Introduction to Mathematical Fluid Dynamics-II

Balance of Momentum

Meng Xu

Department of Mathematics
University of Wyoming

Consider the path followed by a fluid particle flows inside a domain W.

$$
x(t)=(x(t), y(t), z(t))
$$

Then the velocity field becomes

$$
\mathbf{u}(x(t), y(t), z(t), t)=(\dot{x}(t), \dot{y}(t), \dot{z}(t))
$$

Consider the path followed by a fluid particle flows inside a domain W.

$$
x(t)=(x(t), y(t), z(t))
$$

Then the velocity field becomes

$$
\mathbf{u}(x(t), y(t), z(t), t)=(\dot{x}(t), \dot{y}(t), \dot{z}(t))
$$

Consider the path followed by a fluid particle flows inside a domain W.

$$
x(t)=(x(t), y(t), z(t))
$$

Then the velocity field becomes

$$
\mathbf{u}(x(t), y(t), z(t), t)=(\dot{x}(t), \dot{y}(t), \dot{z}(t))
$$

or

$$
\mathbf{u}(x(t), t)=\frac{d x}{d t}(t)
$$

Acceleration of fluid particle

Another physical quantity in fluid mechanics is the acceleration of the fluid particle

$$
\begin{aligned}
a(t)=\frac{d^{2}}{d t^{2}} x(t) & =\frac{d}{d t} \mathbf{u}(x(t), y(t), z(t)) \\
& =\frac{\partial \mathbf{u}}{\partial x} \dot{x}+\frac{\partial \mathbf{u}}{\partial y} \dot{y}+\frac{\partial \mathbf{u}}{\partial z} \dot{z}+\frac{\partial \mathbf{u}}{\partial t}
\end{aligned}
$$

Denote $\mathbf{u}_{x}=\frac{\partial \mathbf{u}}{\partial x}, \ldots \mathbf{u}_{t}=\frac{\partial \mathbf{u}}{\partial t}$ and

Acceleration of fluid particle

Another physical quantity in fluid mechanics is the acceleration of the fluid particle

$$
\begin{aligned}
a(t)=\frac{d^{2}}{d t^{2}} x(t) & =\frac{d}{d t} \mathbf{u}(x(t), y(t), z(t)) \\
& =\frac{\partial \mathbf{u}}{\partial x} \dot{x}+\frac{\partial \mathbf{u}}{\partial y} \dot{y}+\frac{\partial \mathbf{u}}{\partial z} \dot{z}+\frac{\partial \mathbf{u}}{\partial t}
\end{aligned}
$$

Denote $\mathbf{u}_{x}=\frac{\partial \mathbf{u}}{\partial x}, . . \mathbf{u}_{t}=\frac{\partial \mathbf{u}}{\partial t}$ and

$$
\mathbf{u}(x, y, z, t)=(u(x, y, z, t), \boldsymbol{v}(x, y, z, t), w(x, y, z, t))
$$

Material derivative

From the above notation, we can rewrite

$$
\begin{aligned}
a(t) & =u \mathbf{u}_{x}+v \mathbf{u}_{y}+w \mathbf{u}_{z}+\mathbf{u}_{t} \\
& =\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}
\end{aligned}
$$

We will frequently use the operator

Material derivative

From the above notation, we can rewrite

$$
\begin{aligned}
a(t) & =u \mathbf{u}_{x}+v \mathbf{u}_{y}+w \mathbf{u}_{z}+\mathbf{u}_{t} \\
& =\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}
\end{aligned}
$$

We will frequently use the operator

$$
\begin{equation*}
\frac{D}{D t}=\partial_{t}+\mathbf{u} \cdot \nabla \tag{1}
\end{equation*}
$$

Operator (1) is called the material derivative.

Ideal fluid

Remark: The absence of tangential forces implies that there is no rotation for fluid in W.

Ideal fluid

Ideal Fluid

For any motion of the fluid in a region W, there is a function $p(x, t)$ called the pressure, such that ∂W is a surface in the fluid with a chosen unit normal n, the force of stress exerted across the surface ∂W per unit area at $x \in \partial W$ at time t is $p(x, t) \boldsymbol{n}$.

Remark: The absence of tangential forces implies that there is no rotation for fluid in W.

Ideal fluid

Ideal Fluid

For any motion of the fluid in a region W, there is a function $p(x, t)$ called the pressure, such that ∂W is a surface in the fluid with a chosen unit normal n, the force of stress exerted across the surface ∂W per unit area at $x \in \partial W$ at time t is $p(x, t) \boldsymbol{n}$.

