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Fluid path

Consider the path followed by a fluid particle flows inside a
domain W.

x(t) = (x(1),y(1), 2(1))
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Fluid path

Consider the path followed by a fluid particle flows inside a
domain W.

x(t) = (x(1),y(1), 2(1))

Then the velocity field becomes

u(z(t), y(1), 2(t), ) = (@(t), y(1), (1))
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Fluid path

Consider the path followed by a fluid particle flows inside a
domain W.

x(t) = (x(1),y(1), 2(1))

Then the velocity field becomes

u(z(t), y(1), 2(t), ) = (@(t), y(1), (1))

or
ax

u(x(8),t) = ()
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Acceleration of fluid particle

Another physical quantity in fluid mechanics is the acceleration
of the fluid particle

o2 d
a(t) = Zx(t) = Zu(a(t) y(t), (1)
_ Ou. 6u_+6u. ou
“or T oyt T T ot
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Acceleration of fluid particle

Another physical quantity in fluid mechanics is the acceleration
of the fluid particle

o2 d
a(t) = Zx(t) = Zu(a(t) y(t), (1)
_ Ou. 6u_+6u. ou
“or T oyt T T ot

Denote u, = %4,.. u; = 2% and

u(x7 y? Z? t) = (u(xJ y? Z? t)? v(x7 y? 27 t)? W(aj7 y7 Z? t))
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Material derivative

From the above notation, we can rewrite

a(t) = uu, + vu, + wu, + u;
=o0iu+u-Vvu
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Material derivative

From the above notation, we can rewrite

a(t) = uu, + vu, + wu, + u;
=o0iu+u-Vvu

We will frequently use the operator

D
D= otuv (1)

Operator (1) is called the material derivative.
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Ideal fluid

///

~ Force across S=pn.
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Ideal fluid

Ideal Fluid

For any motion of the fluid in a region W, there is a function
p(x, t) called the pressure, such that OW is a surface in the fluid
with a chosen unit normal n, the force of stress exerted across
the surface OW per unit area at x € oW at time t is p(x, t)n.
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Ideal fluid

Ideal Fluid

For any motion of the fluid in a region W, there is a function
p(x, t) called the pressure, such that OW is a surface in the fluid
with a chosen unit normal n, the force of stress exerted across
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Ideal fluid

Ideal Fluid

For any motion of the fluid in a region W, there is a function
p(x, t) called the pressure, such that OW is a surface in the fluid
with a chosen unit normal n, the force of stress exerted across
the surface OW per unit area at x € oW at time t is p(x, t)n.

Remark: The absence of tangential forces implies that there is
no rotation for fluid in W.
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Force on the boundary

For ideal fluid, the total force on the fluid inside W by means of
stress on its boundary is

Sow = {force on W} = —/ pndA
ow
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Force on the boundary

For ideal fluid, the total force on the fluid inside W by means of
stress on its boundary is

Sow = {force on W} = —/ pndA
ow
For any fixed vector e, divergence theorem gives us
e - Syw=-— pe - ndA
ow
_ / div(pe)dV
w

= —/ (gradp) - edV
w
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Force on the boundary

For ideal fluid, the total force on the fluid inside W by means of
stress on its boundary is

Sow = {force on W} = —/ pndA
ow
For any fixed vector e, divergence theorem gives us
e - Syw=-— pe - ndA
ow
_ / div(pe)dV
w
= —/ (gradp) - edV
w

Hence
Sow = —/ gradpdV
w
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Balance of momentum

Denote b(x, t) as the given body force per unit mass, then the

total body force is
B= / pbdV
w
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Balance of momentum

Denote b(x, t) as the given body force per unit mass, then the

total body force is
B= / pbdV
w

In all, force per unit volume is equal to

—gradp + pb
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Balance of momentum

Denote b(x, t) as the given body force per unit mass, then the

total body force is
B= / pbdV
w

In all, force per unit volume is equal to

—gradp + pb

Balance of Momentum(Differential Form)
By the principle of momentum balance (Newton’s second law),

Du
P = —gradp + pb
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Integral form

An integral form of the balance of momentum can be derived
for general fluid:

Balance of Momentum(Integral Form)
By the principle of momentum balance,

d

/ pudV = S{)W, +/ pbdV
at Jw, W,

Here W; is a region at time t and Sy, represents the total force
exerted on the surface O W;.

