Exercise sheet 12 for Algebra II

Kay Rülling ${ }^{1}$

Exercise 1. Let $n \in \mathbb{Z}$ be a square-free integer (i.e. $n= \pm p_{1} \cdots p_{r}$, with prime numbers p_{i} and $p_{i} \neq p_{j}$, for $i \neq j$). Denote by $\mathbb{Z}[\sqrt{n}]$ the smallest subring of the complex numbers \mathbb{C}, which contains \mathbb{Z} and \sqrt{n}, where \sqrt{n} denotes a root in \mathbb{C} of $X^{2}-n$. Denote by $K:=\mathbb{Q}(\sqrt{n})$ the fraction field of $\mathbb{Z}[\sqrt{n}]$ and by R the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{n})$. Show

$$
R= \begin{cases}\mathbb{Z}[\sqrt{n}] & \text { if } n \not \equiv 1 \bmod 4 \mathbb{Z} \\ \mathbb{Z}\left[\frac{1}{2}+\frac{1}{2} \sqrt{n}\right] & \text { if } n \equiv 1 \bmod 4 \mathbb{Z}\end{cases}
$$

Proceed as follows:
(i) Show this ' \supset ' inclusion.
(ii) Show any element in K can be written in the form $\alpha=a+$ $b \sqrt{n}$, with $a, b \in \mathbb{Q}$.
(iii) Show that the minimal polynomial of $\alpha=a+b \sqrt{n}$, with $b \neq 0$, is $X^{2}-2 a X+a^{2}-b^{2} n \in \mathbb{Q}[X]$.
(iv) Conclude $\alpha \in R \Longleftrightarrow 2 a \in \mathbb{Z}$ and $a^{2}-b^{2} n \in \mathbb{Z}$.
(v) Show that if $\alpha=a+b \sqrt{n} \in R$, then $a, b \in \frac{1}{2} \mathbb{Z}$. (Hint: Use n is square-free.)
(vi) Show that if $\alpha=a+b \sqrt{n} \in R$, then there exists an $\alpha_{0} \in$ $\left\{0, \frac{1}{2}, \frac{1}{2} \sqrt{n}, \frac{1}{2}+\frac{1}{2} \sqrt{n}\right\}$ and an $\alpha_{1} \in \mathbb{Z}[\sqrt{n}]$ such that $\alpha=\alpha_{0}+\alpha_{1}$.
(vii) Show that $\frac{1}{2}$ and $\frac{1}{2} \sqrt{n}$ are never integral over \mathbb{Z} and $\frac{1}{2}+\frac{1}{2} \sqrt{n}$ is integral over \mathbb{Z} if and only if $n \equiv 1 \bmod 4$.
(viii) Conclude.

Exercise 2. (i) Show that the integral closure R of \mathbb{Z} in $\mathbb{Q}(\sqrt{5})$ is isomorphic to $\mathbb{Z}[X] /\left(X^{2}-X-1\right)$. (Hint: Use Exercise 1).
(ii) Give all the prime ideals in R lying over the prime ideals (2), (3) and (5) of \mathbb{Z}, respectively. (Hint: First note that here a prime ideal $\mathfrak{q} \subset R$ lies over $(p) \subset \mathbb{Z}$ iff $\mathfrak{q} \supset p R$. Then investigate $R / p R$.)

Exercise 3. Let R_{1}, \ldots, R_{n} be rings and set $R:=\prod_{i=1}^{n} R_{i}$. Show that $\operatorname{dim} R=\max _{i=1}^{n}\left\{\operatorname{dim} R_{i}\right\}$. (Hint: Use Exercise 3.3, (i) .)

[^0]Exercise 4. Let k be a field and $k[x, y, z]$ the polynomial ring in three variables with coefficients in k. Denote by $R:=k[x, y, z] /(z x, z y)$.
(i) What are the minimal prime ideals of R ?
(ii) Show $\operatorname{dim} R=\operatorname{dim} k[x, y] \geq 2$.

[^0]: ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103(RUD25) on Tue/Thu/Fri.

