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Fluid path

Consider the path followed by a fluid particle flows inside a
domain W .

x(t) = (x(t), y(t), z(t))

Then the velocity field becomes

u(x(t), y(t), z(t), t) = (ẋ(t), ẏ(t), ż(t))

or
u(x(t), t) =

dx
dt

(t)
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Acceleration of fluid particle

Another physical quantity in fluid mechanics is the acceleration
of the fluid particle

a(t) =
d2

dt2 x(t) =
d
dt

u(x(t), y(t), z(t))

=
∂u
∂x
ẋ+

∂u
∂y
ẏ +

∂u
∂z
ż +

∂u
∂t

Denote ux = ∂u
∂x ,.. ut =

∂u
∂t and

u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t),w(x, y, z, t))
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Material derivative

From the above notation, we can rewrite

a(t) = uux + vuy + wuz + ut

= ∂tu + u · ∇u

We will frequently use the operator

D
Dt

= ∂t + u · ∇ (1)

Operator (1) is called the material derivative.
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Ideal fluid

Ideal Fluid
For any motion of the fluid in a region W, there is a function
p(x , t) called the pressure, such that ∂W is a surface in the fluid
with a chosen unit normal n, the force of stress exerted across
the surface ∂W per unit area at x ∈ ∂W at time t is p(x , t)n.

Remark: The absence of tangential forces implies that there is
no rotation for fluid in W .
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Force on the boundary

For ideal fluid, the total force on the fluid inside W by means of
stress on its boundary is

S∂W = {force on W} = −
∫
∂W

pndA

For any fixed vector e, divergence theorem gives us

e · S∂W = −
∫
∂W

pe · ndA

= −
∫

W
div(pe)dV

= −
∫

W
(gradp) · edV

Hence
S∂W = −

∫
W

gradpdV
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Balance of momentum

Denote b(x , t) as the given body force per unit mass, then the
total body force is

B =

∫
W
ρbdV

In all, force per unit volume is equal to

−gradp + ρb

Balance of Momentum(Differential Form)
By the principle of momentum balance (Newton’s second law),

ρ
Du
Dt

= −gradp + ρb
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Integral form

An integral form of the balance of momentum can be derived
for general fluid:

Balance of Momentum(Integral Form)

By the principle of momentum balance,

d
dt

∫
Wt

ρudV = S∂Wt +

∫
Wt

ρbdV

Here Wt is a region at time t and S∂Wt represents the total force
exerted on the surface ∂Wt .
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Flow map

Write ϕ(x , t) as the trajectory followed by the particle at point x
and time t . Assume the flow is smooth enough. Then we can
define a mapping

ϕt : x 7→ ϕ(x , t)

Given a region W ⊂ D, ϕt(W ) = Wt is the volume W at time t .
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First lemma

The first lemma before we continue is the following

Lemma 1
Define J(x , t) as the Jacobian determinant of the map ϕt , we
have

∂

∂t
J(x , t) = J(x , t) [divu(ϕ(x , t), t)]

We give a sketch of proof for this lemma.

Write the components of ϕ as ξ(x , t),η(x , t) and ζ(x , t). Then its
Jacobian determinant can be written as

J(x , t) =


∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂ζ
∂z
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Proof of lemma 1

For fixed x ,

∂

∂t
J =

∂

∂t


∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂ζ
∂z


=

 ∂
∂t
∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂
∂t
∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂
∂t
∂ξ
∂z

∂η
∂z

∂ζ
∂z

+


∂ξ
∂x

∂
∂t
∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂
∂t
∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂
∂t
∂η
∂z

∂ζ
∂z


+


∂ξ
∂x

∂η
∂x

∂
∂t
∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂
∂t
∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂
∂t
∂ζ
∂z
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By definition of the velocity field

∂

∂t
ϕ(x , t) = u(ϕ(x , t), t)

Thus
∂

∂t
∂ξ

∂x
=

∂

∂x

∂ξ

∂t
=

∂

∂x
u(ϕ(x , t), t)

∂

∂t
∂ξ

∂y
=

∂

∂y

∂ξ

∂t
=

∂

∂y
u(ϕ(x , t), t)

.................................

∂

∂t
∂ζ

∂z
=

∂

∂z

∂ζ

∂t
=

∂

∂z
w(ϕ(x , t), t)
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∂x
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∂

∂x

∂ξ

∂t
=

∂

∂x
u(ϕ(x , t), t)

∂

∂t
∂ξ

∂y
=

∂

∂y

∂ξ

∂t
=

∂

∂y
u(ϕ(x , t), t)

.................................

∂

∂t
∂ζ

∂z
=

∂

∂z

∂ζ

∂t
=

∂

∂z
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Moreover

∂

∂x
u(ϕ(x , t), t) =

∂u
∂ξ

∂ξ

∂x
+
∂u
∂η

∂η

∂x
+
∂u
∂ζ

∂ζ

∂x
,

.................................

