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Space setting

Let us first introduce some notations of spaces and operators
that we will work on.

Let (U, <,>U) and (H, <,>) be two separable Hilbert spaces.

L(U,H) denotes the space of bounded linear operators from U
to H. L∗ is its adjoint. L(U) = L(U,U).

We say L ∈ L(U) is symmetric if

< Lu, v >U=< u,Lv >U for all u, v ∈ U

L ∈ L(U) is nonnegative if

< Lu,u >U≥ 0 for all u ∈ U
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Definition
An element T ∈ L(U,H) is said to be a nuclear operator if there
exists a sequence (aj)j∈N in H and a sequence (bj)j∈N in U
such that

Tx =
∞∑

j=1

aj < bj , x >U for all x ∈ U

and ∑
j∈N
||aj || · ||bj || <∞

Denote by L1(U,H) the space of all nuclear operators from U to
H. If U = H, T ∈ L1(U,H) is nonnegative and symmetric, then
T is called trace class.
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Lemma
The space L1(U,H) endowed with the norm

||T ||L1(U,H) = inf{
∑
j∈N
||aj ||·||bj ||U |Tx =

∑
j=1∞

aj < bj , x >U , x ∈ U}

is a Banach space.

Definition
Let T ∈ L(U), ek ,k ∈ N be an orthonormal basis of U. Then we
define

trT :=
∑
k∈N

< Tek ,ek >U

if the series converges.
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Trace and L1(U)

The relation between a trace operator and nuclear operator is
given by the following lemma.

Lemma
If T ∈ L1(U), then trT is well-defined independently of the
choice of orthonormal basis ek , k ∈ N. Moreover we have

|trT | ≤ ||T ||L1(U)

Proof: Let (aj)j∈N and (bj)j∈N be sequences in U such that

Tx =
∑
j∈N

aj < bj , x >U for all x ∈ U

and ∑
j∈N
||aj ||U ||bj ||U <∞
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Proof continues...

Then we get for any orthonormal basis ek , k ∈ N of U that

< Tek ,ek >U=
∑
j∈N

< ek ,aj >U · < ek ,bj >U

Therefore∑
k∈N
| < Tek ,ek >U |

≤
∑
j∈N

∑
k∈N
| < ek ,aj >U · < ek ,bj >U |

≤
∑
j∈N

(∑
k∈N
| < ek ,aj >U |2

)1/2

·

(∑
k∈N
| < ek ,bj >U |2

)1/2

=
∑
j∈N
||aj ||U · ||bj ||U <∞
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Proof continues...

|trT | ≤ ||T ||L1(U) follows and we can thus exchange the
summation to get∑

k∈N
< Tek ,ek >U =

∑
j∈N

∑
k∈N

< ek ,aj >U · < ek ,bj >U

=
∑
j∈N

< aj ,bj >U

From this we can see that trT is defined independently of the
choice of orthonormal bases. The proof is complete.
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Definition

Definition
A bounded linear operator T : U → H is called Hilbert-Schmidt
if ∑

k∈N
||Tek ||2 <∞

where ek , k ∈ N is an orthonormal basis of U.

The space of all Hilbert-Schmidt operators from U to H is
denoted by L2(U,H).
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We are going to prove the following theorem on Hilbert-Schmidt
operators.

Theorem
The definition of Hilbert-Schmidt operators and the number

||T ||2L2(U,H) :=
∑
k∈N
||Tek ||2

does not depend on the choice of the orthonormal basis
ek , k ∈ N, we have that ||T ||L2(U,H) = ||T ∗||L2(H,U). For
simplicity we write ||T ||L2 or ||T ||L2(U,H).
||T ||L(U,H) ≤ ||T ||L2(U,H)

Let G be another Hilbert space, S1 ∈ L(U,G),
S2 ∈ L(G,U) and T ∈ L2(U,H). Then S1T ∈ L2(U,G),
TS2 ∈ L2(G,H) and
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Proof of the theorem

Theorem

||S1T ||L2(U,G) ≤||S1||L(H,G)||T ||L2(U,H)

||TS2||L2(G,H) ≤||T ||L2(U,H)||S||L(G,U)

Proof: If ek , k ∈ N is an orthonormal basis of U and fk , k ∈ N is
an orthonormal basis of H. We obtain by Parseval identity that∑

k∈N
||Tek ||2 =

∑
k∈N

∑
j∈N
| < Tek , fj > |2

=
∑
j∈N
||T ∗fj ||2U

So the first conclusion is proved.
Bergische Universität Wuppertal Stochastic Integrals
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Proof continues...

