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Helmholtz-Leray decomposition

The Helmholtz decomposition rewrites a vector field u in Rd

(d = 2,3) into the sum of a gradient and a curl vector. For
vector fields on a bounded set, by taking into account the
boundary conditions of the problem, we have its generalization
called the Helmholtz-Leray decomposition.

For a given vector field w , we seek an orthogonal
decomposition of the form

w = ∇q + v , with divv = 0. (1)

Locally, v is a curl vector, v = curlζ.
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Boundary conditions

Since divv = 0, it implies

4q = divw . (2)

Using equation (2) and boundary conditions, we can derive q
from w . From (1), we obtain v .

In no-slip case, w vanishes at the boundary and we require only
that

v · n = 0 on ∂Ω
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Neumann problem

This implies that ∇q · n = w · n, that is
∂q
∂n

= w · n on ∂Ω. (3)

Thus q is solution of the Neumann problem (2) and (3). It is
uniquely defined up to an additive constant and v is equally
well-defined.

Since divv = 0, it follows that v is the curl of a single-valued
function ζ defined locally. If the boundary ∂Ω is connected-that
is, if Ω has no holes (i.e., it is a simply connected set), then the
conditions

divv = 0 in Ω and v · n = 0 on∂Ω

imply that ζ is a single-valued function in the whole domain Ω,
with v = curlζ, as in the usual Helmholtz decomposition.
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Uniqueness

Different to the usual Helmoltz decomposition, the
Helmholtz-Leray decomposition of w is unique (up to an
additive constant for q). In fact

If q = q1 − q2 and v = v1 − v2, where (q1, v1) and (q2, v2)
correspond to two such decompositions, then

∇q + v = 0

hence
4q = 0.

In no-slip case, by (3), q is constant.
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Leray projector

Since the map w 7→ v is well defined, we denote it by

PL : w 7→ v(w)

This map is a projector; that is, if w is already divergence-free
then PLw = w . We will call it the Leray projector (for the
corresponding boundary conditions).
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Projection using PL

Recall the Navier-Stokes equations for a viscous, compressible,
homogeneous flow:

∂u
∂t
− ν4u + (u · ∇)u +∇p = f ,

∇ · u = 0

Apply PL to both sides of the above equation and use the
divergence free condition, we have

PLu = u, PL
∂u
∂t

=
∂u
∂t
, and PL∇p = 0.
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Variational formulation of NSE

Therefore, we find that

du
dt

+ νAu + B(u) = PLf , (4)

where

Au = −PL4u, B(u) = B(u,u) = PL((u · ∇)u).
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Stokes operator

The operator A is the Stokes operator. In the space-periodic
case,

Au = −PL4u = −4u.

However, in the no-slip case,

Au = −PL4u 6= −4u.

The form (4) of NSE was first derived by Leray.
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Simpler form

In general, we assume for simplicity that f is divergence free, so
that PLf = f ; this can always be done, with the term (I − PL)f
being added to the pressure.

Then we write
u′ = F (t ,u),

where

u′ = ut =
∂u
∂t
, F (t ,u) = f (t)− νAu − B(u).
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Two important spaces

There are two fundamental spaces, denoted as H and V , for
each choice of boundary conditions. They are natural spaces
that take into account the boundary conditions, the
incompressibility condition, and the physical quantities e(u) and
E(u) (resp., the kinetic energy and the enstrophy).

The space H is the space of incompressible vector fields with
finite kinetic energy and with the appropriate boundary
conditions required by each initial and boundary value problem,
and V is the space of incompressible vector fields with finite
enstrophy and also with appropriate boundary conditions.
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Definitions

we consider a bounded domain Ω in Rd with d = 2 or 3, and
the starting point is the space L2(Ω) of square integrable vector
fields from Ω into Rd . As previously remarked, this is the space
of finite kinetic energy vector fields.

This space is endowed with the inner product

(u, v) =

∫
Ω

u(x) · v(x)dx

and the associated norm

|u| = (u,u)1/2 =

{∫
Ω
|u(x)|2dx

}1/2
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Sobolev space H1

Another important space, which is associated with the notion of
enstrophy, is the Sobolev space H1(Ω). It consists of the space
of vector fields on Ω that are square integrable (finite kinetic
energy) and whose gradient is square integrable (finite
enstrophy).

The associated inner product and norm are

((u, v))1 =
1
L2

∫
Ω

u(x) · v(x)dx +

∫
Ω

d∑
i=1

∂u
∂xi
· ∂v
∂xi

dx

and
||u||1 = ((u,u))

1/2
1

with L as typical length (for example, the diameter of Ω).
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Norm for enstrophy

It is useful to distinguish the term related to the enstrophy in the
inner product and in the norm in H1(Ω).

We define

((u, v)) =

∫
Ω

d∑
i=1

∂u
∂xi
· ∂v
∂xi

dx

and

||u|| = ((u,u))1/2 =

{∫
Ω

d∑
i=1

| ∂u
∂xi
|2dx

}1/2

where || · || is exactly the square root of the enstrophy.
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V and H

A mathematically rigorous and physically intuitive definition of
the spaces V and H is as follows:

V is made up of all the limit points (in the distributional sense)
of all the possible sequences of smooth vector fields um which
are divergence-free, which satisfy the boundary conditions of
the problem, and whose enstrophy remains bounded, that is,
E(um) <∞.

