Mild Solutions of Stochastic Navier-Stokes Equations-I Semigroup Theory

Meng Xu

Department of Mathematics University of Wyoming

イロト イポト イヨト イヨト

3

1

Semigroups of Linear Operators

- Preliminaries
- C₀-semigroup
- Hille Yosida Theorem
- Analytic Semigroups
- Cauchy problem

イロト イポト イヨト イヨト

3

Preliminaries C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Semigroups of bounded linear operators

Definition

Let X be a Banach space. A one parameter family $T(t), 0 \le t < \infty$ of bounded linear operators from X to X is a semigroup of bounded linear operator on X if

- T(0) = I, *I* is the identity operator on *X*
- T(t + s) = T(s)T(t) for every t, s ≥ 0 (semigroup property)

T(t) is called a uniformly continuous semigroup if

 $\lim_{t \to 0} ||T(t) - I|| = 0$

イロト イポト イヨト イヨト 三日

Preliminaries C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Semigroups of bounded linear operators

Definition

Let X be a Banach space. A one parameter family $T(t), 0 \le t < \infty$ of bounded linear operators from X to X is a semigroup of bounded linear operator on X if

• T(0) = I, *I* is the identity operator on *X*

T(t + s) = T(s)T(t) for every t, s ≥ 0 (semigroup property)

T(t) is called a uniformly continuous semigroup if

 $\lim_{t \to 0} ||T(t) - I|| = 0$

イロン 不得 とくほ とくほ とうほ

Preliminaries C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Semigroups of bounded linear operators

Definition

Let X be a Banach space. A one parameter family T(t), $0 \le t < \infty$ of bounded linear operators from X to X is a semigroup of bounded linear operator on X if

• T(0) = I, *I* is the identity operator on *X*

•
$$T(t + s) = T(s)T(t)$$
 for every $t, s \ge 0$ (semigroup property)

T(t) is called a uniformly continuous semigroup if

 $\lim_{t \to 0} ||T(t) - I|| = 0$

イロン 不得 とくほ とくほ とうほ

Preliminaries C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Semigroups of bounded linear operators

Definition

Let X be a Banach space. A one parameter family T(t), $0 \le t < \infty$ of bounded linear operators from X to X is a semigroup of bounded linear operator on X if

• T(0) = I, *I* is the identity operator on *X*

•
$$T(t + s) = T(s)T(t)$$
 for every $t, s \ge 0$ (semigroup property)

T(t) is called a uniformly continuous semigroup if

 $\lim_{t \to 0} ||T(t) - I|| = 0$

イロン 不得 とくほ とくほ とうほ

Preliminaries C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Semigroups of bounded linear operators

Definition

Let X be a Banach space. A one parameter family T(t), $0 \le t < \infty$ of bounded linear operators from X to X is a semigroup of bounded linear operator on X if

- T(0) = I, *I* is the identity operator on *X*
- T(t + s) = T(s)T(t) for every $t, s \ge 0$ (semigroup property)

T(t) is called a uniformly continuous semigroup if

$$\lim_{t\to 0}||T(t)-I||=0$$

イロト イポト イヨト イヨト 一日

Preliminaries C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロン 不得 とくほ とくほとう

э

Infinitesimal generator

Linear operator A defined by

$$D(A) = \{x \in X : \lim_{t \to 0} rac{T(t)x - x}{t} \quad ext{exists}\}$$

and

$$Ax = \lim_{t \to 0} \frac{T(t)x - x}{t} = \frac{d^+ T(t)x}{dt}|_{t=0} \quad \text{for} \quad x \in D(A)$$

is the infinitesimal generator of the semigroup T(t). D(A) is called the domain of A.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Let X be a Banach space

Definition

A semigroup T(t), $0 \le t < \infty$ of bounded linear operators on X is a strongly continuous semigroup of bounded linear operators if

$$\lim_{t \to 0} T(t)x = x \quad \text{for every} \quad x \in X \tag{1}$$

イロト イポト イヨト イヨト

æ

We usually call it C_0 -semigroup.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Properties of C_0 -semigroup

Theorem

Let T(t) be a C_0 -semigroup. Then there exist constants $w \ge 0$ and $M \ge 1$ such that

 $||T(t)|| \leq Me^{wt} \quad 0 \leq t < \infty$

proof: First, there exists a constant $\eta > 0$ such that ||T(t)|| is bounded for $t \in [0, \eta]$. Suppose this is false, then there exists a sequence $\{t_n\}, t_n \ge 0$ and $\lim_{n\to\infty} t_n = 0$ such that

 $||T(t_n)|| \geq n.$

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Properties of C_0 -semigroup

Theorem

Let T(t) be a C_0 -semigroup. Then there exist constants $w \ge 0$ and $M \ge 1$ such that

 $||T(t)|| \leq Me^{wt} \quad 0 \leq t < \infty$

proof: First, there exists a constant $\eta > 0$ such that ||T(t)|| is bounded for $t \in [0, \eta]$. Suppose this is false, then there exists a sequence $\{t_n\}, t_n \ge 0$ and $\lim_{n\to\infty} t_n = 0$ such that

 $||T(t_n)|| \geq n.$

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Properties of C₀-semigroup

Theorem

Let T(t) be a C_0 -semigroup. Then there exist constants $w \ge 0$ and $M \ge 1$ such that

$$||T(t)|| \le Me^{wt} \quad 0 \le t < \infty$$

proof: First, there exists a constant $\eta > 0$ such that ||T(t)|| is bounded for $t \in [0, \eta]$. Suppose this is false, then there exists a sequence $\{t_n\}, t_n \ge 0$ and $\lim_{n\to\infty} t_n = 0$ such that

 $||T(t_n)|| \geq n.$

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Properties of *C*₀-semigroup

Theorem

Let T(t) be a C_0 -semigroup. Then there exist constants $w \ge 0$ and $M \ge 1$ such that

$$||T(t)|| \le Me^{wt} \quad 0 \le t < \infty$$

proof: First, there exists a constant $\eta > 0$ such that ||T(t)|| is bounded for $t \in [0, \eta]$. Suppose this is false, then there exists a sequence $\{t_n\}, t_n \ge 0$ and $\lim_{n\to\infty} t_n = 0$ such that

$$||T(t_n)|| \geq n.$$

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Proof continues...

Thus

$||T(t)|| \le M$ for $t \in [0, \eta]$

Since ||T(0)|| = 1, $M \ge 1$. Let $w = \eta^{-1} \log M \ge 0$. Given $t \ge 0$, we have $t = n\eta + \delta$ with $0 \le \delta < \eta$.

Therefore, by semigroup property

 $||T(t)|| = ||T(\delta)T(\eta)^n|| \le M^{n+1} \le MM^{t/\eta} = Me^{wt}$

The proof is complete.

Corollary

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Proof continues...

Thus

 $||T(t)|| \le M$ for $t \in [0, \eta]$

Since ||T(0)|| = 1, $M \ge 1$. Let $w = \eta^{-1} \log M \ge 0$. Given $t \ge 0$, we have $t = n\eta + \delta$ with $0 \le \delta < \eta$.

