Exercise sheet 10 for Algebra II

Kay Rülling ${ }^{1}$

Exercise 1. Let R be a ring, $S \subset R$ a multiplicative subset and R^{\prime} an R-algebra with structure map $\varphi: R \rightarrow R^{\prime}$. Set $T:=\varphi(S)$.
(i) Show that $T \subset R^{\prime}$ is a multiplicative subset.
(ii) Show that the ring $T^{-1} R^{\prime}$ has a natural structure as $S^{-1} R$ algebra.
(iii) By the above we can consider $T^{-1} R^{\prime}$ as $S^{-1} R$-module; we can also consider R^{\prime} as R-module and form the $S^{-1} R$-module $S^{-1} R^{\prime}$. Show that we have an isomorphism of $S^{-1} R$-modules $T^{-1} R^{\prime} \cong S^{-1} R^{\prime}$.

Exercise 2. Let k be a field, $k[x, y]$ the polynomial ring in two variables with coefficients in k and $f \in k[x, y]$. Assume that $f=a x+b y+$ (higher order terms), with $(a, b) \in k^{2} \backslash\{(0,0)\}$. Set $R:=k[x, y] /(f)$ and denote by $\mathfrak{m} \subset R$ the image of the ideal (x, y) in R. Show that for all prime ideals $\mathfrak{p} \subset R$ the ideal $\mathfrak{m}_{\mathfrak{p}} \subset R_{\mathfrak{p}}$ is principal. (Hint: First show that for any prime $\mathfrak{p} \not \subset \mathfrak{m}$ we have $\mathfrak{m}_{\mathfrak{p}}=R_{\mathfrak{p}}$.)

Exercise 3. Let $R=\mathbb{Z}, S=\mathbb{Z} \backslash\{0\}$ and $M_{n}=\mathbb{Z} /(n), n \geq 2$.
(i) Show that $S^{-1} M_{n}=0$, for all n.
(ii) Show that the image of $(1,1,1, \ldots)$ under the localization map $\prod_{n \geq 2} M_{n} \rightarrow S^{-1}\left(\prod_{\geq 2} M_{n}\right)$ does not vanish.
(iii) Conclude that $S^{-1}\left(\prod_{\geq 2} M_{n}\right)$ and $\prod_{n \geq 2} S^{-1} M_{n}$ are not bijective.
[But as we saw in the lecture $S^{-1}\left(\bigoplus_{\lambda} M_{\lambda}\right) \cong \bigoplus_{\lambda} S^{-1} M_{\lambda}$.]
Exercise 4. Let R be a ring, $S \subset R$ a multiplicative subset and M an R-module.
(i) Denote by \mathcal{S} the category with objects the elements of S and morphisms $\operatorname{Hom}_{\mathcal{S}}(s, t)=\{x \in R \mid x s=t\}$, for $s, t \in S$, with composition induced by multiplication. Show that \mathcal{S} is a filtered category.

[^0](ii) Show that there is a functor $\mathcal{S} \rightarrow(R$-mod $), s \mapsto M_{s}=$ localization of M at s, which sends a morphism $x: s \rightarrow t$ to $e_{x}: M_{s} \rightarrow M_{t}, m / s^{n} \mapsto x^{n} m / t^{n}$.
(iii) Show that there are natural maps $\beta_{s}: M_{s} \rightarrow S^{-1} M$ such that $\beta_{s}=\beta_{t} \circ e_{x}$, for all $x: s \rightarrow t$.
(iv) Show that the β_{s} induce an isomorphism $\lim _{s \in \mathcal{S}} M_{s} \xrightarrow{\simeq} S^{-1} M$.

[^0]: ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103 (RUD25) on Tue/Thu/Fri.

