Algebra und Zahlentheorie ¹ Übungsblatt 13

Aufgabe 13.1. Sei K ein Körper der Charakteristik p > 0. Sei L/K eine Körpererweiterung vom Grad n. Wir nehmen an, dass n prim zu p ist, also ggT(n,p)=1. Zeigen Sie, dass L separabel über K ist.

Aufgabe 13.2. Sei $K = \mathbb{Q}[\sqrt{2}, \sqrt{3}]$.

- (1) Zeigen Sie, dass K Galois über \mathbb{Q} ist.
- (2) Zeigen Sie, dass $[K : \mathbb{Q}] = 4$.
- (3) Bestimmen Sie die Elemente der Galois Gruppe $G(K/\mathbb{Q})$, indem Sie für jedes $\sigma \in G(K/\mathbb{Q})$ die Werte $\sigma(\sqrt{2})$ und $\sigma(\sqrt{3})$ angeben.
- (4) Zeigen Sie, dass es einen Gruppenisomorphismus $G(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ gibt.
- (5) Bestimmen Sie alle Untergruppen H von $G(K/\mathbb{Q})$.
- (6) Finden Sie alle Zwischenkörper von K/\mathbb{Q} . (*Hinweis:* Bestimmen Sie die Fixkörper K^H , für die Untergruppen $H \subset G(K/\mathbb{Q})$. Hierzu beachten Sie, dass $1, \sqrt{2}, \sqrt{3}, \sqrt{2}\sqrt{3}$ eine Basis des \mathbb{Q} -Vektorraums K ist.)
- (7) Finden Sie ein primitives Element von K/\mathbb{Q} .

Aufgabe 13.3. Sei K ein Körper der Charakteristik p > 0 und $a \in K$ mit der Eigenschaft, dass $f = X^p - X - a \in K[X]$ keine Nullstelle in K hat. Wir haben in der Vorlesung gesehen, dass L := K[X]/(f) ein Körper ist, der Galois über K ist. Sei $\alpha \in L$ die Restklasse von X, insbesondere $L = K[\alpha]$.

- (1) Bestimmen Sie die Elemente der Galois Gruppe G(L/K), indem Sie für jedes $\sigma \in G(L/K)$ den Wert $\sigma(\alpha)$ angeben.
- (2) Zeigen Sie, dass es einen Gruppenisomorphismus $G(L/K) \cong \mathbb{Z}/p\mathbb{Z}$ gibt.
- (3) Finden Sie alle Zwischenkörper von L/K.

Aufgabe 13.4. Sei $K = \mathbb{Q}[\sqrt[4]{2}, i] \subset \mathbb{C}$.

- (1) Zeigen Sie, dass K/\mathbb{Q} Galois ist.
- (2) Zeigen Sie, dass $[K : \mathbb{Q}] = 8$.
- (3) Zeigen Sie dass $G(K/\mathbb{Q})$ eine zyklische Untergruppe der Ordnung 4 hat, die ein Normalteiler ist. (*Hinweis:* Betrachten Sie, $G(K/\mathbb{Q}[i])$.)

 $^{^1}$ Fragen oder Kommentare an kay.ruelling@fu-berlin.de oder filip@zedat.fu-berlin.de