Therefore, by semigroup property

 $||T(t)|| = ||T(\delta)T(\eta)^n|| \le M^{n+1} \le MM^{t/\eta} = Me^{wt}$

The proof is complete.

Corollary

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Proof continues...

Thus

$$||T(t)|| \le M$$
 for $t \in [0, \eta]$

Since ||T(0)|| = 1, $M \ge 1$. Let $w = \eta^{-1} \log M \ge 0$. Given $t \ge 0$, we have $t = n\eta + \delta$ with $0 \le \delta < \eta$.

Therefore, by semigroup property

$$||T(t)|| = ||T(\delta)T(\eta)^n|| \le M^{n+1} \le MM^{t/\eta} = Me^{wt}$$

The proof is complete.

Corollary

Proof continues...

Thus

$$||T(t)|| \le M$$
 for $t \in [0, \eta]$

Since ||T(0)|| = 1, $M \ge 1$. Let $w = \eta^{-1} \log M \ge 0$. Given $t \ge 0$, we have $t = n\eta + \delta$ with $0 \le \delta < \eta$.

Therefore, by semigroup property

$$||T(t)|| = ||T(\delta)T(\eta)^n|| \le M^{n+1} \le MM^{t/\eta} = Me^{wt}$$

The proof is complete.

Corollary

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proof of corollary

Let $t, h \ge 0$

 $||T(t+h)x - T(t)x|| \le ||T(t)|| \cdot ||T(h)x - x|| \le Me^{wt}||T(h)x - x||$

For $t \geq h \geq 0$,

 $||T(t-h)x-T(t)x|| \le ||T(t-h)|| \cdot ||x-T(h)x|| \le Me^{wt}||T(h)x-x||$

The proof is complete.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proof of corollary

Let $t, h \ge 0$

 $||T(t+h)x - T(t)x|| \le ||T(t)|| \cdot ||T(h)x - x|| \le Me^{wt} ||T(h)x - x||$

 $||T(t-h)x-T(t)x|| \le ||T(t-h)|| \cdot ||x-T(h)x|| \le Me^{wt}||T(h)x-x||$

The proof is complete.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proof of corollary

Let $t, h \ge 0$ $||T(t+h)x - T(t)x|| \le ||T(t)|| \cdot ||T(h)x - x|| \le Me^{wt} ||T(h)x - x||$ For $t \ge h \ge 0$, $||T(t-h)x - T(t)x|| \le ||T(t-h)|| \cdot ||x - T(h)x|| \le Me^{wt} ||T(h)x - x||$

The proof is complete.

Main Theorem

Theorem

Let T(t) be a C_0 -semigroup, A be its infinitesimal generator. Then

- For $x \in X$, $\lim_{h\to 0} \frac{1}{h} \int_t^{t+h} T(s) x ds = T(t) x$
- 3 For $x \in X$, $\int_0^t T(s)xds \in D(A)$ and $A\left(\int_0^t T(s)xds\right) = T(t)x x$
- 3 For $x \in D(A)$, $T(t)x \in D(A)$ and $\frac{d}{dt}T(t)x = AT(t)x = T(t)Ax$

$$T(t)x - T(s)x = \int_{s}^{t} T(\tau)Axd\tau = \int_{s}^{t} AT(\tau)xd\tau$$

Main Theorem

Theorem

Let T(t) be a C_0 -semigroup, A be its infinitesimal generator. Then

- For $x \in X$, $\lim_{h\to 0} \frac{1}{h} \int_t^{t+h} T(s) x ds = T(t) x$
- 3 For $x \in X$, $\int_0^t T(s)xds \in D(A)$ and $A\left(\int_0^t T(s)xds\right) = T(t)x x$
- 3 For $x \in D(A)$, $T(t)x \in D(A)$ and $\frac{d}{dt}T(t)x = AT(t)x = T(t)Ax$

$$T(t)x - T(s)x = \int_{s}^{t} T(\tau)Axd\tau = \int_{s}^{t} AT(\tau)xd\tau$$

Main Theorem

Theorem

Let T(t) be a C_0 -semigroup, A be its infinitesimal generator. Then

• For
$$x \in X$$
, $\lim_{h\to 0} \frac{1}{h} \int_t^{t+h} T(s) x ds = T(t) x$

3 For
$$x \in X$$
, $\int_0^t T(s)xds \in D(A)$ and $A\left(\int_0^t T(s)xds\right) = T(t)x - x$

• For $x \in D(A)$, $T(t)x \in D(A)$ and $\frac{d}{dt}T(t)x = AT(t)x = T(t)Ax$

$$T(t)x - T(s)x = \int_{0}^{t} T(\tau)Axd\tau = \int_{0}^{t} AT(\tau)xd\tau$$

Main Theorem

Theorem

Let T(t) be a C_0 -semigroup, A be its infinitesimal generator. Then

• For
$$x \in X$$
, $\lim_{h\to 0} \frac{1}{h} \int_t^{t+h} T(s) x ds = T(t) x$

3 For
$$x \in X$$
, $\int_0^t T(s)xds \in D(A)$ and $A\left(\int_0^t T(s)xds\right) = T(t)x - x$

So For
$$x \in D(A)$$
, $T(t)x \in D(A)$ and
 $\frac{d}{dt}T(t)x = AT(t)x = T(t)Ax$

$$T(t)x - T(s)x = \int_{0}^{t} T(\tau)Axd\tau = \int_{0}^{t} AT(\tau)xd\tau$$

Main Theorem

Theorem

Let T(t) be a C_0 -semigroup, A be its infinitesimal generator. Then

• For
$$x \in X$$
, $\lim_{h\to 0} \frac{1}{h} \int_t^{t+h} T(s) x ds = T(t) x$

3 For
$$x \in X$$
, $\int_0^t T(s)xds \in D(A)$ and $A\left(\int_0^t T(s)xds\right) = T(t)x - x$

Solution For
$$x \in D(A)$$
, $T(t)x \in D(A)$ and $\frac{d}{dt}T(t)x = AT(t)x = T(t)Ax$

• For $x \in D(A)$,

$$T(t)x - T(s)x = \int_{s}^{t} T(\tau)Axd\tau = \int_{s}^{t} AT(\tau)xd\tau$$

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Proof of main theorem

(1): It follows from the continuity of T(t)

(2): Let $x \in X$ and h > 0. Then

$$\frac{T(h)-I}{h} \int_0^t T(s) x ds = \frac{1}{h} \int_0^t (T(s+h)x - T(s)x) ds$$
$$= \frac{1}{h} \int_t^{t+h} T(s) x ds - \frac{1}{h} \int_0^h T(s) x ds$$

As $h \rightarrow 0$, by property (1), RHS $\rightarrow T(t)x - x$ and LHS is

$$A\left(\int_0^t T(s)xds\right) = T(t)x - x$$

イロト イポト イヨト イヨト 一臣

Proof of main theorem

- (1): It follows from the continuity of T(t)
- (2): Let $x \in X$ and h > 0. Then

$$rac{T(h)-I}{h}\int_0^t T(s)xds = rac{1}{h}\int_0^t (T(s+h)x-T(s)x)ds \ = rac{1}{h}\int_t^{t+h}T(s)xds - rac{1}{h}\int_0^h T(s)xds$$

As $h \rightarrow 0$, by property (1), RHS $\rightarrow T(t)x - x$ and LHS is

$$A\left(\int_0^t T(s)xds\right) = T(t)x - x$$

イロト イポト イヨト イヨト 一臣

Proof of main theorem

- (1): It follows from the continuity of T(t)
- (2): Let $x \in X$ and h > 0. Then

$$rac{T(h)-I}{h}\int_0^t T(s)xds = rac{1}{h}\int_0^t (T(s+h)x-T(s)x)ds \ = rac{1}{h}\int_t^{t+h}T(s)xds - rac{1}{h}\int_0^h T(s)xds$$

As $h \rightarrow 0$, by property (1), RHS $\rightarrow T(t)x - x$ and LHS is

$$A\left(\int_0^t T(s)xds\right) = T(t)x - x$$

イロト イポト イヨト イヨト 一臣

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロト イポト イヨト イヨト

3

Proof continues...