Let x ∈ U and fk , k ∈ N be an orthonormal basis of H, then we
get

||Tx ||2 =
∑
k∈N

< Tx , fk >2

≤ ||x ||2U
∑
k∈N
||T ∗fk ||2U

= ||T ||2L2(U,H)||x ||
2
U

where we used Cauchy-Schwarz inequality and property (1).

Therefore, we showed that

||T ||L(U,H) ≤ ||T ||L2(U,H)
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Proof continues...

Let ek , k ∈ N be an orthonormal basis of U, then∑
k∈N
||S1Tek ||2G ≤ ||S1||2L(H,G)||T ||

2
L2(U,H)

Furthermore, since (TS2)∗ = S∗2T ∗. From above and (1), we
have TS2 ∈ L2(G,H) and

||TS2||L2(G,H) = ||(TS2)∗||L2(H,G)

= ||S∗2T ∗||L2(H,G)

≤ ||S2||L2(G,U)||T ||L2(U,H)
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A lemma

Lemma
Let S,T ∈ L2(U,H) and ek , k ∈ N be an orthonormal basis of
U. If we define

< T ,S >L2 :=
∑
k∈N

< Sek ,Tek >

we obtain that (L2(U,H), <,>L2) is a separable Hilbert space.

If fk , k ∈ N is an orthonormal basis of H, we get that
fj ⊗ ek := fj < ek , · >U , j , k ∈ N is an orthonormal basis of
L2(U,H).
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Proof: Let us first show L2(U,H) is complete.

Let Tn,n ∈ N be a Cauchy sequence in L2(U,H). Then it is
clear that it is also a Cauchy sequence in L(U,H). Because of
the completeness of L(U,H), there exists an element
T ∈ L(U,H), such that ||Tn − T ||L(U,H) → 0 as n→∞.

But by Fatou’s lemma, we also have for any orthonormal basis
ek , k ∈ N of U that

||Tn − T ||2L2
=
∑
k∈N

< (Tn − T )ek , (Tn,T )ek >

=
∑
k∈N

lim inf
m→∞

||(Tn − Tm)ek ||2 ≤ lim inf
m→∞

∑
k∈N
||(Tn − Tm)ek ||2

= lim inf
m→∞

||Tn − Tm||2L2
< ε
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Proof continues...

Now we will prove that L2(U,H) is separable.

If we define fj ⊗ ek := fj < ek , · >U , j , k ∈ N, then it is clear that
fj ⊗ ek ∈ L2(U,H) for all j , k ∈ N and for arbitrary T ∈ L2(U,H)
we get

< fj ⊗ ek ,T >L2=
∑
n∈N

< ek ,en >U · < fj ,Ten >=< fj ,Tek >

Thus fj ⊗ ek is an orthonormal system.

Since T = 0 if < fj ⊗ ek ,T >L2= 0 for all j , k ∈ N,

span(fj ⊗ ek |j , k ∈ N) is dense in L2(U,H).
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Another lemma

Lemma
Let (G, <,>G) be a separable Hilbert space. If T ∈ L2(U,H)
and S ∈ L2(H,G), then ST ∈ L2(U,G) and

||ST ||L2(U,G) ≤ ||S||L2 ||T ||L2

Proof: Let fk be an orthonormal basis in H, then

STx =
∑
k∈N

< Tx , fk > Sfk , x ∈ U
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Proof continues...

Thus

||ST ||L1(U,G) ≤
∑
k∈N
||T ∗fk ||U · ||Sfk ||G

≤ (
∑
k∈N
||T ∗fk ||2U)1/2 · (

∑
k∈N
||Sfk ||2G)1/2

= ||S||L2 · ||T ||L2

The proof is complete.

Remark: Let ek , k ∈ N be an orthonormal basis of U. If
T ∈ L(U) is symmetric, nonnegative with

∑
k∈N<Tek ,ek>

<∞,
then T ∈ L1(U).
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Third lemma

Lemma
Let L ∈ L(H) and B ∈ L2(U,H), then LBB∗ ∈ L1(H),
B∗LB ∈ L1(U) and we have

trLBB∗ = trB∗LB

Proof: By previous theorem and lemma, LBB∗ ∈ L1(H) and
B∗LB ∈ L1(U).

Let ek ,fk ,k ∈ N be an orthonormal basis of U and H
respectively. By Parseval identity
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Proof continues...

