Exercise sheet 13 for Algebra II

Kay Rülling ${ }^{1}$

Exercise 1. Let k be a field and $k[X, Y, Z]$ the polynomial ring in three variables. Set $R:=k[X, Y, Z] /\left(X^{3} Y Z+X^{2} Y^{3}+Y Z+X+Y+1\right)$. Find algebraically independent elements $t_{2}, t_{3} \in R$ such that R is finite over $P:=k\left[t_{2}, t_{3}\right]$ the smallest k-subalgebra of R containing t_{2}, t_{3}. (Hint: Apply the method in the proof of the Noether Normalization; you can choose t_{2}, t_{3} as linear combinations of X, Y, Z.)
Exercise 2. Let R be a ring. Show: $\operatorname{dim} R=\max _{\mathfrak{p}_{0}}\left\{\operatorname{dim}\left(R / \mathfrak{p}_{0}\right)\right\}$, where \mathfrak{p}_{0} runs through the set of minimal prime ideals.

Exercise 3. In each of the following cases say what are the minimal prime ideals of the ring R and what is its dimension:
(i) $R=k\left[X_{1}, \ldots, X_{n}\right] /(f)$, where k is a field, X_{1}, \ldots, X_{n} are variables, $f \in k\left[X_{1}, \ldots, X_{n}\right]$ is a non-constant polynomial.
(ii) $R=\mathbb{Z} / p^{2} \mathbb{Z}$, where $p \in \mathbb{Z}$ is a prime number.
(iii) $R=\mathbb{Z}[X] /\left(6 X^{2}\right)$.

Exercise 4. Let $R=\mathbb{Z}_{(p)}[X]$, where p is a prime number and X is a variable. Show that the ideals $(X p-1) \subset R$ and $(X, p) \subset R$ are maximal and that the chains $(0) \subset(X p-1)$ and $(0) \subset(p) \subset(p, X)$ are maximal.

Exercise 5. A ring R is called catenary if for any inclusion of prime ideals $\mathfrak{p} \subset \mathfrak{q}$ in R, all the maximal chains of prime ideals $\mathfrak{p}=\mathfrak{p}_{0} \varsubsetneqq \mathfrak{p}_{1} \varsubsetneqq$ $\ldots \nsubseteq \mathfrak{p}_{r}=\mathfrak{q}$ are finite and have the same length.

Show that a finitely generated k-algebra is catenary.

[^0]
[^0]: ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103 (RUD25) on Tue/Thu/Fri.