(3): Let $x \in D(A)$ and h > 0. Then

$$\frac{T(h) - I}{h}T(t)x = T(t)(\frac{T(h) - I}{h})$$

$$\rightarrow T(t)Ax \text{ as } h \rightarrow 0$$

Thus $T(t)x \in D(A)$ and AT(t)x = T(t)Ax, we have

$$\frac{d^+}{dt}T(t)x = AT(t)x = T(t)Ax$$

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロト イポト イヨト イヨト

3

Proof continues...

(3): Let $x \in D(A)$ and h > 0. Then

$$\frac{T(h) - I}{h}T(t)x = T(t)(\frac{T(h) - I}{h})$$

$$\rightarrow T(t)Ax \text{ as } h \rightarrow 0$$

Thus $T(t)x \in D(A)$ and AT(t)x = T(t)Ax, we have

$$\frac{d^+}{dt}T(t)x = AT(t)x = T(t)Ax$$

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Proof continues...

To prove (3) we need to show that for t > 0, the left derivative of T(t)x exists and equals T(t)Ax.

This follows from

$$\lim_{h \to 0} \left[\frac{T(t)x - T(t-h)x}{h} - T(t)Ax \right]$$
$$= \lim_{h \to 0} T(t-h) \left[\frac{T(h)x - x}{h} - Ax \right] + \lim_{h \to 0} \left[T(t-h)Ax - T(t)Ax \right]$$

The first limit vanishes because T(t - h) is bounded and $x \in D(A)$. The second limit is zero because of the continuity of T(t)Ax.

Proof continues...

To prove (3) we need to show that for t > 0, the left derivative of T(t)x exists and equals T(t)Ax. This follows from

$$\lim_{h \to 0} \left[\frac{T(t)x - T(t-h)x}{h} - T(t)Ax \right]$$
$$= \lim_{h \to 0} T(t-h) \left[\frac{T(h)x - x}{h} - Ax \right] + \lim_{h \to 0} \left[T(t-h)Ax - T(t)Ax \right]$$

The first limit vanishes because T(t - h) is bounded and $x \in D(A)$. The second limit is zero because of the continuity of T(t)Ax.

Proof continues...

To prove (3) we need to show that for t > 0, the left derivative of T(t)x exists and equals T(t)Ax. This follows from

$$\lim_{h \to 0} \left[\frac{T(t)x - T(t-h)x}{h} - T(t)Ax \right]$$
$$= \lim_{h \to 0} T(t-h) \left[\frac{T(h)x - x}{h} - Ax \right] + \lim_{h \to 0} \left[T(t-h)Ax - T(t)Ax \right]$$

The first limit vanishes because T(t - h) is bounded and $x \in D(A)$. The second limit is zero because of the continuity of T(t)Ax.

Proof continues...

To prove (3) we need to show that for t > 0, the left derivative of T(t)x exists and equals T(t)Ax. This follows from

$$\lim_{h \to 0} \left[\frac{T(t)x - T(t-h)x}{h} - T(t)Ax \right]$$
$$= \lim_{h \to 0} T(t-h) \left[\frac{T(h)x - x}{h} - Ax \right] + \lim_{h \to 0} \left[T(t-h)Ax - T(t)Ax \right]$$

The first limit vanishes because T(t - h) is bounded and $x \in D(A)$. The second limit is zero because of the continuity of T(t)Ax.

Corollary on A

Corollary

If A is the infinitesimal generator of a C_0 -semigroup T(t), then D(A) is dense in X and A is a closed linear operator.

proof: For every $x \in X$, set $X_t = \frac{1}{t} \int_0^t T(s) x ds$. By (2), $x_t \in D(A)$. By (1) $x_t \to x$ as $t \to 0$. Thus

$\overline{D(A)} = X$

Linearity of A follows from its definition.

Closedness: Let $x_n \in D(A)$ such that $x_n \to x$ and $Ax_n \to y$ as $n \to \infty$. By 4, we have

$$T(t)x_n - x_n = \int_0^t T(s)Ax_n ds \tag{2}$$

Semigroups

Corollary on A

Corollary

If A is the infinitesimal generator of a C_0 -semigroup T(t), then D(A) is dense in X and A is a closed linear operator.

proof: For every $x \in X$, set $X_t = \frac{1}{t} \int_0^t T(s) x ds$. By (2), $x_t \in D(A)$. By (1) $x_t \to x$ as $t \to 0$. Thus

$\overline{D(A)} = X$

Linearity of A follows from its definition.

Closedness: Let $x_n \in D(A)$ such that $x_n \to x$ and $Ax_n \to y$ as $n \to \infty$. By 4, we have

$$T(t)x_n - x_n = \int_0^t T(s)Ax_n ds \tag{2}$$

Semigroups

Corollary on A

Corollary

If A is the infinitesimal generator of a C_0 -semigroup T(t), then D(A) is dense in X and A is a closed linear operator.

proof: For every $x \in X$, set $X_t = \frac{1}{t} \int_0^t T(s) x ds$. By (2), $x_t \in D(A)$. By (1) $x_t \to x$ as $t \to 0$. Thus

 $\overline{D(A)} = X$

Linearity of A follows from its definition.

Closedness: Let $x_n \in D(A)$ such that $x_n \to x$ and $Ax_n \to y$ as $n \to \infty$. By 4, we have

$$T(t)x_n - x_n = \int_0^t T(s)Ax_n ds \tag{2}$$

Corollary on A

Corollary

If A is the infinitesimal generator of a C_0 -semigroup T(t), then D(A) is dense in X and A is a closed linear operator.

proof: For every $x \in X$, set $X_t = \frac{1}{t} \int_0^t T(s) x ds$. By (2), $x_t \in D(A)$. By (1) $x_t \to x$ as $t \to 0$. Thus

$$\overline{D(A)} = X$$

Linearity of A follows from its definition.