∑
k∈N

∑
n∈N
|| < fk ,Ben > · < fk ,LBen > ||

≤
∑
n∈N

(
∑
k∈N
| < fk ,Ben > |2)1/2 · (

∑
k∈N
| < fk ,LBen > |2)1/2

=
∑
n∈N
||Ben|| · ||LBen||

≤ ||L||L(H) · ||B||2L2

and we can exchange the summation to get
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Proof continues...
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trLBB∗ =
∑
k∈N

< LBB∗fk , fk >=
∑
k∈N

< B∗fk ,B∗l∗fk >U

=
∑
k∈N

∑
n∈N

< B∗fk ,en >U · < B∗L∗fk ,en >U

=
∑
n∈N

∑
k∈N

< fk ,Ben > · < fk ,LBen >

=
∑
n∈N

< Ben,LBen >

=
∑
n∈N

< en,B∗LBen >U

= trB∗LB

The proof is complete.
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Gaussian measure

Consider two separable Hilbert spaces (U, <,>U) and
(H, <,>). Denote B(X ) as the Borel σ-algebra of X .

Definition
A probability measure µ on (U,B(U)) is called Gaussian if for
all v ∈ U, the bounded linear mapping v ′ : U → R defined by
u 7→< u, v >U , u ∈ U has a Gaussian law. i.e. for all v ∈ U,
there exists m := m(v) ∈ R and σ := σ(v) ∈ [0,∞[ such that if
σ(v) > 0

(µ ◦ (v ′)−1)(A) = µ(v ′ ∈ A) =
1√

2πσ2

∫
A

e−
(x−m)2

2σ2 dx

for all A ∈ B(R). If σ(v) = 0, µ ◦ (v ′)−1 = δm(v).
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Mean and Covariance

Theorem
A measure µ on (U,BU) is Gaussian if and only if

m̂u(u) :=

∫
U

ei<u,v>Uµ(dv) = ei<m,u>U− 1
2<Qu,u>U , u ∈ U,

where m ∈ U and Q ∈ L(U) is nonnegative, symmetric with
finite trace (trace class).

In this case µ is denoted by N(m,Q) and m is called mean and
Q is called covariance. The measure µ is uniquely determined
by m and Q.
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Mean and Covariance

Theorem
Furthermore, for all h,g ∈ U∫

< x ,h >U µ(dx) =< m,h >U ,

∫
(< x ,h >U − < m,h >U)(< x ,g >U− < m,g >U)µ(dx)

=< Qh,g >U ,∫
||x −m||2Uµ(dx) = trQ.
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Representation of Gaussian random variables

Lemma
If Q ∈ L(U) is of trace class, then there exists an orthonormal
basis ek ,k ∈ N of U such that

Qek = λkek , λk ≥ 0, k ∈ N

0 is the only accumulation point of (λk )k∈N.

Theorem
Let m ∈ U, Q ∈ L(U) of trace class. In addition, assume {ek} is
an orthonormal basis of U with eigenvectors of Q and
corresponding eigenvalues λk .
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Representation of Gaussian random variables

Theorem
Then a U-valued random variable X on (Ω,F ,P) is Gaussian
with P ◦ X−1 = N(m,Q) if and only if X =

∑
k∈N
√
λkβkek + m.

Here βk are independent real-valued random variables with
P ◦ β−1

k = N(0,1) for all k ∈ N with λk > 0. The series
converges in L2(Ω,F ,P; U).

Proof: Let X be a Gaussian random variable with mean m and
covariance Q. Set <,>=<,>U , then X =

∑
k∈N < X ,ek > ek

in U, < X ,ek > is normally distributed with mean < m,ek >
and variance λk ,k ∈ N by lemma.
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Proof continues...

Define

βk :=

{
<X ,ek>−<m,ek>√

λk
if k ∈ N, λk > 0

0 otherwise

then P ◦ β−1
k = N(0,1) and X =

∑
k∈N
√
λkβkek + m.

To prove the independence of βk , take an arbitrary n ∈ N,
ak ∈ R, 1 ≤ k ≤ n for

c := −
n∑

k=1,λk 6=0

ak√
λk

< m,ek >
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Proof continues...

n∑
k=1

akβk =
n∑

k=1,λk 6=0

ak√
λk

< X ,ek > +c

< X ,
n∑

k=1,λk 6=0

ak√
λk

ek > +c

which is normally distributed since X is a Gaussian random
variable. Thus βk form a Gaussian family.

E(βiβj) =
1√
λiλj

E(< X −m,ei >< X −m,ej >)

1√
λiλj

< Qei ,ej >=
λi√
λiλj

< ei ,ej >
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Proof continues...

n∑
k=1

akβk =
n∑

k=1,λk 6=0

ak√
λk

< X ,ek > +c

< X ,
n∑

k=1,λk 6=0

ak√
λk

ek > +c

which is normally distributed since X is a Gaussian random
variable. Thus βk form a Gaussian family.