The space H is defined in a similar way, replacing the
boundedness of the enstrophy by the boundedness of the
kinetic energy, e(um) <∞.
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No-slip boundary conditions

In the no-slip case, the domain Ω is assumed to be bounded
and to have a smooth boundary. More precisely, we assume
that:

Ω is open, bounded, and connected, with a C2 boundary ∂Ω
and such that Ω is on only one side of ∂Ω.

By a C2 boundary we mean that the boundary can be
represented locally as the graph of a C2 function (i.e., a twice
differentiable function).
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Hnsp and Vnsp

It can be proved that

Hnsp = {u ∈ L2(Ω);∇ · u = 0,u · n|∂Ω = 0}.

Similarly

Vnsp = {u ∈ H1(Ω);∇ · u = 0,u|∂Ω = 0}

where Hnsp is endowed with norm | · | and inner product (·, ·)
from L2(Ω). Vnsp is endowed with the norm || · || and inner
product ((·, ·)).
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Equivalent definitions

In the mathematical literature, we usually define Vnsp and Hnsp
as the closure in H1(Ω) and in L2(Ω) (respectively) of the space

Vnsp = {u ∈ C∞c (Ω);∇ · u = 0},

where C∞c (Ω) denotes the space of infinitely differentiable
vector fields with compact support in Ω.

The space Vnsp resembles the space of test functions in the
theory of distributions by Schwartz. In fact, Leray introduced it
before the theory of distributions and the Sobolev spaces had
even been developed. It is easily checked that this definition
coincides with the previous one.
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Test function space

We will derive a weak form of the original Navier-Stokes
equation in this section. First, a test function v is assumed to
be divergence-free and to satisfy the same boundary conditions
as u.

Consider at each instant of time the vector field

x ∈ Ω 7→ u(x , t).

For simplicity, we will denote this vector field at time t by u(·, t)
or simply by u(t).

Then, let v = v(x) be a test function belonging to V . Take the
inner product of the NSE with v(x) and integrate over Ω.
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Derivation of weak formulation

Using integration by parts, we have∫
Ω

∂u
∂t

(x , t) · v(x)dx =
d
dt

∫
Ω

u(x , t) · v(x)dx

and

−
∫

Ω
4u(x , t) · v(x)dx = −

d∑
i,j=1

∫
∂Ω

∂ui

∂n
(x , t) · vi(x)dS(x)

+
d∑

i,j=1

∫
Ω

∂ui

∂xj
(x , t)

∂vi

∂xj
(x)dx

=
d∑

i,j=1

∫
Ω

∂ui

∂xj
(x , t)

∂vi

∂xj
(x)dx
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Derivation of weak formulation

By boundary and divergence-free conditions on the test
function v , we have∫

Ω
∇p(x , t)·v(x)dx =

∫
∂Ω

p(x , t)v(x)·n(x)dS(x)−
∫

Ω
p(x , t)divv(x)dx = 0

Hence

d
dt

∫
Ω

u(x , t) · v(x)dx + ν

d∑
i,j=1

∫
Ω

∂ui

∂xj
(x , t)

∂vi

∂xj
(x)dx

d∑
i,j=1

∫
Ω

ui(x , t)
∂uj

∂xi
(x , t)vj(x)dx =

∫
Ω

f (x , t) · v(x)dx
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Weak formulation of NSE

To simplify the notation, we define

b(ϕ,ψ, θ) =
d∑

i,j=1

∫
Ω
ϕi(x)

∂ψj(x)

∂xi
θj(x)dx .

Using previous defined norms, the weak equation can be
expressed as follows:

The function t 7→ u(t) takes its values in V and satisfies

d
dt

(u(t), v) + ν((u(t), v)) + b(u(t),u(t), v) = (f (t), v)

for every test function v ∈ V . With initial conditions

u(0) = u0
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Definition

The Stokes operator was formally defined by Au = −PL4u,
where PL is the Helmholtz-Leray projector and 4 is the
Laplacian. For a rigorous definition we must also define the
domain D(A) of A, that is, the space of functions in H for which
Au makes sense.

One can show that

Au = −PL4u for u ∈ D(A) = V ∩ H2(Ω),

where d = 2 or 3, Ω is bounded in Rd and, in the no-slip case,
is smooth.
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A

We have

Au = −PL4u for u ∈ D(A) = Vnsp ∩ H2(Ω) (5)

and A is one-to-one from D(A) onto H.

Note that, since a vector field u in D(A) belongs to H2(Ω), the
Laplacian 4u makes sense and is square integrable, so that
the Helmholtz-Leray projector PL can be applied to it to yield a
vector field Au in H.

It can be shown that, in fact, the Stokes operator maps D(A)
onto H. Hence, the inverse A−1 is well-defined and takes H
onto D(A). Because Ω is bounded and smooth, we have by
Rellich’s theorem that H2(Ω) is compactly embedded into
L2(Ω). It follows also that D(A) is compactly embedded into H.
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Properties of A

Integration by parts shows that the Stokes operator is
symmetric

(Au, v) = (u,Av) for all u, v ∈ D(A).

