Exercise sheet 12 for Algebra II

Kay Rülling¹

Exercise 1. Let $n \in \mathbb{Z}$ be a square-free integer (i.e. $n = \pm p_1 \cdots p_r$, with prime numbers p_i and $p_i \neq p_j$, for $i \neq j$). Denote by $\mathbb{Z}[\sqrt{n}]$ the smallest subring of the complex numbers \mathbb{C} , which contains \mathbb{Z} and \sqrt{n} , where \sqrt{n} denotes a root in \mathbb{C} of $X^2 - n$. Denote by $K := \mathbb{Q}(\sqrt{n})$ the fraction field of $\mathbb{Z}[\sqrt{n}]$ and by R the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{n})$. Show

$$R = \begin{cases} \mathbb{Z}[\sqrt{n}] & \text{if } n \not\equiv 1 \mod 4\mathbb{Z} \\ \mathbb{Z}[\frac{1}{2} + \frac{1}{2}\sqrt{n}] & \text{if } n \equiv 1 \mod 4\mathbb{Z}. \end{cases}$$

Proceed as follows:

- (i) Show this ' \supset ' inclusion.
- (ii) Show any element in K can be written in the form $\alpha = a + b\sqrt{n}$, with $a, b \in \mathbb{Q}$.
- (iii) Show that the minimal polynomial of $\alpha = a + b\sqrt{n}$, with $b \neq 0$, is $X^2 2aX + a^2 b^2n \in \mathbb{Q}[X]$.
- (iv) Conclude $\alpha \in R \iff 2a \in \mathbb{Z}$ and $a^2 b^2 n \in \mathbb{Z}$.
- (v) Show that if $\alpha = a + b\sqrt{n} \in R$, then $a, b \in \frac{1}{2}\mathbb{Z}$. (*Hint:* Use n is square-free.)
- (vi) Show that if $\alpha = a + b\sqrt{n} \in R$, then there exists an $\alpha_0 \in \{0, \frac{1}{2}, \frac{1}{2}\sqrt{n}, \frac{1}{2} + \frac{1}{2}\sqrt{n}\}$ and an $\alpha_1 \in \mathbb{Z}[\sqrt{n}]$ such that $\alpha = \alpha_0 + \alpha_1$.
- (vii) Show that $\frac{1}{2}$ and $\frac{1}{2}\sqrt{n}$ are never integral over \mathbb{Z} and $\frac{1}{2} + \frac{1}{2}\sqrt{n}$ is integral over \mathbb{Z} if and only if $n \equiv 1 \mod 4$.
- (viii) Conclude.

Exercise 2. (i) Show that the integral closure R of \mathbb{Z} in $\mathbb{Q}(\sqrt{5})$ is isomorphic to $\mathbb{Z}[X]/(X^2 - X - 1)$. (*Hint:* Use Exercise 1).

(ii) Give all the prime ideals in R lying over the prime ideals (2), (3) and (5) of \mathbb{Z} , respectively. (*Hint:* First note that here a prime ideal $\mathfrak{q} \subset R$ lies over $(p) \subset \mathbb{Z}$ iff $\mathfrak{q} \supset pR$. Then investigate R/pR.)

Exercise 3. Let R_1, \ldots, R_n be rings and set $R := \prod_{i=1}^n R_i$. Show that $\dim R = \max_{i=1}^n \{\dim R_i\}$. (*Hint*: Use Exercise 3.3, (i).)

¹Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103(RUD25) on Tue/Thu/Fri.

Exercise 4. Let k be a field and k[x, y, z] the polynomial ring in three variables with coefficients in k. Denote by R := k[x, y, z]/(zx, zy).

- (i) What are the minimal prime ideals of R?
- (ii) Show dim $R = \dim k[x, y] \ge 2$.