Closedness: Let $x_n \in D(A)$ such that $x_n \to x$ and $Ax_n \to y$ as $n \to \infty$. By 4, we have

$$T(t)x_n - x_n = \int_0^t T(s)Ax_n ds \tag{2}$$

Corollary on A

Corollary

If A is the infinitesimal generator of a C_0 -semigroup T(t), then D(A) is dense in X and A is a closed linear operator.

proof: For every $x \in X$, set $X_t = \frac{1}{t} \int_0^t T(s) x ds$. By (2), $x_t \in D(A)$. By (1) $x_t \to x$ as $t \to 0$. Thus

$$\overline{D(A)} = X$$

Linearity of A follows from its definition.

Closedness: Let $x_n \in D(A)$ such that $x_n \to x$ and $Ax_n \to y$ as $n \to \infty$. By 4, we have

$$T(t)x_n - x_n = \int_0^t T(s)Ax_n ds \tag{2}$$

Corollary on A

Corollary

If A is the infinitesimal generator of a C_0 -semigroup T(t), then D(A) is dense in X and A is a closed linear operator.

proof: For every $x \in X$, set $X_t = \frac{1}{t} \int_0^t T(s) x ds$. By (2), $x_t \in D(A)$. By (1) $x_t \to x$ as $t \to 0$. Thus

$$\overline{D(A)} = X$$

Linearity of A follows from its definition.

Closedness: Let $x_n \in D(A)$ such that $x_n \to x$ and $Ax_n \to y$ as $n \to \infty$. By 4, we have

$$T(t)x_n - x_n = \int_0^t T(s)Ax_n ds \qquad (2)$$

Corollary on A

Corollary

If A is the infinitesimal generator of a C_0 -semigroup T(t), then D(A) is dense in X and A is a closed linear operator.

proof: For every $x \in X$, set $X_t = \frac{1}{t} \int_0^t T(s) x ds$. By (2), $x_t \in D(A)$. By (1) $x_t \to x$ as $t \to 0$. Thus

$$\overline{D(A)} = X$$

Linearity of A follows from its definition.

Closedness: Let $x_n \in D(A)$ such that $x_n \to x$ and $Ax_n \to y$ as $n \to \infty$. By 4, we have

$$T(t)x_n - x_n = \int_0^t T(s)Ax_n ds \tag{2}$$

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロト イポト イヨト イヨト

3

Proof of corollary

The integrand of (2) converges to T(s)y on bounded intervals.

Let $n \to \infty$ in (2), then

$$T(t)x - x = \int_0^t T(s)yds$$

Divide (10) by t and let $t \rightarrow 0$. From (1) we have

 $x \in D(A)$ and Ax = y

The proof is complete.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロト イポト イヨト イヨト

3

Proof of corollary

The integrand of (2) converges to T(s)y on bounded intervals. Let $n \to \infty$ in (2), then

$$T(t)x - x = \int_0^t T(s)yds$$

Divide (10) by t and let $t \rightarrow 0$. From (1) we have

 $x \in D(A)$ and Ax = y

The proof is complete.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

・ロト ・回 ト ・ ヨト ・ ヨトー

æ

Proof of corollary

The integrand of (2) converges to T(s)y on bounded intervals. Let $n \to \infty$ in (2), then

$$T(t)x - x = \int_0^t T(s)yds$$

Divide (10) by t and let $t \rightarrow 0$. From (1) we have

$$x \in D(A)$$
 and $Ax = y$

The proof is complete.

Uniqueness of semigroup

Theorem

Let T(t), S(t) be C_0 -semigroups of bounded linear operators with infinitesimal generators A and B. If A = B, then T(t) = S(t) for any $t \ge 0$.

proof:Let $x \in D(A) = D(B)$. From 3 it follows that $s \to T(t-s)S(s)x$ is differentiable and

 $\frac{d}{ds}T(t-s)S(s)x = -AT(t-s)S(s)x + T(t-s)BS(s)x$ = -T(t-s)AS(s)x + T(t-s)BS(s)x

Thus $s \to T(t - s)S(s)x$ is constant and values at s = 0 or t are the same.

$$T(t)x = S(t)x$$

イロン 不得 とくほ とくほ とうほ

Uniqueness of semigroup

Theorem

Let T(t), S(t) be C_0 -semigroups of bounded linear operators with infinitesimal generators A and B. If A = B, then T(t) = S(t) for any $t \ge 0$.

proof:Let $x \in D(A) = D(B)$. From 3 it follows that $s \to T(t-s)S(s)x$ is differentiable and

 $\frac{d}{ds}T(t-s)S(s)x = -AT(t-s)S(s)x + T(t-s)BS(s)x$ = -T(t-s)AS(s)x + T(t-s)BS(s)x

Thus $s \to T(t - s)S(s)x$ is constant and values at s = 0 or t are the same.

$$T(t)x = S(t)x$$

イロン 不得 とくほ とくほ とうほ

Uniqueness of semigroup

Theorem

Let T(t), S(t) be C_0 -semigroups of bounded linear operators with infinitesimal generators A and B. If A = B, then T(t) = S(t) for any $t \ge 0$.

proof:Let $x \in D(A) = D(B)$. From 3 it follows that $s \to T(t-s)S(s)x$ is differentiable and $\frac{d}{ds}T(t-s)S(s)x = -AT(t-s)S(s)x + T(t-s)BS(s)x$ = -T(t-s)AS(s)x + T(t-s)BS(s)x = 0

Thus $s \rightarrow T(t-s)S(s)x$ is constant and values at s = 0 or t are the same.

$$T(t)x = S(t)x$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Uniqueness of semigroup

Theorem

Let T(t), S(t) be C_0 -semigroups of bounded linear operators with infinitesimal generators A and B. If A = B, then T(t) = S(t) for any $t \ge 0$.

proof:Let $x \in D(A) = D(B)$. From 3 it follows that $s \to T(t-s)S(s)x$ is differentiable and $\frac{d}{ds}T(t-s)S(s)x = -AT(t-s)S(s)x + T(t-s)BS(s)x$ = -T(t-s)AS(s)x + T(t-s)BS(s)x = 0

Thus $s \to T(t - s)S(s)x$ is constant and values at s = 0 or t are the same.

$$T(t)x = S(t)x$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

イロト イポト イヨト イヨト

This holds for every $x \in D(A)$. By Corollary above, D(A) is dense in X and T(t), S(t) are bounded. So

T(t)x = S(t)x for every $x \in X$

We have the following stronger result on *A* comparing to the previous corollary.

Theorem

Let A be the infinitesimal generator of a C_0 -semigroup T(t). If $D(A^n)$ is the domain of A^n , then $\bigcap_{n=1}^{\infty} D(A^n)$ is dense in X.

イロト イポト イヨト イヨト

This holds for every $x \in D(A)$. By Corollary above, D(A) is dense in X and T(t), S(t) are bounded. So

T(t)x = S(t)x for every $x \in X$

We have the following stronger result on *A* comparing to the previous corollary.

Theorem

Let A be the infinitesimal generator of a C_0 -semigroup T(t). If $D(A^n)$ is the domain of A^n , then $\bigcap_{n=1}^{\infty} D(A^n)$ is dense in X.

イロト イポト イヨト イヨト 一臣

This holds for every $x \in D(A)$. By Corollary above, D(A) is dense in X and T(t), S(t) are bounded. So

T(t)x = S(t)x for every $x \in X$

We have the following stronger result on *A* comparing to the previous corollary.