∂

∂z
w(ϕ(x , t), t) =

∂w
∂ξ

∂ξ

∂z
+
∂w
∂η

∂η

∂z
+
∂w
∂ζ

∂ζ

∂z
,
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Now plug these expressions into ∂
∂t J, we get

∂

∂t
J =


∂u
∂ξ

∂ξ
∂x + ∂u

∂η
∂η
∂x + ∂u

∂ζ
∂ζ
∂x

∂η
∂x

∂ζ
∂x

∂u
∂ξ

∂ξ
∂y +

∂u
∂η

∂η
∂y +

∂u
∂ζ

∂ζ
∂y

∂η
∂y

∂ζ
∂y

∂u
∂ξ

∂ξ
∂z +

∂u
∂η

∂η
∂z +

∂u
∂ζ

∂ζ
∂z

∂η
∂z

∂ζ
∂z

+ ......

=


∂u
∂ξ

∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂u
∂ξ

∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂u
∂ξ

∂ξ
∂z

∂η
∂z

∂ζ
∂z

+


∂ξ
∂x

∂v
∂η

∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂v
∂η

∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂v
∂η

∂η
∂z

∂ζ
∂z

+


∂ξ
∂x

∂η
∂x

∂w
∂ζ

∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂w
∂ζ

∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂w
∂ζ

∂ζ
∂z


=
∂u
∂ξ

J +
∂v
∂η

J +
∂w
∂ζ

J = [divu(ϕ(x , t), t)] J

The proof is complete.
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Second lemma

Lemma 2
Given a scalar or vector function f (x , t), we have

d
dt

∫
Wt

f (x , t)dV =

∫
Wt

[
∂f
∂t

+ div(fu)
]

dV (2)

A similar result can be proved and is called the transport
theorem.

Transport Theorem

d
dt

∫
Wt

ρudV =

∫
Wt

ρ
Du
Dt

dV (3)
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Proof of Lemma 2

Let us prove (2) first.

By change of variables formula and the first lemma

LHS =
d
dt

∫
W

f (ϕ(x , t), t)J(x , t)dV

=

∫
W

[
df
dt

(ϕ(x , t), t)J + f (ϕ(x , t), t)
∂J
∂t

]
dV

=

∫
W

[
Df
Dt

(ϕ(x , t), t) + divuf
]

JdV
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=

∫
Wt

[
Df
Dt

+ divuf
]

dV

=

∫
Wt

[
∂f
∂t

+ uf + divuf
]

dV

=

∫
Wt

[
∂f
∂t

+ div(fu)
]

dV

Thus (2) is proved.
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To prove (3), we first observe that

d
dt

(ρu)(ϕ(x , t), t) =
D
Dt

(ρu)(ϕ(x , t), t)

This is because the time derivative takes into account the fact
that the fluid is moving and that the positions of fluid particles
change with time. So, if f (x, y, z, t) is any function of position
and time, then by the chain rule

d
dt

f (x(t), y(t), z(t), t)

= ∂t f + u · ∇f

=
Df
Dt

(x(t), y(t), z(t), t)
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Using Lemma 1, we have

d
dt

∫
Wt

ρudV =
d
dt

∫
W
(ρu)JdV =

∫
W

d
dt

[(ρu)J]dV

=

∫
W

D
Dt

(ρu)(ϕ(x , t), t)J + (ρu)(ϕ(x , t), t)
∂

∂t
J(x , t)dV

=

∫
W

[
D
Dt

(ρu) + (ρdivu)u
]

JdV

By the conservation of mass

Dρ
Dt

+ ρdivu =
∂ρ

∂t
+ div(ρu) = 0
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Thus
d
dt

∫
Wt

ρudV =

∫
Wt

ρ
Du
Dt

dV
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Incompressible fluid

Definition
We call a flow incompressible if for any fluid subregion W ,

volume(Wt) =

∫
Wt

dV = constant in t

From the first lemma, we know

0 =
d
dt

∫
Wt

dV =
d
dt

∫
W

JdV

=

∫
W
(divu)JdV =

∫
Wt

(divu)dV
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The following statements are equivalent:
the fluid is incompressible.
divu = 0
J ≡ 1

Previous slide shows that the first and second statements are
equivalent. To show J ≡ 1 for incompressible fluid, recall the
first lemma and divergence free condition,∫

Wt

dV = C =

∫
W

JdV = J
∫

W
dV

Since the volume of Wt remains the same, we get

J ≡ 1
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Continuity equation for incompressible fluid

Recall the continuity equation

Dρ
Dt

+ ρdivu = 0

For incompressible fluid, it reduces to

Dρ
Dt

= 0
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