Remark: The absence of tangential forces implies that there is no rotation for fluid in W.

Ideal fluid

Ideal Fluid

For any motion of the fluid in a region W, there is a function $p(x, t)$ called the pressure, such that ∂W is a surface in the fluid with a chosen unit normal n, the force of stress exerted across the surface ∂W per unit area at $x \in \partial W$ at time t is $p(x, t) n$.

Remark: The absence of tangential forces implies that there is no rotation for fluid in W.

Force on the boundary

For ideal fluid, the total force on the fluid inside W by means of stress on its boundary is

$$
S_{\partial W}=\{\text { force on } W\}=-\int_{\partial W} p \mathbf{n} d A
$$

For any fixed vector e, divergence theorem gives us

Force on the boundary

For ideal fluid, the total force on the fluid inside W by means of stress on its boundary is

$$
S_{\partial W}=\{\text { force on } W\}=-\int_{\partial W} p \mathbf{n} d A
$$

For any fixed vector e, divergence theorem gives us

$$
\begin{aligned}
\mathbf{e} \cdot S_{\partial W} & =-\int_{\partial W} p \mathbf{e} \cdot \mathbf{n} d A \\
& =-\int_{W} \operatorname{div}(p \mathbf{e}) d V \\
& =-\int_{W}(\operatorname{grad} p) \cdot \mathbf{e d V}
\end{aligned}
$$

Hence

For ideal fluid, the total force on the fluid inside W by means of stress on its boundary is

$$
S_{\partial W}=\{\text { force on } W\}=-\int_{\partial W} p \mathbf{n d} A
$$

For any fixed vector e, divergence theorem gives us

$$
\begin{aligned}
\mathbf{e} \cdot S_{\partial W} & =-\int_{\partial W} p \mathbf{e} \cdot \mathbf{n} d A \\
& =-\int_{W} \operatorname{div}(p \mathbf{e}) d V \\
& =-\int_{W}(\operatorname{grad} p) \cdot \mathbf{e d V}
\end{aligned}
$$

Hence

$$
S_{\partial W}=-\int_{W} \text { gradpdV }
$$

Denote $b(x, t)$ as the given body force per unit mass, then the total body force is

$$
B=\int_{W} \rho b d V
$$

In all, force per unit volume is equal to

Denote $b(x, t)$ as the given body force per unit mass, then the total body force is

$$
B=\int_{W} \rho b d V
$$

In all, force per unit volume is equal to

$$
-\operatorname{grad} p+\rho b
$$

Balance of momentum

Denote $b(x, t)$ as the given body force per unit mass, then the total body force is

$$
B=\int_{W} \rho b d V
$$

In all, force per unit volume is equal to

$$
-\operatorname{grad} p+\rho b
$$

Balance of Momentum(Differential Form)

By the principle of momentum balance (Newton's second law),

$$
\rho \frac{D u}{D t}=-\operatorname{gradp}+\rho b
$$

Integral form

An integral form of the balance of momentum can be derived for general fluid:

Balance of Momentum(Integral Form)

By the principle of momentum balance,

$$
\frac{d}{d t} \int_{W_{t}} \rho u d V=S_{\partial W_{t}}+\int_{W_{t}} \rho b d V
$$

Here W_{t} is a region at time t and $S_{\partial W_{t}}$ represents the total force exerted on the surface ∂W_{t}.

Write $\varphi(x, t)$ as the trajectory followed by the particle at point x and time t. Assume the flow is smooth enough. Then we can define a mapping

$$
\varphi_{t}: \quad x \mapsto \varphi(x, t)
$$

Given a region $W \subset \mathcal{D}, \varphi_{t}(W)=W_{t}$ is the volume W at time t.

Write $\varphi(x, t)$ as the trajectory followed by the particle at point x and time t. Assume the flow is smooth enough. Then we can define a mapping

$$
\varphi_{t}: \quad x \mapsto \varphi(x, t)
$$

Given a region $W \subset \mathcal{D}, \varphi_{t}(W)=W_{t}$ is the volume W at time t.