E(βiβj) =
1√
λiλj

E(< X −m,ei >< X −m,ej >)

1√
λiλj

< Qei ,ej >=
λi√
λiλj

< ei ,ej >
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Proof continues...

Besides,
∑n

k=1
√
λkβkek , n ∈ N converges in L2(Ω,F ,P; U)

since the space is complete and

E(||
n∑

k=m

√
λkβkek ||2) =

n∑
k=m

λkE(||βk ||2)

=
n∑

k=m

λk → 0 as n,m→ 0

because
∑

k∈N λk = trQ <∞. This complete one direction of
the proof.
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Proof continues...

Let ek be an orthonormal basis of U such that
Qek = λkek ,k ∈ N. Let βk be a family of independent
real-valued Gaussian random variables with mean 0 and
variance 1. Then

n∑
k=1

√
λkβkek + m,n ∈ N→ x :=

∑
k∈N

√
λkβkek + m

in L2(Ω,F ,P; U) from the first part of the proof.
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Proof continues...

Fix u ∈ U, we get

<

n∑
k=1

√
λkβkek + m,u >=

n∑
k=1

√
λkβk < ek ,u > + < m,u >

is normally distributed for all n ∈ N and the sequence
converges in L2(Ω,F ,P). This implies that the limit < X ,u > is
also normally distributed.

E(< X ,u >) = E(
∑
k∈N

√
λkβk < ek ,u > + < m,u >)

= lim
n→∞

E(
n∑

k=1

√
λkβk < ek ,u >)+ < m,u >=< m,u >
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Proof continues...

and

E ((< X ,u > − < m,u >)(< X , v > − < m, v >))

= lim
n→∞

E(
n∑

k=1

√
λkβk < ek ,u >

n∑
k=1

√
λkβk < ek , v >)

=
∑
k∈N

λk < ek ,u >< ek , v >=
∑
k∈N

< Qek ,u >< ek , v >

=
∑
k∈N

< ek ,Qu >< ek , v >=< Qu, v >

for all u, v ∈ U. The proof is complete.
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Existence result

From the proof above, we have the following existence result for
Gaussian measure.

Corollary

Let Q ∈ L(U) be trace class and m ∈ U. Then there exists a
Gaussian measure µ = N(m,Q) on (U,BU).
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Q-Wiener Processes

Definition
A U-valued stochastic process W (t), t ∈ [0,T ] on probability
space (Ω,F ,P) is called a (standard) Q-Wiener process if

W (0) = 0
W has P-a.s. continuous trajectories
W (t1), W (t2)−W (t1),· · · ,W (tn)−W (tn−1) are
independent for all 0 ≤ t1 < · · · < tn ≤ T , n ∈ N
the increments have the following Gaussian laws

P◦(W (t)−W (s))−1 = N(0, (t−s)Q) for all 0 ≤ s ≤ t ≤ T
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Representation of Q-Wiener processes

Lemma
Let ek be an orthonormal basis of U consisting of eigenvectors
of Q with corresponding eigenvalues λk ,k ∈ N. Then a
U-valued stochastic process W (t), t ∈ [0,T ] is a Q-Wiener
process if and only if

W (t) =
∑
k∈N

√
λkβk (t)ek , t ∈ [0,T ]

where βk (t), k ∈ {n ∈ N|λn > 0} are independent real-valued
Brownian motion on (Ω,F ,P). The series converges in
L2(Ω,F ,P,C([0,T ],U)), thus has a P-a.s. continuous
modification. In particular, for any Q as above there exists a
Q-Wiener process on U.
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Normal filtration

Definition
A filtration Ft , t ∈ [0,T ] on (Ω,F ,P) is called normal if

F0 contains all elements A ∈ F with P(A) = 0
Ft = Ft+ = ∩s>tFs for all t ∈ [0,T ]

Definition
A Q-Wiener process W (t), t ∈ [0,T ] is called a Q-Wiener
process w.r.t. a filtration Ft , t ∈ [0,T ] if

W (t), t ∈ [0,T ] is adapted to Ft ,t ∈ [0,T ]

W (t)−W (s) is independent of Fs for all 0 ≤ s ≤ t ≤ T .
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Existence of normal filtration Q-Wiener processes

Define

N : = {A ∈ F|P(A) = 0}, F̃t := σ(W (s)|s ≤ t)

F̃0
t : = σ(F̃t ∪N )

Then we get
Ft := ∩s>t F̃0

s , t ∈ [0,T ]

is a normal filtration.
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Existence of normal filtration Q-Wiener processes

From above we have

Lemma
Let W (t), t ∈ [0,T ] be an arbitrary U-valued Q-Wiener process
on (Ω,F ,P). Then it is a Q-Wiener process w.r.t. the normal
filtration Ft , t ∈ [0,T ] defined as above.
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Bochner integrable random variables

Lemma
Assume that E is a separable real Banach space. Let X be a
Bochner integrable E-valued random variable defined on
(Ω,F ,P). Let G be a σ-field contained in F .

