Prof. Dr. Barbara Rüdiger Bergische Universität Wuppertal, Exercises Wednsday 10.15 - 11.45, Thursday 12.30 -13.45

Exercise -Exam

Notation:

- 0) $\{\Omega, \mathcal{F}, \mu\}$ denotes a finite measure space, $\{\Omega, \mathcal{F}, P\}$ a probability space
- a) μ_U denotes the uniform distribution on [0, 1].
- b) μ_c denotes the distribution which distribution function is given by the Cantor function.

Ex. I: Find an example of two real valued random variables X, Y on (Ω, \mathcal{F}, P) which are NOT stochastic independent and such that for each $x, y \in \mathbb{R}$ the sets $\{X = x\}, \{Y = y\}$ are stochastic independent.

Ex. II: Let $p \in (0,1)$ be fixed. Let X take value 20 with probability p, and -10 with probability 1 - p. An asset $\{S_n\}_{n \in \mathbb{N}}$ has value 100 Euro in the first month. It increases each month with a value X_n which is distributed like X. X_n , for $n \in \mathbb{N}$, are stochastic independent.

- 2) Discuss the convergence in Probability of $\frac{S_n}{n}$
- 3) Given $N \in \mathbb{N}$. Prove that $P(S_n 100 < -N) \leq \frac{900(n-1)(1-p)p + (n-1)^2(30p-10)^2}{N^2}$
- 4) Compute $P(S_4 \ge 140/S_2 \ge 120)$
- 5) Give the characteristic function of S_n/n

Ex. III:

Let $X_n := 6^n \mathbb{1}_{[1-\frac{1}{2n},1]}$ with $n \in \mathbb{N}$ be defined on $(\Omega, \mathcal{F}, P) = ([0,1], \mathcal{B}([0,1], \mu_C))$

- 6) Analyze the convergence μ_C -a.s. of $\{X_n\}_{n\in\mathbb{N}}$, with $X_n := 6^n \mathbb{1}_{[1-\frac{1}{2n},1]}$
- 7) Analyze the convergence in Probability μ_C of $\{X_n\}_{n\in\mathbb{N}}$, with $X_n:=6^n1_{[1-\frac{1}{3^n},1]}$

Ex. IV:

8) Prove the Theorem of total probability

Ex. V:

9) Given (Ω, \mathcal{F}, P) and $A \in \mathcal{F}$, such that P(A) = 1. Prove that $P(A \cap B) = P(B)$ for all $B \in \mathcal{F}$.

Ex. VI:

10) $(\Omega, \mathcal{F}, P) = ([0, 1], \mathcal{B}([0, 1], \mu_U))$. Find an example of a sequence $\{X_n\}_{n \in \mathbb{N}}$ of random variables which converge in probability to 0, but not in $L_4(\Omega, \mathcal{F}, P)$.

Ex VII: (two students)

11) Let X be a random variable on (Ω, \mathcal{F}, P) with values $x_1, ..., x_n \in \mathbb{R}$. Prove that for every measurable function $f : \mathbb{R} \to \mathbb{R}$

$$\mathbb{E}[f(X)] = \int f(x)\mu(dx)$$

where μ the is the distribution of X.

EX VIII: (two students)

12) Let $c_n = \frac{1}{n^3}$, $n \in N$. Find a constant c and a sequence $\{x_n\}$ of different real numbers such that

 $\mu:=c\sum_n c_n\delta_{x_n}$ is the distribution of a random variable with mean zero and the second moment is not finite.

Remark: all results must be motivated and proven