Theorem

Let A be the infinitesimal generator of a C_0 -semigroup T(t). If $D(A^n)$ is the domain of A^n , then $\bigcap_{n=1}^{\infty} D(A^n)$ is dense in X.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロト イポト イヨト イヨト

э.

A few concepts

Let T(t) be a C_0 -semigroup. By theorem, it follows that there exist $w \ge 0$ and $M \ge 1$ such that

$||T(t)|| \le M e^{wt}, \quad t \ge 0$

If w = 0, then T(t) is called uniformly bounded.

If w = 0, M = 1, then T(t) is called a C_0 -semigroup of contractions.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

・ロン・(理)・ ・ ヨン・

э.

A few concepts

Let T(t) be a C_0 -semigroup. By theorem, it follows that there exist $w \ge 0$ and $M \ge 1$ such that

$$||T(t)|| \leq Me^{wt}, \quad t \geq 0$$

If w = 0, then T(t) is called uniformly bounded.

If w = 0, M = 1, then T(t) is called a C_0 -semigroup of contractions.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロト イポト イヨト イヨト

1

A few concepts

Let T(t) be a C_0 -semigroup. By theorem, it follows that there exist $w \ge 0$ and $M \ge 1$ such that

$$||T(t)|| \le Me^{wt}, \quad t \ge 0$$

If w = 0, then T(t) is called uniformly bounded.

If w = 0, M = 1, then T(t) is called a C_0 -semigroup of contractions.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

< ロ > < 同 > < 回 > < 回 > <</p>

Resolvent

If *A* is linear operator in *X*. the resolvent set $\rho(A)$ of *A* is the set of all complex number λ for which $\lambda I - A$ is invertible. i.e.

 $(\lambda I - A)^{-1}$ is a bounded linear operator in *X*.

$$R(\lambda : A) = (\lambda I - A)^{-1}, \quad \lambda \in \rho(A)$$

of bounded linear operators is called the resolvent of A.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロト イポト イヨト イヨト

Resolvent

If *A* is linear operator in *X*. the resolvent set $\rho(A)$ of *A* is the set of all complex number λ for which $\lambda I - A$ is invertible. i.e.

 $(\lambda I - A)^{-1}$ is a bounded linear operator in X.

$$R(\lambda : A) = (\lambda I - A)^{-1}, \quad \lambda \in \rho(A)$$

of bounded linear operators is called the resolvent of A.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロン 不得 とくほ とくほとう

Resolvent

If *A* is linear operator in *X*. the resolvent set $\rho(A)$ of *A* is the set of all complex number λ for which $\lambda I - A$ is invertible. i.e.

 $(\lambda I - A)^{-1}$ is a bounded linear operator in X.

$$R(\lambda : A) = (\lambda I - A)^{-1}, \quad \lambda \in \rho(A)$$

of bounded linear operators is called the resolvent of A.

 C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Hille-Yosida Theorem

Theorem

A linear (unbounded) operator A is the infinitesimal generator of a C_0 -semigroup of contractions T(t), $t \ge 0$ if and only if

- A is closed and $\overline{D(A)} = X$
- $\mathbb{R}^+ \subset \rho(A)$ and for every $\lambda > 0$, $||R(\lambda : A)|| \le \frac{1}{\lambda}$

_emma

Let A satisfy conditions of the above theorem, then

 $\lim_{n\to\infty} \lambda R(\lambda : A) x = x \quad for \quad x \in X$

イロト イポト イヨト イヨト

 C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Hille-Yosida Theorem

Theorem

A linear (unbounded) operator A is the infinitesimal generator of a C₀-semigroup of contractions T(t), $t \ge 0$ if and only if

• A is closed and $\overline{D(A)} = X$

• $\mathbb{R}^+ \subset \rho(A)$ and for every $\lambda > 0$, $||R(\lambda : A)|| \le \frac{1}{\lambda}$

_emma

Let A satisfy conditions of the above theorem, then

 $\lim_{n\to\infty} \lambda R(\lambda : A) x = x \quad for \quad x \in X$

イロト イポト イヨト イヨト

 C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Hille-Yosida Theorem

Theorem

A linear (unbounded) operator A is the infinitesimal generator of a C₀-semigroup of contractions T(t), $t \ge 0$ if and only if

- A is closed and $\overline{D(A)} = X$
- $\mathbb{R}^+ \subset \rho(A)$ and for every $\lambda > 0$, $||R(\lambda : A)|| \le \frac{1}{\lambda}$

emma

Let A satisfy conditions of the above theorem, then

 $\lim_{n\to\infty} \lambda R(\lambda : A) x = x \quad for \quad x \in X$

・ロン・西方・ ・ ヨン・ ヨン・

 C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Hille-Yosida Theorem

Theorem

A linear (unbounded) operator A is the infinitesimal generator of a C₀-semigroup of contractions T(t), $t \ge 0$ if and only if

- A is closed and $\overline{D(A)} = X$
- $\mathbb{R}^+ \subset \rho(A)$ and for every $\lambda > 0$, $||R(\lambda : A)|| \le \frac{1}{\lambda}$

emma

Let A satisfy conditions of the above theorem, then

 $\lim_{n\to\infty} \lambda R(\lambda : A) x = x \quad for \quad x \in X$

・ロン・西方・ ・ ヨン・ ヨン・

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Hille-Yosida Theorem

Theorem

A linear (unbounded) operator A is the infinitesimal generator of a C₀-semigroup of contractions T(t), $t \ge 0$ if and only if

- A is closed and $\overline{D(A)} = X$
- $\mathbb{R}^+ \subset \rho(A)$ and for every $\lambda > 0$, $||R(\lambda : A)|| \leq \frac{1}{\lambda}$

Lemma

Let A satisfy conditions of the above theorem, then

$$\lim_{n\to\infty}\lambda R(\lambda:A)x = x \quad for \quad x\in X$$

イロト イポト イヨト イヨト

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Hille-Yosida for Uniformly Bounded Semigroups

Theorem

A linear operator A is the infinitesimal generator of a C_0 -semigroup T(t), satisfying $||T(t)|| \le M \ (M \ge 1)$, if and only if

- In A is closed and D(A) is dense in X.
- ② The resolvent set ho(A) of A contains \mathbb{R}^+ and

 $||R(\lambda; A)^n|| \le M/\lambda^n$ for $\lambda > 0$, $n = 1, 2, \cdots$

イロト イポト イヨト イヨト

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Hille-Yosida for Uniformly Bounded Semigroups

Theorem

A linear operator A is the infinitesimal generator of a C_0 -semigroup T(t), satisfying $||T(t)|| \le M \ (M \ge 1)$, if and only if

- A is closed and D(A) is dense in X.
 - 2) The resolvent set $\rho(A)$ of A contains \mathbb{R}^+ and

 $||R(\lambda; A)^n|| \le M/\lambda^n$ for $\lambda > 0$, $n = 1, 2, \cdots$

イロト イポト イヨト イヨト

Preliminaries C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Hille-Yosida for Uniformly Bounded Semigroups