Then there exists a unique Bochner integrable E-valued
random variable z a.s., measurable with respect to G such that∫

A
XdP =

∫
A

zdP for all A ∈ G

The random variable z is denoted by E(X |G) and is called the
conditional expectation of X given G. Furthermore

||E(X |G)|| ≤ E(||X ||‖G)
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Property of conditional expectation

Lemma
Let (E1, ε1) and (E2, ε2) be two-separable spaces and
ψ : E1 × E2 → R a bounded measurable function. Let X1, X2 be
two random variables on (Ω,F ,P) with values in (E1, ε1),
(E2, ε2) respectively and let G ⊂ F be a fixed σ-field.

Assume that X1 is G-measurable and X2 is independent of G,
then

E(φ(X1,X2)|G) = ˆφX1

where ˆφ(x1) = E(φ(x1, x2)), x1 ∈ E1.
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Ft-martingale

Definition
Let M(t), t ≥ 0 be a stochastic process on (Ω,F ,P) with values
in a separable Banach space E , let Ft ,t ≥ 0 be a filtration on
(Ω,F ,P). The process M is called an F-martingale, if

E(||M(t)||) <∞ for all t ≥ 0
M(t) is Ft -measurable for all t ≥ 0
E(M(t)|Fs) = M(s) P-a.s. for all 0 ≤ s ≤ t <∞.
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Properties of Ft-martingale

Lemma
If M(t),t ≥ 0 is an E-valued Ft -martingale and p ∈ [1,∞), then
||M(t)||p,t ≥ 0 is a real-valued Ft -martingale.

Proof: Since E is separable, there exists lk ∈ E∗, k ∈ N such
that ||z|| = sup lk (z) for all z ∈ E . Then for s < t ,

E(||Mt ||‖Fs) ≥ sup
k

E(lk (Mt )|Fs)

= sup
k

lk (E(Mt |Fs))

= sup
k

lk (Ms) = ||Ms||

Bergische Universität Wuppertal Stochastic Integrals



Nuclear and Hilbert-Schmidt Operators
Stochastic Integrals in Hilbert Spaces

Infinite Dimensional Wiener Processes
Martingales in Banach Spaces
Construction of Stochastic Integrals
Properties of Stochastic Integrals
Stochastic Integrals for Cylindrical Wiener Processes

Properties of Ft-martingale

Lemma
If M(t),t ≥ 0 is an E-valued Ft -martingale and p ∈ [1,∞), then
||M(t)||p,t ≥ 0 is a real-valued Ft -martingale.

Proof: Since E is separable, there exists lk ∈ E∗, k ∈ N such
that ||z|| = sup lk (z) for all z ∈ E . Then for s < t ,

E(||Mt ||‖Fs) ≥ sup
k

E(lk (Mt )|Fs)

= sup
k

lk (E(Mt |Fs))

= sup
k

lk (Ms) = ||Ms||

Bergische Universität Wuppertal Stochastic Integrals



Nuclear and Hilbert-Schmidt Operators
Stochastic Integrals in Hilbert Spaces

Infinite Dimensional Wiener Processes
Martingales in Banach Spaces
Construction of Stochastic Integrals
Properties of Stochastic Integrals
Stochastic Integrals for Cylindrical Wiener Processes

Properties of Ft-martingale

Lemma
If M(t),t ≥ 0 is an E-valued Ft -martingale and p ∈ [1,∞), then
||M(t)||p,t ≥ 0 is a real-valued Ft -martingale.

Proof: Since E is separable, there exists lk ∈ E∗, k ∈ N such
that ||z|| = sup lk (z) for all z ∈ E . Then for s < t ,

E(||Mt ||‖Fs) ≥ sup
k

E(lk (Mt )|Fs)

= sup
k

lk (E(Mt |Fs))

= sup
k

lk (Ms) = ||Ms||

Bergische Universität Wuppertal Stochastic Integrals



Nuclear and Hilbert-Schmidt Operators
Stochastic Integrals in Hilbert Spaces

Infinite Dimensional Wiener Processes
Martingales in Banach Spaces
Construction of Stochastic Integrals
Properties of Stochastic Integrals
Stochastic Integrals for Cylindrical Wiener Processes

Properties of Ft-martingale

This proves the lemma for p = 1. Jensen’s inequality implies
that for all p ∈ [1,∞),

E(||Mt ||p|Fs) ≥ (E(||Mt |||Fs))p

Thus the lemma holds for any p ∈ [1,∞).

