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Fluid in a domain

We consider flows inside a domain D ⊂ R3. x = (x, y, z) is a
point in D.

For a fluid particle moving through x at time t , there are two
basic quantities to describe the flow properties:

u(x , t)→ velocity field of the fluid

ρ(x , t)→ mass density
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Laws of conservation

We assume ρ and u are smooth enough. To what extent the
regularity is needed will be seen in later lectures.

Here are three principles to derive the equations of motions:

Mass is neither created nor destroyed.
The rate of change of momentum of a portion of the fluid
equals the force applied to it. (Newton’s second law)
Energy is neither created nor destroyed.
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Conservation of mass

Let W ⊂ D be a fixed region, the total mass of fluid inside W is
given by

m(W , t) =
∫

W
ρ(x , t)dV

Here dV is the volume element.

The rate of change of mass in W is thus

d
dt

m(W , t) =
d
dt

∫
W
ρ(x , t)dV =

∫
W

∂ρ

∂t
(x , t)dV
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Flow through the boundary

Denote the boundary of W as ∂W , the unit normal outward
vector as n and the area element as dA.

The volume flow rate across ∂W per unit area is u · n.
Therefore the mass flow rate per unit area is ρu · n
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Integral form of mass conservation

The rate of increase of mass in W equals the rate at which
mass is crossing ∂W in the inward direction.

Conservation of Mass(Integral Form)
By the mass conservation principle, we have

d
dt

∫
W
ρdV = −

∫
∂W

ρu · ndA (1)

There is a negative sign on the right hand side because we
assume mass is moving inward to W .
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Divergence theorem

To derive a differential form for the mass conservation, we need
the following divergence theorem to transform the surface
integral in (1) into a volume integral.

Divergence Theorem

Let Q ⊂ R3 be a region bounded by a closed surface ∂Q and
let n be the unit outward normal to ∂Q. If F is a vector function
that has continuous first partial derivatives in Q, then∫ ∫

∂Q
F · nds =

∫ ∫ ∫
Q
∇ · FdV
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Proof of divergence theorem

Suppose

F (x, y, z) = M(x, y, z)i + N(x, y, z)j + P(x , y , z)k

then the divergence theorem can be stated as∫ ∫
∂Q

F · nds =

∫ ∫
∂Q

M(x, y, z)i · nds +

∫ ∫
∂Q

N(x, y, z)j · nds

+

∫ ∫
∂Q

P(x, y, z)k · nds

=

∫ ∫ ∫
Q

∂M
∂x

dV +

∫ ∫ ∫
Q

∂N
∂y

dV +

∫ ∫ ∫
Q

∂P
∂z

dV

=

∫ ∫ ∫
Q
∇ · F (x, y, z)dV
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The divergence theorem is proved if we can show that∫ ∫
∂Q

M(x, y, z)i · nds =

∫ ∫ ∫
Q

∂M
∂x

dV

∫ ∫
∂Q

N(x, y, z)j · nds =

∫ ∫ ∫
Q

∂N
∂y

dV∫ ∫
∂Q

P(x, y, z)i · nds =

∫ ∫ ∫
Q

∂P
∂z

dV

Proofs of above equalities are similar so we only focus on the
third one.
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Suppose Q can be described as

Q = {(x, y, z)|g(x, y) ≤ z ≤ h(x, y), for x, y ∈ R}

where R is the region in the xy-plane.

Think of Q as being bounded by three surface S1(top),
S2(bottom) and S3(side).

On surface S3 the unit outward normal is parallel to the
xy-plane and thus∫ ∫ ∫

Q
P(x, y, z)k · nds =

∫ ∫
∂Q

0ds = 0
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Now we calculate the surface integral over S1

S1 = {(x, y, z)|z − h(x, y) = 0, for (x, y) ∈ R}

The unit outward normal can be calculated as

n =
∇(z − h(x, y))
||∇(z − h(x, y))||

=
−hx(x, y)i − hy(x, y)j + k√

[−hx(x, y)]2 + [−hy(x, y)]2 + 1

Thus
k · n =

1√
[hx(x, y)]2 + [hy(x, y)]2 + 1
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We have∫ ∫
S1

P(x, y, z)k · nds =

∫ ∫
S1

P(x, y, z)√
[hx(x, y)]2 + [hy(x, y)]2 + 1

=

∫ ∫
R

P(x, y,h(x, y))dA

In a similar way we can show that the surface integral over S2 is∫ ∫
S2

P(x, y, z)k · nds = −
∫ ∫

R
P(x, y,g(x, y))dA

with a negative sign on the right hand side. This is because the
outward unit normal of S2 is pointing opposite to the direction of
k .
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Finally ∫ ∫
∂Q

P(x, y, z)k · nds

=

∫ ∫
S1

P(x, y, z)k · nds +

∫ ∫
S2

P(x, y, z)k · nds

+

∫ ∫
S3

P(x, y, z)k · nds

=

∫ ∫
R

P(x, y,h(x, y))dA−
∫ ∫

R
P(x, y,g(x, y))dA

=

∫ ∫
R

P(x, y, z)|z=h(x,y)
z=g(x,y)dA

=

∫ ∫
R

∫ h(x,y)

g(x,y)

∂P
∂z

dzdA =

∫ ∫ ∫
Q

∂P
∂z

dV

and the proof is complete.
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Differential form of mass conservation

Recall the integral form of mass conservation

d
dt

∫
W
ρdV = −

∫
∂W

ρu · ndA

Using the divergence theorem, one can show that∫
∂W

ρu · ndA =

∫
W
∇ · (ρu)dV

Thus by putting the time derivative inside of the integral, we get∫
W

[
∂ρ

∂t
+ div(ρu)

]
dV = 0

for any W ⊂ D.
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Differential form of mass conservation

The integrand must be equal to zero for the above integral to
vanish, we end up with

Conservation of Mass(Differential Form)
By the mass conservation principle and the divergence
theorem, we have

∂ρ

∂t
+ div(ρu) = 0 (2)

Equation (2) is also called the continuity equation in fluid
dynamics.

Remark: If ρ and u are not smooth enough, then the integral
form is the one to use.
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