Theorem

A linear operator A is the infinitesimal generator of a C_0 -semigroup T(t), satisfying $||T(t)|| \le M \ (M \ge 1)$, if and only if

- A is closed and D(A) is dense in X.
- 2 The resolvent set $\rho(A)$ of A contains \mathbb{R}^+ and

 $||R(\lambda; A)^n|| \leq M/\lambda^n \text{ for } \lambda > 0, n = 1, 2, \cdots$

イロト イポト イヨト イヨト

1

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Hille-Yosida for C_0 -semigroup

Theorem

A linear operator A is the infinitesimal generator of a C_0 -semigroup T(t) satisfying $||T(t)|| \le Me^{wt}$ if and only if

- A is closed and D(A) is dense in X
-] $w, \infty [\subset \rho(A) \text{ and} \\ ||R(\lambda : A)^n|| \leq \frac{M}{(\lambda w)^n} \text{ for } \lambda > w \text{ } n = 1, 2 \cdots$

Theorem

Let A be the infinitesimal generator of a C_0 -semigroup T(t) on X. If A_{λ} is the Yosida approximation of A, i.e. $A_{\lambda} = \lambda AR(\lambda : A)$, then $T(t)x = \lim_{\lambda \to \infty} e^{tA_{\lambda}}x$ where $e^{tA_{\lambda}} = \sum_{n=0}^{\infty} \frac{(tA_{\lambda})^n}{n!}$.

ヘロト 人間 とくほとくほとう

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Hille-Yosida for C_0 -semigroup

Theorem

A linear operator A is the infinitesimal generator of a C_0 -semigroup T(t) satisfying $||T(t)|| \le Me^{wt}$ if and only if

- A is closed and D(A) is dense in X
-] $w, \infty [\subset \rho(A) \text{ and} \\ ||R(\lambda : A)^n|| \leq \frac{M}{(\lambda w)^n} \text{ for } \lambda > w \quad n = 1, 2 \cdots$

Theorem

Let A be the infinitesimal generator of a C_0 -semigroup T(t) on X. If A_{λ} is the Yosida approximation of A, i.e. $A_{\lambda} = \lambda AR(\lambda : A)$, then $T(t)x = \lim_{\lambda \to \infty} e^{tA_{\lambda}}x$ where $e^{tA_{\lambda}} = \sum_{n=0}^{\infty} \frac{(tA_{\lambda})^n}{n!}$.

ヘロト 人間 とくほとくほとう

Hille-Yosida for C_0 -semigroup

Theorem

A linear operator A is the infinitesimal generator of a C_0 -semigroup T(t) satisfying $||T(t)|| \le Me^{wt}$ if and only if

• A is closed and D(A) is dense in X

•]
$$w, \infty [\subset \rho(A) \text{ and} \\ ||R(\lambda : A)^n|| \leq \frac{M}{(\lambda - w)^n} \text{ for } \lambda > w \quad n = 1, 2 \cdots$$

Theorem

Let A be the infinitesimal generator of a C_0 -semigroup T(t) on X. If A_λ is the Yosida approximation of A, i.e. $A_\lambda = \lambda AR(\lambda : A)$, then $T(t)x = \lim_{\lambda \to \infty} e^{tA_\lambda}x$ where $e^{tA_\lambda} = \sum_{n=0}^{\infty} \frac{(tA_\lambda)^n}{n!}$.

イロン 不同 とくほ とくほ とう

Hille-Yosida for C_0 -semigroup

Theorem

A linear operator A is the infinitesimal generator of a C_0 -semigroup T(t) satisfying $||T(t)|| \le Me^{wt}$ if and only if

• A is closed and D(A) is dense in X

•]
$$w, \infty [\subset \rho(A) \text{ and} \\ ||R(\lambda : A)^n|| \leq \frac{M}{(\lambda - w)^n} \text{ for } \lambda > w \quad n = 1, 2 \cdots$$

Theorem

Let A be the infinitesimal generator of a C_0 -semigroup T(t) on X. If A_λ is the Yosida approximation of A, i.e. $A_\lambda = \lambda AR(\lambda : A)$, then $T(t)x = \lim_{\lambda \to \infty} e^{tA_\lambda}x$ where $e^{tA_\lambda} = \sum_{n=0}^{\infty} \frac{(tA_\lambda)^n}{n!}$.

イロン 不同 とくほ とくほ とう

Hille-Yosida for C_0 -semigroup

Theorem

A linear operator A is the infinitesimal generator of a C_0 -semigroup T(t) satisfying $||T(t)|| \le Me^{wt}$ if and only if

• A is closed and D(A) is dense in X

•]
$$w, \infty [\subset \rho(A) \text{ and} \\ ||R(\lambda : A)^n|| \leq \frac{M}{(\lambda - w)^n} \text{ for } \lambda > w \quad n = 1, 2 \cdots$$

Theorem

Let A be the infinitesimal generator of a C_0 -semigroup T(t) on X. If A_λ is the Yosida approximation of A, i.e. $A_\lambda = \lambda AR(\lambda : A)$, then $T(t)x = \lim_{\lambda \to \infty} e^{tA_\lambda}x$ where $e^{tA_\lambda} = \sum_{n=0}^{\infty} \frac{(tA_\lambda)^n}{n!}$.

э

ヘロト 人間 とくほ とくほ と

< ロ > < 同 > < 回 > < 回 > <</p>

A sufficient condition for C_0 -semigroup

An easier to use theorem showing A is the infinitesimal generator of a C_0 -semigroup is given below.

Theorem

Let A be a densely defined operator in X satisfying the following conditions.

- $\bigcirc \ \ \text{For some } 0 < \delta < \pi/2,$
 - $\rho(A)\supset \Sigma_{\delta}=\{\lambda:|arg\lambda|<\pi/2+\delta\}\cup\{0\}$
- There exists a constant M such that $||R(\lambda \circ A)|| \le \frac{M}{M}$ for $\lambda \in \Sigma_{\Lambda}$, $\lambda \neq 0$.

Then, A is the infinitesimal generator of a C_0 semigroup T(t) satisfying $||T(t)|| \le C$ for some constant C.

イロト イポト イヨト イヨト

э

A sufficient condition for C_0 -semigroup

An easier to use theorem showing A is the infinitesimal generator of a C_0 -semigroup is given below.

Theorem

Let A be a densely defined operator in X satisfying the following conditions.

- **)** For some $0 < \delta < \pi/2$, $\rho(A) \supset \sum \sigma = \{\lambda : |arg_{\lambda}| < \pi/2 \}$
- **C** There exists a constant *M* such that $||R(\lambda : A)|| \le \frac{M}{|\lambda|}$ for $\lambda \in \Sigma_{\delta}, \lambda \neq 0$.

Then, A is the infinitesimal generator of a C_0 semigroup T(t) satisfying $||T(t)|| \le C$ for some constant C.

Preliminaries C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロト イポト イヨト イヨト

э

A sufficient condition for C_0 -semigroup

An easier to use theorem showing A is the infinitesimal generator of a C_0 -semigroup is given below.

Theorem

Let A be a densely defined operator in X satisfying the following conditions.