Theorem
Let p > 1. Let E be a separable Banach space. If
M(t),t ∈ [0,T ] is a right-continuous E-valued Ft -martingale,
then

E( sup
t∈[0,T ]

||M(t)||p)1/p ≤ p
p − 1

sup
t∈[0,T ]

(E(||M(t)||p))1/p

=
p

p − 1
(E(||M(T )||p))1/p

Bergische Universität Wuppertal Stochastic Integrals



Nuclear and Hilbert-Schmidt Operators
Stochastic Integrals in Hilbert Spaces

Infinite Dimensional Wiener Processes
Martingales in Banach Spaces
Construction of Stochastic Integrals
Properties of Stochastic Integrals
Stochastic Integrals for Cylindrical Wiener Processes

Properties of Ft-martingale

This proves the lemma for p = 1. Jensen’s inequality implies
that for all p ∈ [1,∞),

E(||Mt ||p|Fs) ≥ (E(||Mt |||Fs))p

Thus the lemma holds for any p ∈ [1,∞).

Theorem
Let p > 1. Let E be a separable Banach space. If
M(t),t ∈ [0,T ] is a right-continuous E-valued Ft -martingale,
then

E( sup
t∈[0,T ]

||M(t)||p)1/p ≤ p
p − 1

sup
t∈[0,T ]

(E(||M(t)||p))1/p

=
p

p − 1
(E(||M(T )||p))1/p

Bergische Universität Wuppertal Stochastic Integrals



Nuclear and Hilbert-Schmidt Operators
Stochastic Integrals in Hilbert Spaces

Infinite Dimensional Wiener Processes
Martingales in Banach Spaces
Construction of Stochastic Integrals
Properties of Stochastic Integrals
Stochastic Integrals for Cylindrical Wiener Processes

Square integrable martingales

Denote byM2
T (E) the space of all E-valued continuous square

integrable martingales M(t),t ∈ [0,T ].

Lemma

The spaceM2
T (E) equipped with the norm

||M(t)||M2
T

: = sup
t∈[0,T ]

(E(||M(t)||2))1/2 = (E(||M(T )||2))1/2

= (E( sup
t∈[0,T ]

||M(t)||2))1/2 ≤ 2E(||M(T )||2)1/2

is a Banach space.
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Properties of square integrable martingales

Lemma
Let T > 0, W (t),t ∈ [0,T ] be a U-valued Q-Wiener process
with respect to a normal filtration Ft , t ∈ [0,T ] on (Ω,F ,P).
Then W (t), t ∈ [0,T ] is a continuous square integrable
Ft -martingale, i.e. W ∈M2

T (U).

Proof: The continuity follows from the definition of Q-Wiener
processes.

For each t ∈ [0,T ], we have

E(||W (t)||2U) = t trQ <∞.
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Proof of the lemma

Hence let 0 ≤ s ≤ t ≤ T , A ∈ Fs. By proposition,

<

∫
A

W (t)−W (s)dP,u >U =

∫
A
< W (t)−W (s),u >U dP

= P(A)

∫
< W (t)−W (s),u >U dP = 0

for all u ∈ U as Fs is independent of W (t)−W (s) and

E(< W (t)−W (s),u >U) = 0 for all u ∈ U
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Proof continues...

Therefore∫
A

W (t)dP =

∫
A

W (s) + (W (A)−W (s))dP

=

∫
A

W (s)dP +

∫
A

W (t)−W (s)dP

=

∫
A

W (s)dP = W (s)

for all A ∈ Fs.

The proof is complete.
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Elementary process

First we consider the following class of processes:

Definition
An L = L(U,H)-valued process φ(t),t ∈ [0,T ] on (Ω,F ,P) with
normal filtration Ft ,t ∈ [0,T ] is said to be elementary if there
exists 0 = t0 < · < tk = T ,k ∈ N such that

φ(t) =
k−1∑
m=1

φm1]tm,tm+1](t), t ∈ [0,T ]

where φm : Ω→ L(U,H) is Ftm -measurable with respect to
strong σ-algebra on L(U,H), 0 ≤ m ≤ k − 1. φm takes only a
finite number of values in L(U,H),0 ≤ m ≤ k − 1.
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φm

Denote the space of elementary process defined as ε. Define

Int(φ)(t) : =

∫ t

0
φ(s)dW (s)

:=
k−1∑
m=0

φm[W (tm+1 ∧ t)−W (tm ∧ t)], t ∈ [0,T ]

For all φ ∈ ε, we have

Lemma

The stochastic integral
∫ t

0 φ(s)dW (s), t ∈ [0,T ] is a continuous
square integrable martingale w.r.t. Ft ,t ∈ [0,T ], i.e.