First lemma

The first lemma before we continue is the following

Lemma 1

Define $J(x, t)$ as the Jacobian determinant of the map φ_{t}, we have

$$
\frac{\partial}{\partial t} J(x, t)=J(x, t)[\operatorname{divu}(\varphi(x, t), t)]
$$

We give a sketch of proof for this Iemma.
Write the components of φ as $\xi(x, t), \eta(x, t)$ and $\zeta(x, t)$. Then its Jacobian determinant can be written as

First lemma

The first lemma before we continue is the following

Lemma 1

Define $J(x, t)$ as the Jacobian determinant of the map φ_{t}, we have

$$
\frac{\partial}{\partial t} J(x, t)=J(x, t)[\operatorname{divu}(\varphi(x, t), t)]
$$

We give a sketch of proof for this Iemma.
Write the components of φ as $\xi(x, t), \eta(x, t)$ and $\zeta(x, t)$. Then its Jacobian determinant can be written as

First lemma

The first lemma before we continue is the following

Lemma 1

Define $J(x, t)$ as the Jacobian determinant of the map φ_{t}, we have

$$
\frac{\partial}{\partial t} J(x, t)=J(x, t)[\operatorname{divu}(\varphi(x, t), t)]
$$

We give a sketch of proof for this lemma.
Write the components of φ as $\xi(x, t), \eta(x, t)$ and $\zeta(x, t)$. Then its Jacobian determinant can be written as

First lemma

The first lemma before we continue is the following

Lemma 1

Define $J(x, t)$ as the Jacobian determinant of the map φ_{t}, we have

$$
\frac{\partial}{\partial t} J(x, t)=J(x, t)[\operatorname{divu}(\varphi(x, t), t)]
$$

We give a sketch of proof for this lemma.
Write the components of φ as $\xi(x, t), \eta(x, t)$ and $\zeta(x, t)$. Then its Jacobian determinant can be written as

$$
J(x, t)=\left(\begin{array}{lll}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} & \frac{\partial \zeta}{\partial x} \\
\frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y} & \frac{\partial \zeta}{\partial y} \\
\frac{\partial \xi}{\partial z} & \frac{\partial \eta}{\partial z} & \frac{\partial \zeta}{\partial z}
\end{array}\right)
$$

For fixed x,

$$
\begin{aligned}
\frac{\partial}{\partial t} J= & \frac{\partial}{\partial t}\left(\begin{array}{lll}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} & \frac{\partial \zeta}{\partial x} \\
\frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y} & \frac{\partial \zeta}{\partial y} \\
\frac{\partial \xi}{\partial z} & \frac{\partial \eta}{\partial z} & \frac{\partial \zeta}{\partial z}
\end{array}\right) \\
= & \left(\begin{array}{lll}
\frac{\partial}{\partial t} \frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} & \frac{\partial \zeta}{\partial x} \\
\frac{\partial}{\partial t} \frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y} & \frac{\partial \zeta}{\partial y} \\
\frac{\partial}{\partial t} \frac{\partial \xi}{\partial z} & \frac{\partial \eta}{\partial z} & \frac{\partial \zeta}{\partial z}
\end{array}\right)+\left(\begin{array}{lll}
\frac{\partial \xi}{\partial x} & \frac{\partial}{\partial t} \frac{\partial \eta}{\partial x} & \frac{\partial \zeta}{\partial x} \\
\frac{\partial \xi}{\partial y} & \frac{\partial}{\partial t} \frac{\partial \eta}{\partial y} & \frac{\partial \zeta}{\partial y} \\
\frac{\partial \xi}{\partial z} & \frac{\partial}{\partial t} \frac{\partial \eta}{\partial z} & \frac{\partial \zeta}{\partial z}
\end{array}\right) \\
& +\left(\begin{array}{lll}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} & \frac{\partial}{\partial t} \frac{\partial \zeta}{\partial x} \\
\frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y} & \frac{\partial}{\partial t} \frac{\partial \zeta}{\partial y} \\
\frac{\partial \xi}{\partial z} & \frac{\partial \eta}{\partial z} & \frac{\partial}{\partial t} \frac{\partial \zeta}{\partial z}
\end{array}\right)
\end{aligned}
$$

By definition of the velocity field

$$
\frac{\partial}{\partial t} \varphi(x, t)=\mathbf{u}(\varphi(x, t), t)
$$

By definition of the velocity field

$$
\frac{\partial}{\partial t} \varphi(x, t)=\mathbf{u}(\varphi(x, t), t)
$$

Thus

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial t} \frac{\partial \xi}{\partial x} & =\frac{\partial}{\partial x} \frac{\partial \xi}{\partial t}
\end{array}=\frac{\partial}{\partial x} u(\varphi(x, t), t)\right)
$$