1 For some
$$0 < \delta < \pi/2$$
,

 $\rho(\mathbf{A}) \supset \Sigma_{\delta} = \{\lambda : |arg\lambda| < \pi/2 + \delta\} \cup \{\mathbf{0}\}.$

2 There exists a constant *M* such that $||R(\lambda : A)|| \le \frac{M}{|\lambda|}$ for $\lambda \in \Sigma_{\delta}, \lambda \neq 0$.

Then, A is the infinitesimal generator of a C_0 semigroup T(t) satisfying $||T(t)|| \le C$ for some constant C.

Preliminaries C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロト イポト イヨト イヨト

э

A sufficient condition for C_0 -semigroup

An easier to use theorem showing A is the infinitesimal generator of a C_0 -semigroup is given below.

Theorem

Let A be a densely defined operator in X satisfying the following conditions.

• For some 0
$$<\delta<\pi/2$$
,

 $\rho(\mathbf{A}) \supset \Sigma_{\delta} = \{\lambda : |arg\lambda| < \pi/2 + \delta\} \cup \{\mathbf{0}\}.$

2 There exists a constant M such that $||R(\lambda : A)|| \le \frac{M}{|\lambda|}$ for $\lambda \in \Sigma_{\delta}, \lambda \neq 0$.

Then, A is the infinitesimal generator of a C_0 semigroup T(t) satisfying $||T(t)|| \le C$ for some constant C.

Preliminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

イロン 不得 とくほ とくほとう

Definition of analytic semigroups

Definition

Let $\triangle = \{z : \varphi_1 < \arg z < \varphi_2, \varphi_1 < 0 < \varphi_2\}$ and for $z \in \triangle$ let T(z) be a bounded linear operator. The family $T(z), z \in \triangle$ is an analytic semigroup in \triangle if

()
$$z \to T(z)$$
 is analytic in *triangle*.

2)
$$T(0) = I$$
 and $\lim_{z \to 0, z \in \Delta} T(z)x = x$ for every $x \in X$.

3 $T(z_1 + z_2) = T(z_1)T(z_2)$ for $z_1, z_2 \in \triangle$.

Preliminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

イロン イボン イヨン イヨン

Definition of analytic semigroups

Definition

Let $\triangle = \{z : \varphi_1 < \arg z < \varphi_2, \varphi_1 < 0 < \varphi_2\}$ and for $z \in \triangle$ let T(z) be a bounded linear operator. The family $T(z), z \in \triangle$ is an analytic semigroup in \triangle if

1
$$z \to T(z)$$
 is analytic in *triangle*.

② T(0) = I and $\lim_{z\to 0, z \in \Delta} T(z)x = x$ for every $x \in X$.

3 $T(z_1 + z_2) = T(z_1)T(z_2)$ for $z_1, z_2 \in \triangle$.

Preliminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

イロン イボン イヨン イヨン

Definition of analytic semigroups

Definition

Let $\triangle = \{z : \varphi_1 < \arg z < \varphi_2, \varphi_1 < 0 < \varphi_2\}$ and for $z \in \triangle$ let T(z) be a bounded linear operator. The family $T(z), z \in \triangle$ is an analytic semigroup in \triangle if

1
$$z \to T(z)$$
 is analytic in *triangle*.

3
$$T(0) = I$$
 and $\lim_{z \to 0, z \in \triangle} T(z)x = x$ for every $x \in X$.

3 $T(z_1 + z_2) = T(z_1)T(z_2)$ for $z_1, z_2 \in \triangle$.

Preliminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

Definition of analytic semigroups

Definition

Let $\triangle = \{z : \varphi_1 < \arg z < \varphi_2, \varphi_1 < 0 < \varphi_2\}$ and for $z \in \triangle$ let T(z) be a bounded linear operator. The family $T(z), z \in \triangle$ is an analytic semigroup in \triangle if

•
$$z \to T(z)$$
 is analytic in *triangle*.

3
$$T(0) = I$$
 and $\lim_{z \to 0, z \in \triangle} T(z)x = x$ for every $x \in X$.

3
$$T(z_1 + z_2) = T(z_1)T(z_2)$$
 for $z_1, z_2 ∈ △$.

Preliminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

Definition of analytic semigroups

Definition

Let $\triangle = \{z : \varphi_1 < \arg z < \varphi_2, \varphi_1 < 0 < \varphi_2\}$ and for $z \in \triangle$ let T(z) be a bounded linear operator. The family $T(z), z \in \triangle$ is an analytic semigroup in \triangle if

•
$$z \to T(z)$$
 is analytic in *triangle*.

3
$$T(0) = I$$
 and $\lim_{z \to 0, z \in \triangle} T(z)x = x$ for every $x \in X$.

3
$$T(z_1 + z_2) = T(z_1)T(z_2)$$
 for $z_1, z_2 ∈ △$.

Preliminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

<ロト <回 > < 注 > < 注 > 、

Definition of analytic semigroups

Definition

Let $\triangle = \{z : \varphi_1 < \arg z < \varphi_2, \varphi_1 < 0 < \varphi_2\}$ and for $z \in \triangle$ let T(z) be a bounded linear operator. The family $T(z), z \in \triangle$ is an analytic semigroup in \triangle if

•
$$z \to T(z)$$
 is analytic in *triangle*.

3
$$T(0) = I$$
 and $\lim_{z \to 0, z \in \triangle} T(z)x = x$ for every $x \in X$.

③
$$T(z_1 + z_2) = T(z_1)T(z_2)$$
 for $z_1, z_2 \in \triangle$.

Preliminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

Main theorem

Theorem

Let T(t) be a uniformly bounded C_0 semigroup. Let A be the infinitesimal generator of T(t) and assume $0 \in \rho(A)$. The following statements are equivalent:

- *T*(*t*) can be extended to an analytic semigroup in a sector
 Δ_δ = {*z* : |arg*z*| < δ} and ||*T*(*z*)|| is uniformly bounded in
 every closed subsector Δ_{δ'}, δ' < δ, of Δ_δ.
- There exists a constant C such that for every $\sigma > 0$, $\tau \neq 0$,

$$||R(\sigma + i\tau : A)|| \le \frac{C}{|\tau|}$$

ヘロト 人間 とくほ とくほう

Preiminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

Main theorem

Theorem

Let T(t) be a uniformly bounded C_0 semigroup. Let A be the infinitesimal generator of T(t) and assume $0 \in \rho(A)$. The following statements are equivalent:

- *T*(*t*) can be extended to an analytic semigroup in a sector
 Δ_δ = {z : |argz| < δ} and ||*T*(z)|| is uniformly bounded in
 every closed subsector Δ_{δ'}, δ' < δ, of Δ_δ.
- There exists a constant C such that for every $\sigma > 0$, $\tau \neq 0$,

$$||R(\sigma + i\tau : A)|| \le \frac{C}{|\tau|}$$

ヘロト 人間 とくほ とくほう

Preiminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

Main theorem

Theorem

Let T(t) be a uniformly bounded C_0 semigroup. Let A be the infinitesimal generator of T(t) and assume $0 \in \rho(A)$. The following statements are equivalent:

- *T*(*t*) can be extended to an analytic semigroup in a sector
 Δ_δ = {z : |argz| < δ} and ||*T*(z)|| is uniformly bounded in
 every closed subsector Δ_{δ'}, δ' < δ, of Δ_δ.
- There exists a constant C such that for every $\sigma > 0$, $\tau \neq 0$,

$$||\boldsymbol{R}(\sigma + i\tau : \boldsymbol{A})|| \leq \frac{\boldsymbol{C}}{|\tau|}$$

イロト イヨト イヨト

C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Theorem continues...