Int : ε→M2
T
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Hilbert-Schmidt

To show the mapping above is an isometry and extend the class
ε to its completion, we recall the Hilbert-Schmidt operators:

Definition
Let ek ,k ∈ N be an orthonormal basis of U. An operator
A ∈ L(U,H) is called Hilbert-Schmidt if∑

k∈N
< Aek ,Aek ><∞
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Important lemmas

Lemma
If Q ∈ L(U) is nonnegative and symmetric then there exists a
unique Q1/2 ∈ L(U) nonnegative and symmetric such that
Q1/2 ◦Q1/2 = Q
If in addition trQ <∞, we have that Q1/2 ∈ L2(U) where
||Q1/2||2L2

= trQ and L ◦Q1/2 ∈ L2(U,H) for all L ∈ L(U,H).

Lemma

If φ =
∑k−1

m=0 φm1]tm,tm+1] is an elementary L(U,H)-valued
process then

||
∫ ·

0
φ(s)dW (s)||2M2

T
= E(

∫ T

0
||φ(s) ◦Q1/2||2L2

ds) = ||φ||2T
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Remark

If two elementary processes φ and φ̄ belong to one equivalence
class with respect to || · ||T , it does not follow that they are equal
Pt -a.e. Because their values only have to correspond on
Q1/2(U) Pt -a.e.

Int:(ε, || · ||T )→ (M2
T , || · ||M2

T
)

is an isometric transformation. The isometric extension to
completion ε̄ is unique sine ε is dense in ε̄.
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A Hilbert space

In this section we will seek an explicit representation of the
completion ε̄.

First, define U0 := Q1/2(U) with inner product

< u0, v0 >0:=< Q−1/2u0,Q−1/2v0 >U , u0, v0 ∈ U0

where Q−1/2 is the pseudo-inverse of Q1/2 in the case that Q is
not one-to-one.

By proposition, (U0, <,>0) is again a separable Hilbert space.
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The separable Hilbert space L2(U0,H) is called L0
2. By

proposition, we know Q1/2gk ,k ∈ N is an orthonormal basis of
(U0, <,>0) if gk ,k ∈ N is an orthonormal basis of (kerQ1/2)⊥.
This basis can be supplemented to a basis of U by elements of
kerQ1/2.

Thus
||L||L0

2
= ||L ◦Q1/2||L2 for each L ∈ L0

2
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Representation of ε̄

Define L(U,H)0 := {T |U0 |T ∈ L(U,H)}. Since Q1/2 ∈ L2(U), it
is clear that L(U,H)0 ⊂ L0

2 and || · ||T -norm of φ ∈ ε can be
written as

||φ||T = (E(

∫ T

0
||φ(s)||2L0

2
ds))1/2

Define

N 2
W (0,T ; H) : = {φ : [0,T ]× Ω→ L0

2|φis predictable and||φ||t <∞}
= L2([0,T ]× Ω,PT ,dt ⊗ P; L0

2)
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Representation of ε̄

To prove ε̄ = N 2
W , we need

Since L(U,H)0 ⊂ L0
2 and φ ∈ ε is L0

2-predictable, we have
ε ⊂ N 2

W .
By completeness of L0

2, we have N 2
W is complete.

ε is dense in N 2
W .
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Extension of stochastic integrals

Finally we will extend the definition of stochastic integrals from
N 2

W to

NW (0,T ; H) :=

{φ : ΩT → L0
2|φis predictable withP(

∫ T

0
||φ(s)||2L0

2
ds <∞) = 1}

We call NW (0,T ; H) the space of stochastically integrable
processes.
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First lemma

Let W (t) be a Q-Wiener process, T > 0.

Lemma

Let φ be a L0
2-valued stochastically integrable process.