Moreover

$$
\begin{aligned}
& \frac{\partial}{\partial x} u(\varphi(x, t), t)=\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x}+\frac{\partial u}{\partial \zeta} \frac{\partial \zeta}{\partial x} \\
& \ldots \\
& \frac{\partial}{\partial z} w(\varphi(x, t), t)=\frac{\partial w}{\partial \xi} \frac{\partial \xi}{\partial z}+\frac{\partial w}{\partial \eta} \frac{\partial \eta}{\partial z}+\frac{\partial w}{\partial \zeta} \frac{\partial \zeta}{\partial z}
\end{aligned}
$$

Now plug these expressions into $\frac{\partial}{\partial t} J$, we get

$$
\begin{aligned}
& \frac{\partial}{\partial t} \boldsymbol{\partial}=\left(\begin{array}{llll}
\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x}+\frac{\partial u}{\partial \zeta} \frac{\partial \zeta}{\partial x} & \frac{\partial \eta}{\partial x} & \frac{\partial \zeta}{\partial x} \\
\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial y}+\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y}+\frac{\partial u}{\partial \zeta} \frac{\partial \zeta}{\partial y} & \frac{\partial \eta}{\partial y} & \frac{\partial \zeta}{\partial y} \\
\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial z}+\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial z}+\frac{\partial u}{\partial \zeta} \frac{\partial \zeta}{\partial z} & \frac{\partial \eta}{\partial z} & \frac{\partial \zeta}{\partial z}
\end{array}\right)+\ldots \ldots \\
& =\left(\begin{array}{lll}
\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} & \frac{\partial \zeta}{\partial x} \\
\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y} & \frac{\partial \zeta}{\partial y} \\
\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial z} & \frac{\partial \eta}{\partial z} & \frac{\partial \zeta}{\partial z}
\end{array}\right)+\left(\begin{array}{lll}
\frac{\partial \xi}{\partial x} & \frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial x} & \frac{\partial \zeta}{\partial x} \\
\frac{\partial \xi}{\partial y} & \frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial y} & \frac{\partial \zeta}{\partial y} \\
\frac{\partial \xi}{\partial z} & \frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial z} & \frac{\partial \zeta}{\partial z}
\end{array}\right)+\left(\begin{array}{lll}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} & \frac{\partial w}{\partial \zeta} \frac{\partial \zeta}{\partial x} \\
\frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y} & \frac{\partial w}{\partial \zeta} \frac{\partial \zeta}{\partial y} \\
\frac{\partial \xi}{\partial z} & \frac{\partial \eta}{\partial z} & \frac{\partial w}{\partial \zeta} \frac{\partial \zeta}{\partial z}
\end{array}\right) \\
& =\frac{\partial u}{\partial \xi} J+\frac{\partial v}{\partial \eta} J+\frac{\partial w}{\partial \zeta} J=[\operatorname{divu}(\varphi(x, t), t)] J
\end{aligned}
$$

The proof is complete.

Second lemma

Lemma 2

Given a scalar or vector function $f(x, t)$, we have

$$
\begin{equation*}
\frac{d}{d t} \int_{W_{t}} f(x, t) d V=\int W_{t}\left[\frac{\partial f}{\partial t}+\operatorname{div}(f u)\right] d V \tag{2}
\end{equation*}
$$

A similar result can be proved and is called the transport theorem.

Second lemma

Lemma 2

Given a scalar or vector function $f(x, t)$, we have

$$
\begin{equation*}
\frac{d}{d t} \int_{W_{t}} f(x, t) d V=\int W_{t}\left[\frac{\partial f}{\partial t}+\operatorname{div}(f u)\right] d V \tag{2}
\end{equation*}
$$

A similar result can be proved and is called the transport theorem.

Second lemma

Lemma 2

Given a scalar or vector function $f(x, t)$, we have

$$
\begin{equation*}
\frac{d}{d t} \int_{W_{t}} f(x, t) d V=\int W_{t}\left[\frac{\partial f}{\partial t}+\operatorname{div}(f u)\right] d V \tag{2}
\end{equation*}
$$

A similar result can be proved and is called the transport theorem.

