Prof. Dr. Barbara Rüdiger
 Bergische Universität Wuppertal, Exercises Wednsday 10.15-11.45, Thursday 12.30-13.45

 Exercise -Exam

 Exercise -Exam}

Notation:
0) $\{\Omega, \mathcal{F}, \mu\}$ denotes a finite measure space, $\{\Omega, \mathcal{F}, P\}$ a probability space
a) μ_{U} denotes the uniform distribution on $[0,1]$.
b) μ_{c} denotes the distribution which distribution function is given by the Cantor function.

Ex. I: Find an example of two real valued random variables X, Y on (Ω, \mathcal{F}, P) which are NOT stochastic independent and such that for each $x, y \in \mathbb{R}$ the sets $\{X=x\},\{Y=y\}$ are stochastic independent.

Ex. II: Let $p \in(0,1)$ be fixed. Let X take value 20 with probability p, and -10 with probability $1-p$. An asset $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ has value 100 Euro in the first month. It increases each month with a value X_{n} which is distributed like X. X_{n}, for $n \in \mathbb{N}$, are stochastic independent.
2) Discuss the convergence in Probability of $\frac{S_{n}}{n}$
3) Given $N \in \mathbb{N}$. Prove that $P\left(S_{n}-100<-N\right) \leq \frac{900(n-1)(1-p) p+(n-1)^{2}(30 p-10)^{2}}{N^{2}}$
4) Compute $P\left(S_{4} \geq 140 / S_{2} \geq 120\right)$
5) Give the characteristic function of S_{n} / n

Ex. III:

Let $X_{n}:=6^{n} 1_{\left[1-\frac{1}{3^{n}}, 1\right]}$ with $n \in \mathbb{N}$ be defined on $(\Omega, \mathcal{F}, P)=\left([0,1], \mathcal{B}\left([0,1], \mu_{C}\right)\right.$
6) Analyze the convergence μ_{C}-a.s. of $\left\{X_{n}\right\}_{n \in \mathbb{N}}$, with $X_{n}:=6^{n} 1_{\left[1-\frac{1}{3^{n}}, 1\right]}$
7) Analyze the convergence in Probability μ_{C} of $\left\{X_{n}\right\}_{n \in \mathbb{N}}$, with $X_{n}:=$ $6^{n} 1_{\left[1-\frac{1}{3^{n}}, 1\right]}$

Ex. IV:

8) Prove the Theorem of total probability

Ex. V:

9) Given (Ω, \mathcal{F}, P) and $A \in \mathcal{F}$, such that $P(A)=1$. Prove that $P(A \cap B)=$ $P(B)$ for all $B \in \mathcal{F}$.
Ex. VI:
10) $(\Omega, \mathcal{F}, P)=\left([0,1], \mathcal{B}\left([0,1], \mu_{U}\right)\right.$. Find an example of a sequence $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ of random variables which converge in probabilty to 0 , but not in $L_{4}(\Omega, \mathcal{F}, P)$.

Ex VII: (two students)
11) Let X be a random variable on (Ω, \mathcal{F}, P) with values $x_{1}, \ldots, x_{n} \in \mathbb{R}$. Prove that for every measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
\mathbb{E}[f(X)]=\int f(x) \mu(d x)
$$

where μ the is the distribution of X.
EX VIII: (two students)
12) Let $c_{n}=\frac{1}{n^{3}}, n \in N$. Find a constant c and a sequence $\left\{x_{n}\right\}$ of different real numbers such that
$\mu:=c \sum_{n} c_{n} \delta_{x_{n}}$ is the distribution of a random variable with mean zero and the second moment is not finite.

Remark: all results must be motivated and proven

