Exercise sheet 1 for Algebra II

Kay Rülling

Exercise 1.1 (Formal power series). Let R be a ring (as usual commutative with 1). Set

$$
R[[x]]=\left\{\sum_{n=0}^{\infty} a_{n} x^{n} \mid a_{n} \in R, n \in \mathbb{N}_{0}\right\} .
$$

(The sums are formal and infinite, there is no convergence condition, as a set we can identify $R[[x]]$ with the set of infinite sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ in R.) Take $f=\sum_{n=0}^{\infty} a_{n} x^{n}, g=\sum_{n=0}^{\infty} b_{n} x^{n} \in R[[x]]$ and define the following operations:

$$
\begin{gathered}
f+g:=\sum_{n=0}^{\infty} c_{n} x^{n}, \quad \text { with } c_{n}=a_{n}+b_{n} \in R \\
f \cdot g:=\sum_{n=0}^{\infty} d_{n} x^{n}, \quad \text { with } d_{n}=\sum_{\substack{i+j=n \\
i, j \in \mathbb{N}_{0}}} a_{i} b_{j} \in R .
\end{gathered}
$$

(1) Show that the expression d_{n} above is well defined, i.e. that the sum is finite.
(2) Show that the two operations above define a ring structure on $R[[x]]$ with $0_{R[[x]]}=\sum_{n} 0_{R} \cdot x^{n}$ and $1_{R[[x]]}=1_{R} \cdot x^{0}+\sum_{n \geq 1} 0_{R} \cdot x^{n}$.
(3) There is an injective ring homomorphism $R \hookrightarrow R[[\bar{x}]], a \mapsto$ $a \cdot x^{0}+\sum_{n \geq 1} 0_{R} \cdot x^{n}$, and also $R \hookrightarrow R[x]$ defined by the same formula, where $R[x]$ is the polynomial ring in one variable. Show that there is a unique R-algebra homomorphism $R[x] \rightarrow R[[x]]$ which sends x to $0 \cdot x^{0}+1 \cdot x^{1}+\sum_{n \geq 2} 0_{R} \cdot x^{n}$. Furthermore this map is injective.
In the following we do not write the parts of a formal sum $\sum_{n} a_{n} x^{n}$ which has a zero coefficient and we write x instead x^{1} and $1=x^{0}$.

Exercise 1.2. Let R be a ring. An element $c \in R$ is called nilpotent if there is a natural number $n \geq 0$ such that $c^{n}=0$. We denote by R^{\times} the group of units.
(1) Let R be a ring. Show that if $u \in R^{\times}$and $c \in R$ is nilpotent, then $u+c \in R^{\times}$. (Hint: Geometric series trick!)
(2) Let $R[x]$ be the polynomial ring in one variable. Show
$f=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in(R[x])^{\times} \Longleftrightarrow a_{0} \in R^{\times}$and a_{1}, \ldots, a_{n} are nilpotent.
In particular, if R has no nilpotent elements, then $(R[x])^{\times}=$ R^{\times}. (Hint: For \Leftarrow use (i). For \Rightarrow : If $b_{0}+\ldots+b_{m} x^{m}$ is an inverse of f show by induction on r that $a_{n}^{r+1} b_{m-r}=0$, for $r \geq 0$. Deduce that a_{n} is nilpotent. Then use (i).)
(3) Let $R[[x]]$ be the ring of formal power series from Exercise 1.1. Show

$$
f=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \in(R[[x]])^{\times} \Longleftrightarrow a_{0} \in R^{\times} .
$$

(Hint: First show that for $g \in R[[x]]$, the expression $1+x g+$ $(x g)^{2}+(x g)^{3}+\ldots$ is a well defined element in $\left.R[[x]].\right)$
Exercise 1.3. Which of the following ideals are equal, which are contained in another:
(1) In $\mathbb{Z}:\langle 2,3\rangle, \mathbb{Z},\langle 5\rangle,\langle 7\rangle,\langle 10,15\rangle$
(2) In $\mathbb{Z}[x]:<2, x>,<2 x>,<9 x, 4 x>,<x^{2}+x^{3}>,<$ $5 x^{2}+x^{3}>,<5\left(x^{2}+x^{3}\right)>$
(3) In $\mathbb{Q}[x]:<2, x>,<2 x>,<9 x, 4 x>,<x^{2}+x^{3}>,<$ $5 x^{2}+x^{3}>,<5\left(x^{2}+x^{3}\right)>$
(4) in $\mathbb{Q}[[x]]$ (see Exercise 1.1 and 1.2, (iii)): $\langle 1+x\rangle,\langle x\rangle$, $<\sum_{n \geq 1} x^{n}>,<78>$
Exercise 1.4. Let k be a field and $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$ be polynomials in n variables. Set

$$
X:=\left\{a \in k^{n} \mid f_{i}(a)=0, \text { for all } i=1, \ldots, r\right\} .
$$

Denote by $\operatorname{Map}(X, k)$ the set maps from X to k. We have a map $\theta: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow \operatorname{Map}(X, k), f \mapsto(a \mapsto f(a))$.
(1) Show that the ring structure of k induces a ring structure on $\operatorname{Map}(X, k)$ for which θ is a ring homomorphism.
(2) Show that there is a unique ring homomorphism

$$
\bar{\theta}: k\left[x_{1}, \ldots, x_{n}\right] /<f_{1}, \ldots, f_{r}>\rightarrow \operatorname{Map}(X, k)
$$

such that $\theta=\bar{\theta} \circ \pi$, where π is the quotient map $k\left[x_{1}, \ldots, x_{n}\right] \rightarrow$ $k\left[x_{1}, \ldots, x_{n}\right] /<f_{1}, \ldots, f_{r}>$.

