(iii) Let $I \subset R$ be an ideal and denote by $\pi: R \rightarrow R / I$ the quotient map. Let M be an R / I-module. Show that there is a bijection $\operatorname{Ass}_{R / I}(M) \rightarrow \operatorname{Ass}_{R}(M), \mathfrak{p} \mapsto \pi^{-1}(\mathfrak{p})$.

Exercise 4. Set $R=k[x, y] /\left(x^{2}, x y\right)$ Compute $\operatorname{Ass}_{R}(R)$. Which of the primes are minimal, which are embedded? (Hint: Compute $\operatorname{Ass}_{k[x, y]}(R)$ and use Exercise 3, (iii). To this end try to use the behavior of Ass under short exact sequences of modules.)

[^0]: ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103 (RUD25) on Tue/Thu/Fri.