<
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Write ¢(x, t) as the trajectory followed by the particle at point x
and time t. Assume the flow is smooth enough. Then we can
define a mapping

Pt - XHSO(X7t)
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Write ¢(x, t) as the trajectory followed by the particle at point x
and time t. Assume the flow is smooth enough. Then we can
define a mapping

Pt - XHSO(X7t)

Given aregion W C D, p(W) = W; is the volume W at time .
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First lemma

The first lemma before we continue is the following

Define J(x, t) as the Jacobian determinant of the map ¢, we
have

006, 1) = (. 1) [diva(o(x, 1), )]
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First lemma

The first lemma before we continue is the following

Define J(x, t) as the Jacobian determinant of the map ¢, we
have

006, 1) = (. 1) [diva(o(x, 1), )]

We give a sketch of proof for this lemma.
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First lemma

The first lemma before we continue is the following

Define J(x, t) as the Jacobian determinant of the map ¢, we

have
006, 1) = (. 1) [diva(o(x, 1), )]

We give a sketch of proof for this lemma.

Write the components of ¢ as £(x, t),n(x, t) and {(x, t). Then its
Jacobian determinant can be written as

96 on  o¢
gzp T gx
Jot) = |5 Gt &
o o o
0z 0z 0z
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Proof of lemma 1

For fixed x,
[/ Y
*J:g % ag %
ot ot Qg 6% (.ié
0z 0z 0Oz
208 9n  O¢ 96 909n O¢
(iEER.(EEL
D0t oy o 9 9on o
otdz 0z 0z 0z 0tdz 0z
o¢ om0 8¢
gx i 8[gx
oy @
9 on 9 9¢
0z 0z Otoz
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By definition of the velocity field

0
5100 = u(e(x. 0.0
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By definition of the velocity field

p(x; t) = u(e(x, 1), 1)

at?
aaix = %a = aju((p(xa t)a t)
00 006 0
otdy  oyot oy (e, £).1)
DI 99C 0
= - a5 ( (Xv t)’t)

otdz 9z 0t 0z
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Moreover

0 _0uog  dudn  oudd
o VP D) = 5 e+ 5o Y ac an
_owog  owon  owdC
0£ 0z Onoz  OC 0z
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Now plug these expressions into %J, we get

8u6£_‘_8u@+8u% on ¢

0€ Ox On Ox oC0x Ox Ox
Oy |oude ouon  oioC on oc |
ot o€ dy on dy o¢oy 9oy oy | '
Quok | ouon | gud on o
0€ 0z on 0z oC 0z 0z 0Oz
udg 9n  O¢ 9¢ ovon  O¢ 96 on  owoC
o dx Oz Oz dr Ondx Oz dr Oz OC Oz
— | Quos 9n OC | | | 05 9vom OC | | | 05 On  owdC
| 960y oy Oy Oy Ondy Oy dy 9y OC Oy
uoE  9n 9 9§ ovon  o¢ 9¢  9n  owoC
060z 0z 0z 0z Ondz Oz 0z 0z o¢ 0z

ou ov ow .
= 675‘/ + 877‘1 + a—gJ = [divu(p(x, ), t)] J

The proof is complete.
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Second lemma

Given a scalar or vector function f(x, t), we have

d of
7 /W! f(x, t)dV = / Wi [m+d/v(fu) av )
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Second lemma

Given a scalar or vector function f(x, t), we have

d of
7 /W! f(x, t)dV = / Wi [m+d/v(fu) av )
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Second lemma

Given a scalar or vector function f(x, t), we have

d of
7 /W! f(x, t)dV = / Wi [m+d/v(fu) av )

A similar result can be proved and is called the transport
theorem.