(H̃, || · ||H̃) is a separable Hilbert space and L ∈ L(H, H̃). Then

L(φ(t)), t ∈ [0,T ] is an element of NW (0,T ; H̃) and

L(

∫ T

0
φ(t)dW (t)) =

∫ T

0
L(φ(t))dW (t), P − a.s.
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Second lemma

Lemma
Let φ ∈ NW (0,T ) and f is an Ft -adapted continuous H-valued
process. Set∫ T

0
< f (t), φ(t)dW (t) >:=

∫ T

0
φ̃f (t)dW (t)

with φ̃f (t) :=< f (t), φ(t)u >, u ∈ U0. Then this integral is
well-defined as a continuous R-valued stochastic process.
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Second lemma

Lemma

More precisely, φ̃f is a PT/B(L2(Uo,R))-measurable map from
[0,T ]× Ω to L2(U0,R), ||φ̃f (t ,w)||L2(U0,R) = ||φ∗(t ,w)f (t ,w)||U0

for all (t ,w) ∈ [0,T ]× Ω and∫ T

0
||φ̃f (t)||2L2(U0,R)dt ≤ sup

t∈[0,T ]

||f (t)||
∫ T

0
||φ(t)||2L0

2
dt <∞ P−a.s.
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Third lemma

Lemma

Let φ ∈ NW (0,T ) and M(t) :=
∫ t

0 φ(s)dW (s),t ∈ [0,T ]. Define

< M >t :=

∫ t

0
||φ(s)||2L0

2
ds, t ∈ [0,T ].

Then < M > is the unique continuous increasing Ft -adapted
process starting at zero such that ||M(t)||2− < M >t ,t ∈ [0,T ]
is a local martingale.
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Third lemma

Lemma

If φ ∈ N 2
W (0,T ), then for any sequence

Il := {0 = t l
0 < t l

1 < · · · < t l
kl

= T}, l ∈ N,

of partitions with maxi(t l
i − t l

i−1)→ 0 as l →∞

lim
l→∞

E


∣∣∣∣∣∣∣
∑

t l
j+1≤t

||M(t l
j+1)−M(t l

j )||2− < M >t

∣∣∣∣∣∣∣
 = 0
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Cylindrical Wiener processes

In case that Q is not of finite trace, we need a Hilbert space
(U1, <,>1) and a Hilbert-Schmidt embedding

J : (U0, <,>0)→ (U1, <,>1)

Lemma

Let ek ,k ∈ N be an orthonormal basis of U0 = Q1/2(U) and
βk ,k ∈ N a family of independent real-valued Brownian motions.
Define Q1 := JJ∗. Then Q1 ∈ L(U1), Q1 is nonnegative definite
and symmetric with finite trace and the series

W (t) =
∞∑

k=1

βk (t)Jek , t ∈ [0,T ], (1)

converges inM2
T (U1) and defines a Q1-Wiener process on U1.Bergische Universität Wuppertal Stochastic Integrals
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Cylindrical Wiener processes

Lemma

Moreover, we have that Q1/2
1 (U1) = J(U0) and for all u0 ∈ U0

||u0||0 = ||Q−1/2
1 Ju0||1 = ||Ju0||Q1/2

1 U1

i.e. J; U0 → Q1/2
1 U1 is an isometry.
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Stochastic integrals

Fix Q ∈ L(U) nonnegative, symmetric but not necessarily of
finite trace. We integrate with respect to the standard U1-valued
Q1-Wiener process given by the above lemma.

First we get a process φ(t),t ∈ [0,T ] is integrable with respect
to W (t),t ∈ [0,T ], if it takes values in L2(Q1/2

1 (U1),H), is
predictable and if

P

(∫ T

0
||φ(s)||2

L2(Q
1/2
1 (U1),H)

ds <∞

)
= 1
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By previous lemma, Q1/2
1 (U1) = J(U0) and that

< Ju0, Jv0 >Q1/2
1 (U1)

=< Q−1/2
1 Ju0,Q

−1/2
1 Jv0 >1=< u0, v0 >0

for all u0, v0 ∈ U0.

It follows that Jek ,k ∈ N is an orthonormal basis of Q1/2
1 (U1).

Hence

φ ∈ L0
2 = L2(Q1/2(U),H)↔ φ ◦ J−1 ∈ L2(Q1/2

1 (U1),H)
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Define∫ t

0
φ(s)dW (s) :=

∫ t

0
φ(s) ◦ J−1dW (s), t ∈ [0,T ]. (2)

Then the class of all integrable processes is given by

NW = {φ : ΩT → L0
2|φpredictable andP

(∫ T

0
||φ(s)||2L0

2
ds <∞

)
= 1}

as in the case where W (t), t ∈ [0,T ] is a standard Q-Wiener
process in U.
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Remark

1 The stochastic integral defined in the last slide is
independent of the choice of (U1, <,>1) and J. This
follows by construction, since by (1) for elementary
processes (2) does not depend on J.

2 If Q ∈ L(U) is trace class, the standard Q-Wiener process
can also be considered as a cylindrical Q-Wiener process
by setting J = I : U0 → U where I is the identity map. In
this case both definitions of the stochastic integral coincide.
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