Exercise sheet 14 for Algebra II

Kay Rülling¹

Exercise 1. Let k be an algebraically closed field. We say a subset $X \subset k^n$ is algebraic if there are polynomials $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$ such that $X = \{a \in k^n \mid f_i(a) = 0, i = 1, \ldots, r\}$. Show that there is an inclusion inversing bijection of sets

{algebraic subsets in k^n } $\xrightarrow{1:1}$ { $I \subset k[x_1, \ldots, x_n]$ ideal, with $\sqrt{I} = I$ } given by

 $X \mapsto I(X) := \{ f \in k[x_1, \dots, x_n] \mid f(a) = 0, \text{ for all } a \in X \}$

and with inverse given by

 $Z(I) := \{ a \in k^n \, | \, f(a) = 0, \text{ for all } f \in I \} \leftrightarrow I.$

(*Hint:* Essentially you have to show I(Z(I)) = I. To this end first use Hilbert's Nullstellensatz to show that if $\mathfrak{m}_a = (x_1 - a_1, \dots, x_n - a_n)$ is the maxiaml ideal corresponding to $a = (a_1, \dots, a_n) \in k^n$, then $\sqrt{I} = \bigcap_{a \in Z(I)} \mathfrak{m}_a$.)

Exercise 2. Let R be a domain with fraction field $K = \operatorname{Frac}(R)$. Then we say that R is a *discrete valuation ring* (DVR) if there exists a surjective function -called discrete valuation- $v: K^{\times} \to \mathbb{Z}$ satisfying i) v(ab) = v(a) + v(b) and ii) $v(a + b) \ge \min(v(a), v(b))$, such that $R = \{a \in K^{\times} | v(a) \ge 0\} \cup \{0\}$. Show that the following statements for a domain R are equivalent:

- (i) R is local ring and a PID.
- (ii) R is a DVR.

(*Hint:* For (i) \Rightarrow (ii) use the Krull Intersection Theorem to show that if π is a generator of the maximal ideal of R, then any element $x \in R \setminus \{0\}$ can be written uniquely written as $x = \pi^n u$, where $n \in \mathbb{N}_0$ and $u \in R^{\times}$; then show that there is a unique discrete valuation v on $\operatorname{Frac}(K)^{\times}$ satisfying v(x) = n. For (ii) \Rightarrow (i) first show that $R^{\times} = \{a \in K^{\times} | v(a) = 0\}$; deduce that if $\pi \in R$ satisfies $v(\pi) = 1$, then any element in R can be written as $\pi^n u$ with $n \in \mathbb{N}_0$ and $u \in R^{\times}$; conclude.)

¹Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103(RUD25) on Tue/Thu/Fri.

Exercise 3. Let R be a ring.

- (i) Let $x \in R$ be an element which is neither a unit nor a zerodivisor. Show that for all $n \geq 1$ we have $\operatorname{Ass}_R(R/x^n R) = \operatorname{Ass}_R(R/xR)$. (*Hint:* Consider the short exact sequence $0 \to R/xR \xrightarrow{\cdot x^{n-1}} R/x^n R \to R/x^{n-1}R \to 0$.)
- (ii) Let $\mathfrak{p} \subset R$ be a prime ideal. Show $\operatorname{Ass}_R(R/\mathfrak{p}) = \{\mathfrak{p}\}.$
- (iii) Let $I \subset R$ be an ideal and denote by $\pi : R \to R/I$ the quotient map. Let M be an R/I-module. Show that there is a bijection $\operatorname{Ass}_{R/I}(M) \to \operatorname{Ass}_R(M), \mathfrak{p} \mapsto \pi^{-1}(\mathfrak{p}).$

Exercise 4. Set $R = k[x, y]/(x^2, xy)$ Compute $\operatorname{Ass}_R(R)$. Which of the primes are minimal, which are embedded? (*Hint*: Compute $\operatorname{Ass}_{k[x,y]}(R)$ and use Exercise 3, (iii). To this end try to use the behavior of Ass under short exact sequences of modules.)