Transport Theorem

d Du
g v= [ ,»2¥av
ot /Wt pudV'= | " pr? ®
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Proof of Lemma 2

Let us prove (2) first.
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Proof of Lemma 2

Let us prove (2) first.

By change of variables formula and the first lemma

LHS = f,’t /W Ho(x, 1), )J(x, )dV

= [ |Gt 0,00+ et 0.0% | av

_ /W [gi(@(x, ), 1) + divuf] JaVv
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[ Df
= T~ —i—divuf] av
Ju Lo

:/ of + uf+divuf] av
w, LOt

i
= — +div fu]dv
/w, 5 V(i)

Thus (2) is proved.
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To prove (3), we first observe that

o). = 2 (pu)(e(x. 0.

Bergische Universitat Wuppertal Math Fluid Dynamics-II



To prove (3), we first observe that

o). = 2 (pu)(e(x. 0.

This is because the time derivative takes into account the fact
that the fluid is moving and that the positions of fluid particles
change with time. So, if f(z,y, z, t) is any function of position
and time, then by the chain rule
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To prove (3), we first observe that

o). = 2 (pu)(e(x. 0.

This is because the time derivative takes into account the fact
that the fluid is moving and that the positions of fluid particles
change with time. So, if f(z,y, z, t) is any function of position
and time, then by the chain rule

& (t).0(0). 2(0). 1)
=off +u-Vf

Df
= 5 (@ (D) 5(1), 2(2), )
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Using Lemma 1, we have
S’t/ pudV—gt/ (pu)JdV = / 9 1(pu)JaV
= [ B o, 0.0 + (pu)elx,0.0) 5 J(x, DAV

:/ [DDt(pu)—l-(pdlvu) ]Jdv
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Using Lemma 1, we have

g / puav — 9 / (pu)JdV = / Zl(pu)jav

:/ [DDt(Pu)-i-(pdlvu) ]Jdv

By the conservation of mass

Dp

op
Di + pdivu = a1 +d|v(pu) 0
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Thus

d Du
g /Wt pudV = ” pEdV
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Incompressible fluid

Definition

We call a flow incompressible if for any fluid subregion W,

volume(W;) = dV =constant in t
W;
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Incompressible fluid

Definition

We call a flow incompressible if for any fluid subregion W,

volume(W;) = dV =constant in t
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Incompressible fluid

Definition

We call a flow incompressible if for any fluid subregion W,

volume(W;) = dV =constant in t
W;

From the first lemma, we know
0=— dV = / JaVv

_ / (divu)JdV: (divu)aV
w Wi
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The following statements are equivalent:
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The following statements are equivalent:
@ the fluid is incompressible.
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The following statements are equivalent:
@ the fluid is incompressible.
@ divu=0
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The following statements are equivalent:
@ the fluid is incompressible.
@ divu=0
e J=1
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The following statements are equivalent:
@ the fluid is incompressible.
@ divu=0
e J=1
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The following statements are equivalent:
@ the fluid is incompressible.
@ divu=0
e J=1
Previous slide shows that the first and second statements are

equivalent. To show J = 1 for incompressible fluid, recall the
first lemma and divergence free condition,

/dV:C:/JdV:J/ av
W w w
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The following statements are equivalent:
@ the fluid is incompressible.
@ divu=0
e J=1
Previous slide shows that the first and second statements are

equivalent. To show J = 1 for incompressible fluid, recall the
first lemma and divergence free condition,

/dV:C:/JdV:J/ av
W w w

Since the volume of W; remains the same, we get

J=1
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Continuity equation for incompressible fluid

Recall the continuity equation

Dp .
Dt + pdivu =0
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Continuity equation for incompressible fluid

Recall the continuity equation

Dp .
Dt + pdivu =0

For incompressible fluid, it reduces to

Dy _

Dt_o
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