Introduction to Financial Risk Measurement
Einführung in die Bewertung von Finanzrisiken

M.Sc. Brice Hakwa

1 Bergische Universität Wuppertal, Fachbereich Angewandte Mathematik - Stochastik
Hakwa@math.uni-wuppertal.de
Introduction to Financial Risk Measurement

Risk, Risk measures and Acceptance set
- Monetary Measure of Risk
- Convex Measure
- Coherent Risk Measure
- Acceptance set
- Résumé

Example of Monetary Measure of Risk
- Worst-Case Risk Measure
- Value at Risk

VaR and Regulatory approach
We begin with the introduction of a probabilistic framework for modeling financial risk from the perspective of an investor. For a given financial positions, let \(\Omega = \{ \nu_1, \nu_2, \nu_3, \ldots, \nu_n \} \) be a finite set of possible future value of this positions, the uncertainty about the future can be represent by a probability space \((\Omega, F, P)\). Then the random variables

\[
X : \Omega \rightarrow \mathbb{R}, \quad \nu \rightarrow X_t(\nu)
\]

denote the position value (pay off) of \(\nu \) at time \(t \) if the scenario \(\nu \in \Omega \) is realized.
In general, we can define a **financial risk** as the change in the position-values between two dates \(t_0 \) and \(t_1 \) (current date is \(t_0 = 0 \)), or as the dispersion of unexpected outcomes due to uncertain events (scenarios \(\nu \)). We can quantify the risk of \(X \) by some number \(\rho(X) \), where \(X \) belongs to a given linear function space \(\mathcal{X} \), that contains the constant function. (note that \(\mathcal{X} \) can be identified with \(\mathbb{R}^n \), where \(n = \text{card}(\Omega) \)).

Definition: monetary measure

A function \(\rho : \mathcal{X} \to \mathbb{R} \) is called a monetary measure of risk if it satisfies the following conditions for all \(X, Y \in \mathcal{X} \)

- **Axiom M**: Monotonicity

 \[\text{if } X \leq Y, \text{ then } \rho(X) \geq \rho(Y) \]

- **Axiom T**: Translation invariance

 \[\text{if } m \in \mathbb{R}, \text{ then } \rho(X + m) = \rho(X) - m \]
Interpretation

- **Monotonicity**: The risk of a position is reduced if the payoff profile is increased in each state of the World. ($\rho(X)$ is a decreasing function)

- **Invariance**: The invariance property suggests that adding cash to a position reduces its risk by the amount of cash added. This is motivated by the idea that the risk measure can be used to determine capital requirements.

Exemple: capital requirement for risky position X

- if $\rho(X) > 0$ then regulatory authority requests additional capital to make this position acceptable.
- if $\rho(X) < 0$ then the position is is already acceptable.

As a consequence for the invariance of ρ we have

$$\rho(X + \rho(X)) = 0 \text{ and } \rho(m) = \rho(0) - m \quad \forall \ m \in \mathbb{R}.$$
Interpretation

- **Monotonicity**: The risk of a position is reduced if the payoff profile is increased in each state of the World. \(\rho(X) \) is a decreasing function.

- **Invariance**: The invariance property suggests that adding cash to a position reduces its risk by the amount of cash added. This is motivated by the idea that the risk measure can be used to determine capital requirements.

Exemple: capital requirement for risky position X

- if \(\rho(X) > 0 \) then regulatory authority requests additional capital to make this position acceptable.
- if \(\rho(X) < 0 \) then the position is already acceptable.

As a consequence for the invariance of \(\rho \) we have

\[
\rho(X + \rho(X)) = 0 \text{ and } \rho(m) = \rho(0) - m \quad \forall \ m \in \mathbb{R}.
\]
Remark

m corresponds to the constant function

Definition: convex risk measure

A monetary risk measure $\rho : \mathcal{X} \rightarrow \mathbb{R}$ is called a convex measure of risk if it satisfies:

\begin{align*}
\rho(\lambda X + (1 - \lambda) Y) & \leq \lambda \rho(X) + (1 - \lambda) \rho(Y), \quad \text{for } 0 \leq \lambda \leq 1.
\end{align*}

Interpretation: The convexity property states that the risk of a portfolio is not greater than the sum of the risks of its constituents, that means diversification in a given portfolio does not increase the risk.
Coherent Risk Measure

Definition: Coherent Risk Measure

A convex measure of risk ρ is called a coherent risk measure if it satisfies:

- **Axiom PH**: Positive Homogeneity

 If $\lambda \geq 0$ then $\rho(\lambda X) = \lambda \rho(X)$ $\forall X \in \mathcal{X}$

If a monetary measure of risk ρ is positively homogeneous, then it is **normalized** ($\rho(0) = 0$), Under the assumption of positive homogeneity, convexity is equivalent to

- **Axiom S**: Subadditivity

 $\rho(X + Y) \leq \rho(X) + \rho(Y)$
Interpretation:

▶ The subadditivity axiom ensure that the risk of a diversified portfolio is no greater than the corresponding weighted average of the risks of the constituents.