It turns out that A−1 is also self-adjoint. There exists an
orthonormal basis {wm}m∈N in H and a sequence of real
eigenvalues {σm}m∈N accumulating at zero, so that

A−1wm = σmwm, m = 1,2, · · · ,

Setting λm = 1/σm, we see that

Awm = λmwm, m = 1,2, · · · .
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Properties of A

Since A is a positive definite operator (Integration by parts),

(Au,u) = ||u||2 > 0 for all u ∈ D(A),u 6= 0

each λm is positive.

Moreover,

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · , λm → +∞ as m→ +∞.
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Fourier expansion

Because {wm}m∈N is an orthonormal basis in H, we can
expand each vector field u in terms of its projection onto each
eigenspace:

u =
∞∑

m=1

(u,wm)wm for u ∈ H

Denote ûm = (u,wm), by Parseval identity, |u|2 =
∑∞

m=1 |ûm|2.
Similarly,

||u||2 =
∞∑

m=1

λm|ûm|2, |Au|2 =
∞∑

m=1

λ2
m|ûm|2.

Bergische Universität Wuppertal NSE and Stokes Operator



Navier-Stokes Equations
The Stokes Operator

The Stokes Operator in the No-Slip Case
Fractional Powers of A
Abstract Definition of the Stokes Operator

Fourier expansion

Because {wm}m∈N is an orthonormal basis in H, we can
expand each vector field u in terms of its projection onto each
eigenspace:

u =
∞∑

m=1

(u,wm)wm for u ∈ H
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Fractional powers of A

Define spaces V2s, for all s ≥ 0, by setting

u ∈ V2s ⇔
∞∑

m=1

λ2s
m |ûm|2 <∞

The powers As (s ≥ 0) of A are defined by

Asu =
∞∑

m=1

λs
mûmwm.

The domain of As in H is D(As) = V2s. Moreover, Ar maps
D(As) = V2s into D(As−r ) = V2(s−r).
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Norm and inner product for D(As)

The domain D(As) = V2s is endowed with the inner product

(u, v)D(As) = (Asu,Asv) =
∞∑

m=1

λ2s
m ûmv̂m,

where v̂m = (v ,wm), and with the norm

|u|2D(As) = |Asu|2 =
∞∑

m=1

λ2s
m |ûm|2.

For s = 1/2, we have D(A1/2) = V . In fact,

|u|2D(A1/2)
=
∞∑

m=1

λm|ûm|2 =
∞∑

m=1

(u, λmwm)(u,wm)

=
∞∑

m=1

(u,Awm)(u,wm) =
∞∑

m=1

(Au,wm)(u,wm) = (Au,u) = ||u||2.
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Negative powers of A

For s > 0, we define D(A−s) to be the completed space of H for
the norm

|u|D(A−s) =
∞∑

m=1

λ−2s
m |(u,wm)|2.

We also define

A−su =
∞∑

m=1

λ−s
m (u,wm)wm for u ∈ D(A−s).

Moreover,

D(A−s) ∼ D(As)′, D(As) ⊂ H ⊂ D(A−s).

D(A−1/2) = V ′
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Interpolation inequalities

|Asu| ≤ |As1u|θ|As2u|1−θ,

for any real s1 ≤ s ≤ s2, where θ is given by

s = s1θ + s2(1− θ)

Assume that the domain Ω is of class Cm+2, where m ∈ N.
Then, if f belongs to H ∩ Hm(Ω), the solution u of the Stokes
problem Au = f belongs to H ∩ Hm+2(Ω). Moreover, the
corresponding pressure p belongs to Hm+1(Ω).
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Linear functional in V ′

For each vector field u in V , the map

v 7→ ((u, v))

defines a linear functional in V .

It is continuous, since the Cauchy-Schwarz inequality implies
that

((u, v)) ≤ ||u|| · ||v || ≤ Cu||v ||

for some constant Cu and for all v ∈ V .

This linear functional belongs to V ′ and can be represented by
an element l in V ′. Each u determines uniquely an element
l(u)in V ′ in this way.
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The map u 7→ l(u) is linear, so we denote it by Au. By definition,

A : V → V ′, (Au, v) = ((u, v)) for all u, v ∈ V .

For smooth u, using integration by parts, for all v ∈ V ,

(Au, v) = ((u, v)) = −(4u, v) = (−PL4u, v),

which connects the previous definition of the Stokes operator.
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Properties

Map A is an isomorphism between V and its dual V ′. By
previous calculation, A = −PL4, so that −A is in general not
the Laplace operator.

By the Riesz representation theorem, A is one-to-one from V
onto V ′ with

||Au||V ′ = ||u|| for all u ∈ V

The domain D(A) of A in H in this context can be defined as

D(A) = {u ∈ V ; Au ∈ H}.
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Remark

In the no-slip case, if the domain Ω is not regular enough, then
one would not recover the characterization (5) for the domain of
A, and the two definitions of the Stokes operator are not known
to be identical.
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