Theorem

• There exists $0 < \delta < \pi/2$ and M > 0 such that

$$\rho(A) \supset \Sigma = \{\lambda : |arg\lambda| < \frac{\pi}{2} + \delta\} \cup \{0\}$$

and

$$||m{R}(\lambda:m{A})|| \leq rac{M}{|\lambda|}$$
 for $\lambda\in\Sigma,\lambda
eq 0$

 T(t) is differentiable for t > 0 and there is a constant C such that

$$||AT(t)|| \leq rac{C}{t}$$
 for $t > 0$

C₀-semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Theorem continues...

Theorem

• There exists $0 < \delta < \pi/2$ and M > 0 such that

$$\rho(\mathbf{A}) \supset \mathbf{\Sigma} = \{\lambda : |arg\lambda| < \frac{\pi}{2} + \delta\} \cup \{\mathbf{0}\}$$

and

$$||m{R}(\lambda:m{A})|| \leq rac{M}{|\lambda|} \quad \textit{for} \quad \lambda \in \Sigma, \lambda
eq 0$$

 T(t) is differentiable for t > 0 and there is a constant C such that

$$||AT(t)|| \leq rac{C}{t}$$
 for $t > 0$

Areiminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

Theorem continues...

Theorem

• There exists $0 < \delta < \pi/2$ and M > 0 such that

$$ho(A) \supset \Sigma = \{\lambda : |arg\lambda| < \frac{\pi}{2} + \delta\} \cup \{0\}$$

and

$$||\boldsymbol{R}(\lambda : \boldsymbol{A})|| \leq \frac{\boldsymbol{M}}{|\lambda|} \quad \textit{for} \quad \lambda \in \Sigma, \lambda \neq \boldsymbol{0}$$

T(t) is differentiable for t > 0 and there is a constant C such that

$$||AT(t)|| \leq rac{C}{t}$$
 for $t > 0$

Preliminaries *C*₀-semigroup Hille Yosida Theorem **Analytic Semigroups** Cauchy problem

くロト (過) (目) (日)

Characterization of analytic semigroups

Theorem

Let A be the infinitesimal generator of a C_0 semigroup T(t) satisfying $||T(t)|| \le Me^{wt}$. Then T(t) is analytic if and only if there are constants C > 0 and $\Lambda \ge 0$ such that

$$||AR(\lambda : A)^{n+1}|| \leq \frac{C}{n\lambda^n}$$
 for $\lambda > n\Lambda$, $n = 1, 2, \cdots$

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Homogeneous Cauchy problem

Consider

$$\begin{cases} \frac{du}{dt} = Au(t), & t > 0\\ u(0) = x \end{cases}$$
(3)

イロト 不得 とくほ とくほとう

ъ

Definition

An X-valued function u(t) is called a solution of above problem if: u(t) is continuous and continuously differentiable for $t \ge 0$, $u(t) \in D(A)$ for t > 0 and (3) is satisfied.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Homogeneous Cauchy problem

Consider

$$\begin{cases} \frac{du}{dt} = Au(t), & t > 0\\ u(0) = x \end{cases}$$
(3)

くロト (過) (目) (日)

Definition

An *X*-valued function u(t) is called a solution of above problem if: u(t) is continuous and continuously differentiable for $t \ge 0$, $u(t) \in D(A)$ for t > 0 and (3) is satisfied.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Relation with C_0 -semigroup

If *A* is the infinitesimal generator of a C_0 -semigroup T(t), then (3) has a solution u(t) = T(t)x, for every $x \in D(A)$.

Theorem

Let A be a densely defined linear operator with a nonempty resolvent set $\rho(A)$. Then (3) has a unique solution which is continuously differentiable on $[0,\infty)$ for every initial value $x \in D(A)$ if and only if

A is the infinitesimal generator of a C_0 – semigroupT(t)

ヘロン 人間 とくほど くほとう

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

Relation with C_0 -semigroup

If *A* is the infinitesimal generator of a C_0 -semigroup T(t), then (3) has a solution u(t) = T(t)x, for every $x \in D(A)$.

Theorem

Let A be a densely defined linear operator with a nonempty resolvent set $\rho(A)$. Then (3) has a unique solution which is continuously differentiable on $[0, \infty)$ for every initial value $x \in D(A)$ if and only if

A is the infinitesimal generator of a C_0 – semigroupT(t)

ヘロン 人間 とくほど くほとう

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロン 不得 とくほ とくほとう

Mild solutions

Definition

Let T(t) be a C_0 -semigroup on X. T(t) is called differentiable for $t > t_0$ if for every $x \in X$, $t \to T(t)x$ is differentiable for $t > t_0$.

Definition

If A is the infinitesimal generator of a C_0 -semigroup which is not differentiable, then in general, if $x \in D(A)$, (3) does not have a solution. The function $t \to T(t)x$ is called a mild solution.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロン 不得 とくほ とくほとう

Mild solutions

Definition

Let T(t) be a C_0 -semigroup on X. T(t) is called differentiable for $t > t_0$ if for every $x \in X$, $t \to T(t)x$ is differentiable for $t > t_0$.

Definition

If A is the infinitesimal generator of a C_0 -semigroup which is not differentiable, then in general, if $x \in D(A)$, (3) does not have a solution. The function $t \to T(t)x$ is called a mild solution.

Preliminaries C_0 -semigroup Hille Yosida Theorem Analytic Semigroups Cauchy problem

イロト イポト イヨト イヨト

Mild solutions

Definition

Let T(t) be a C_0 -semigroup on X. T(t) is called differentiable for $t > t_0$ if for every $x \in X$, $t \to T(t)x$ is differentiable for $t > t_0$.

Definition

If *A* is the infinitesimal generator of a C_0 -semigroup which is not differentiable, then in general, if $x \in D(A)$, (3) does not have a solution. The function $t \to T(t)x$ is called a mild solution.

Preliminaries *C*₀-semigroup Hille Yosida Theorem Analytic Semigroups **Cauchy problem**

イロト イポト イヨト イヨト

nonhomogeneous Cauchy problem

Theorem

Let A be the infinitesimal generator of a C_0 -semigroup T(t). Let $x \in X$, $f \in L^1(0, T; X)$. $u \in C([0, T], X)$ given by

$$u(t) = T(t)x + \int_0^t T(t-s)f(s)ds, \quad 0 \le t \le T$$

is the mild solution on [0, T] for the nonhomogeneous Cauchy problem

$$\begin{cases} \frac{du(t)}{dt} = Au(t) + f(t), \quad t > 0\\ u(0) = x \end{cases}$$