▶ Capital requirement for holding company should never be larger than the sum of Capital requirement of all individual subs.

▶ subadditivity reflects the idea that risk can be reduced by diversification

▶ Subadditivity makes decentralization of risk-management systems possible.
Acceptance set

One can separate the set \mathcal{X} in different subsets:

- $L_+ = \{ X \in \mathcal{X} | X(v) \geq 0 \ \forall \ v \in \Omega \}$ (the set of non-negative elements of \mathcal{X})
- $L_- = \{ X \in \mathcal{X} | \exists \ v \in \Omega \ \text{s.t.} \ X(v) < 0 \}$ (the set of negative elements of \mathcal{X})
- $L_{--} = \{ X \in \mathcal{X} | X(v) < 0 \ \forall \ v \in \Omega \}$

For example in case $n = 2$ ($\Omega = \{v_1, v_2\}$) we can represent \mathcal{X} in a 2-coordinate system. Where the x-axis represents the measurements of $x = X(v_1)$ and the y-axis represents the measures of $y = X(v_2)$.
Representation of \mathcal{X} for $n = 2$
Acceptance set

Depending on its risk policy, the regulator can separate the set \mathcal{X} into two distinct subset:

1. Acceptable set
2. Uncceptable set

Definition: Acceptance set

The acceptance set A is defined as the set of financial positions that are acceptable (from the regulator’s point of view) without any additional capital requirement.
As in [Artzner99] we state here some axioms that an acceptance set \mathcal{A} must satisfy:

- Axiom A1: The acceptance set \mathcal{A} contains $L_+ \subset \mathcal{X}$
- Axiom A2: The acceptance set \mathcal{A} does not intersect L_-
- Axiom A3: The acceptance set \mathcal{A} is convex

The separation of acceptance set \mathcal{A} from unacceptable set can be materialized by the characterization of the boundary of \mathcal{A} (of $\partial \mathcal{A}$).
Characterization of ∂A for $n = 2$. 1
In the case \(n = 2 \), we can deduce from the axioms of the acceptance set some geometrical properties of the boundary of \(A (\partial A) \).

Consider the angle \(\alpha \) in the previous picture, then we get according to the axioms of the acceptance set the following relationships:

- Axiom A1 \(\Rightarrow \alpha \geq 90^\circ \)
- Axiom A2 \(\Rightarrow \alpha \leq 270^\circ \)
Relation to Risk Measures I

Definition: Acceptance set associated to a risk measure

The acceptance set associated to a risk measure ρ is the set denoted by A_ρ and defined by

$$A_\rho = \{X \in \mathcal{X} : \rho(X) \leq 0\} \quad (*)$$

Definition: Risk measure associated to an acceptance set

The risk measure associated to the acceptance set \mathcal{A} is the mapping from \mathcal{X} to \mathbb{R} denoted by $\rho_\mathcal{A}$ and defined by

$$\rho_\mathcal{A}(X) = \inf\{m \in \mathbb{R} | X + m \in \mathcal{A}\} \quad (***)$$

The amount m may be interpreted as the required regulatory capital to cover the position’s risk.
Relation to Risk Measures II

M.Sc. Brice Hakwa

Risk, Risk measures and Acceptance set
Monetary Measure of Risk
Convex Measure
Coherent Risk Measure
Acceptance set
Résume

Example of Monetary Measure of Risk
Worst-Case Risk Measure
Value at Risk
VaR and Regulatory approach
The previous graphic illustrate the relationsheap betwenn the acceptance set \mathcal{A} (namely the boundary $\partial \mathcal{A}$ of \mathcal{A}) and measure of the risk in the case $n=2$. In this example we can see that initially $X_1(1, -2.34)$ does not belong to the acceptance set, it is also unacceptable from the perspective of the regulator, but we can make it acceptable, according to the definiton (**) by Adding some cash $m = 1$ (or higher than 1). The new position $X_2 = X(1, -2.34) + m(1, 1) = (2, -1.34)$ is on the boundary $\partial \mathcal{A}$ of the acceptance set and therefore acceptable.
Relation to Risk Measures IV