Transport Theorem

$$
\begin{equation*}
\frac{d}{d t} \int_{W_{t}} \rho \boldsymbol{u} d V=\int_{W_{t}} \rho \frac{D u}{D t} d V \tag{3}
\end{equation*}
$$

Proof of Lemma 2

Let us prove (2) first.

By change of variables formula and the first lemma

$$
\begin{aligned}
L H S & =\frac{d}{d t} \int_{W} f(\varphi(x, t), t) J(x, t) d V \\
& =\int_{W}\left[\frac{d f}{d t}(\varphi(x, t), t) J+f(\varphi(x, t), t) \frac{\partial J}{\partial t}\right] d V \\
& =\int_{W}\left[\frac{D f}{D t}(\varphi(x, t), t)+\operatorname{divu} f\right] J d V
\end{aligned}
$$

Let us prove (2) first.
By change of variables formula and the first lemma

$$
\begin{aligned}
L H S & =\frac{d}{d t} \int_{W} f(\varphi(x, t), t) J(x, t) d V \\
& =\int_{W}\left[\frac{d f}{d t}(\varphi(x, t), t) J+f(\varphi(x, t), t) \frac{\partial J}{\partial t}\right] d V \\
& =\int_{W}\left[\frac{D f}{D t}(\varphi(x, t), t)+\operatorname{divu} f\right] J d V
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{W_{t}}\left[\frac{D f}{D t}+\operatorname{divu} f\right] d V \\
& =\int_{W_{t}}\left[\frac{\partial f}{\partial t}+\mathbf{u} f+\operatorname{divu} \mathbf{f}\right] d V \\
& =\int_{W_{t}}\left[\frac{\partial f}{\partial t}+\operatorname{div}(f \mathbf{u})\right] d V
\end{aligned}
$$

Thus (2) is proved.

To prove (3), we first observe that

$$
\frac{d}{d t}(\rho \mathbf{u})(\varphi(x, t), t)=\frac{D}{D t}(\rho \mathbf{u})(\varphi(x, t), t)
$$

This is because the time derivative takes into account the fact that the fluid is moving and that the positions of fluid particles change with time. So, if $f(x, y, z, t)$ is any function of position and time, then by the chain rule

To prove (3), we first observe that

$$
\frac{d}{d t}(\rho \mathbf{u})(\varphi(x, t), t)=\frac{D}{D t}(\rho \mathbf{u})(\varphi(x, t), t)
$$

This is because the time derivative takes into account the fact that the fluid is moving and that the positions of fluid particles change with time. So, if $f(x, y, z, t)$ is any function of position and time, then by the chain rule

To prove (3), we first observe that

$$
\frac{d}{d t}(\rho \mathbf{u})(\varphi(x, t), t)=\frac{D}{D t}(\rho \mathbf{u})(\varphi(x, t), t)
$$

This is because the time derivative takes into account the fact that the fluid is moving and that the positions of fluid particles change with time. So, if $f(x, y, z, t)$ is any function of position and time, then by the chain rule

$$
\begin{aligned}
& \frac{d}{d t} f(x(t), y(t), z(t), t) \\
= & \partial_{t} f+\mathbf{u} \cdot \nabla f \\
= & \frac{D f}{D t}(x(t), y(t), z(t), t)
\end{aligned}
$$

Using Lemma 1, we have

$$
\begin{aligned}
\frac{d}{d t} \int_{W_{t}} \rho \mathbf{u} d V & =\frac{d}{d t} \int_{W}(\rho \mathbf{u}) J d V=\int_{W} \frac{d}{d t}[(\rho \mathbf{u}) J] d V \\
& =\int_{W} \frac{D}{D t}(\rho \mathbf{u})(\varphi(x, t), t) J+(\rho \mathbf{u})(\varphi(x, t), t) \frac{\partial}{\partial t} J(x, t) d V \\
& =\int_{W}\left[\frac{D}{D t}(\rho \mathbf{u})+(\rho \operatorname{divu}) \mathbf{u}\right] J d V
\end{aligned}
$$

By the conservation of mass

Using Lemma 1, we have

$$
\begin{aligned}
\frac{d}{d t} \int_{W_{t}} \rho \mathbf{u} d V & =\frac{d}{d t} \int_{W}(\rho \mathbf{u}) J d V=\int_{W} \frac{d}{d t}[(\rho \mathbf{u}) J] d V \\
& =\int_{W} \frac{D}{D t}(\rho \mathbf{u})(\varphi(x, t), t) J+(\rho \mathbf{u})(\varphi(x, t), t) \frac{\partial}{\partial t} J(x, t) d V \\
& =\int_{W}\left[\frac{D}{D t}(\rho \mathbf{u})+(\rho \mathrm{divu}) \mathbf{u}\right] J d V
\end{aligned}
$$

By the conservation of mass

$$
\frac{D \rho}{D t}+\rho \operatorname{divu}=\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho \mathbf{u})=0
$$

Thus

$$
\frac{d}{d t} \int_{W_{t}} \rho \mathbf{u} d V=\int_{W_{t}} \rho \frac{D \mathbf{u}}{D t} d V
$$

Incompressible fluid

Definition

We call a flow incompressible if for any fluid subregion W,

$$
\text { volume }\left(W_{t}\right)=\int_{W_{t}} d V=\text { constant in } t
$$

From the first lemma, we know

Incompressible fluid

Definition

We call a flow incompressible if for any fluid subregion W,

$$
\text { volume }\left(W_{t}\right)=\int_{W_{t}} d V=\text { constant in } t
$$

From the first lemma, we know

Incompressible fluid

Definition

We call a flow incompressible if for any fluid subregion W,

$$
\text { volume }\left(W_{t}\right)=\int_{W_{t}} d V=\text { constant in } t
$$

From the first lemma, we know

$$
\begin{aligned}
0 & =\frac{d}{d t} \int_{W_{t}} d V=\frac{d}{d t} \int_{W} J d V \\
& =\int_{W}(\operatorname{divu}) J d V=\int_{W_{t}}(\operatorname{divu}) d V
\end{aligned}
$$

The following statements are equivalent:

Previous slide shows that the first and second statements are equivalent. To show $J \equiv 1$ for incompressible fluid, recall the first lemma and divergence free condition,

Since the volume of W_{t} remains the same, we get

$$
J \equiv 1
$$

The following statements are equivalent:

- the fluid is incompressible.
- divu $=0$
- $J \equiv 1$

Previous slide shows that the first and second statements are equivalent. To show $J \equiv 1$ for incompressible fluid, recall the first lemma and divergence free condition,

Since the volume of W_{t} remains the same, we get

The following statements are equivalent:

- the fluid is incompressible.
- $\operatorname{div} \mathbf{u}=0$
- $J \equiv 1$

Previous slide shows that the first and second statements are equivalent. To show $J \equiv 1$ for incompressible fluid, recall the first lemma and divergence free condition,

Since the volume of W_{t} remains the same, we get

The following statements are equivalent:

- the fluid is incompressible.
- $\operatorname{divu}=0$
- $J \equiv 1$

Previous slide shows that the first and second statements are equivalent. To show $J \equiv 1$ for incompressible fluid, recall the first lemma and divergence free condition,

Since the volume of W_{t} remains the same, we get

The following statements are equivalent:

- the fluid is incompressible.
- $\operatorname{divu}=0$
- $J \equiv 1$

Previous slide shows that the first and second statements are equivalent. To show $J \equiv 1$ for incompressible fluid, recall the first lemma and divergence free condition,

Since the volume of W_{t} remains the same, we get

The following statements are equivalent:

- the fluid is incompressible.
- $\operatorname{divu}=0$
- $J \equiv 1$

Previous slide shows that the first and second statements are equivalent. To show $J \equiv 1$ for incompressible fluid, recall the first lemma and divergence free condition,

$$
\int_{W_{t}} d V=C=\int_{W} J d V=J \int_{W} d V
$$

Since the volume of W_{t} remains the same, we get

The following statements are equivalent:

- the fluid is incompressible.
- $\operatorname{divu}=0$
- $J \equiv 1$

Previous slide shows that the first and second statements are equivalent. To show $J \equiv 1$ for incompressible fluid, recall the first lemma and divergence free condition,

$$
\int_{W_{t}} d V=C=\int_{W} J d V=J \int_{W} d V
$$

Since the volume of W_{t} remains the same, we get

$$
J \equiv 1
$$

Continuity equation for incompressible fluid

Recall the continuity equation

$$
\frac{D \rho}{D t}+\rho \mathrm{divu}=0
$$

For incompressible fluid, it reduces to

Continuity equation for incompressible fluid

Recall the continuity equation

$$
\frac{D \rho}{D t}+\rho \mathrm{divu}=0
$$

For incompressible fluid, it reduces to

$$
\frac{D \rho}{D t}=0
$$