- $\rho_\mathcal{A}$ is a convex risk measure if and only if \mathcal{A} is convex.
- $\rho_\mathcal{A}$ is positively homogeneous if and only if \mathcal{A} is a cone. In particular, $\rho_\mathcal{A}$ is coherent if and only if \mathcal{A} is a convex cone.
- \mathcal{A}_ρ is clearly convex if ρ is a convex measure of risk.

Assume that \mathcal{A}_ρ is a non-empty subset of \mathcal{X} which satisfies $\rho_\mathcal{A} \geq -\infty$ and $X \in \mathcal{A}, Y \in \mathcal{X}, Y \geq X \Rightarrow Y \in \mathcal{A}$ Then:

- $\rho_\mathcal{A}$ is a monetary measure of risk.
- If \mathcal{A}_ρ is a convex set, then $\rho_\mathcal{A}$ is a convex measure of risk.
- $\rho_\mathcal{A}$ is a coherent measure of risk if \mathcal{A}_ρ is a convex cone.
Let X be (X is define as a random variable $X : \Omega \rightarrow \mathbb{R}$) a value of a financial position, the set \mathcal{X} of all possible financial position is finite (since Ω assumed to be finite) and can be separated into acceptable set and non-acceptable sep (Regulatory perspective).

We want to quantify the amount that, added to a non-acceptable position X, make its acceptable to the regulator.
Desirable Properties for Monetary Risk Measure

- Therefore we need an appropriate monetary risk measure for the unacceptable position (downsid risk).
- Such a measure ρ should have the following properties.
 - ρ is a decreasing function of X
 - ρ is stated in the same units as X
 - ρ is positive if X is non-acceptable
 - ρ is a coherent risk measure
Exemple I : Worst-Case Risk Measure

Definition

The worst-case risk measure ρ_{max} defined by

$$\rho_{\text{max}} (X) = - \inf_{v \in \Omega} X(v) \ \forall X \in \mathcal{X}$$

- The value of ρ_{max} (Capital requirements) is the least upper bound for the potential loss which can occur in any scenario.
- ρ_{max} is a coherent measure of risk
- Any normalized monetary risk measure ρ on \mathcal{X} satisfies

$$\rho(X) \leq \rho_{\text{max}} (X)$$

It is also the most conservative measure of risk.
- PML (Probable maximum loss) could be seen as equivalent in insurance
Example II: Value at Risk

Suppose that we have a probability measure P on (Ω, \mathcal{F}). In this context, a position X is often considered to be acceptable if the **probability of a loss** is bounded by a given level $\lambda \in (0, 1)$ that means:

$$P[X < 0] \leq \lambda.$$

The corresponding monetary risk measure (necessary capital) is called **Value at Risk (VaR)**

Definition: Value at Risk

$$\text{VaR}_\lambda A(X) = \inf \{ m \in \mathbb{R} | P[m + X < 0] \leq \lambda \}$$

- Value-at-Risk refers to a quantile of the loss distribution
- Value-at-Risk is positively homogeneous, but in general it is not convex
VaR and Regulatory approach to Bank sector

VaR is the standard regulatory MMR for Bank sector for market-risk(MR). The internal model (IM) proposes the following formula to calculate the market-risk-capital at day t,

\[
RC_{IM}^t (MR) = \max \left\{ \text{VaR}_{0.99,10}^t ; \frac{k}{60} \sum_{i=1}^{60} \text{VaR}_{0.99,10}^{t-i+1} \right\} + RC_{SR}^t
\]

where

- \(\text{VaR}_{0.99,10}^t \) stands for a 10-day VaR at the 99% confidence level, calculated on day t.
- \(RC \) = Risk Capital
- \(MR = \) Market Risk and \(SR = \) Specific Risk
- \(k \in [3, 5] \) Stress Factor
VaR Regulatory approach to insurance sector

The Solvency Capital Requirement for every individual risk i, $SCR_\alpha(i)$, is defined as the difference between the Value at Risk and expected value (premium income),

$$SCR_\alpha(i) = VaR_\alpha(i) - \mu_i$$
