Prof. Dr. Barbara Rüdiger Bergische Universität Wuppertal, Exercises wednsday 10.15 - 11.45, thursday 12.30 -13.45

Exercise Sheet II - Probability

Notation:

- 0) $\{\Omega, \mathcal{F}, \mu\}$ denotes a measure space (finite or σ finite measure), $\{\Omega, \mathcal{F}, P\}$ a probability space
- a) $g \in \tau(\{\Omega, \mathcal{F}\})$, if g is a real valued function and $g(s) = \sum_{k=0}^{n-1} g_k \mathbf{1}_{A_k}(s)$, $A_k \in \mathcal{F}$
- b) $g \in \Sigma_{\infty}(\{\Omega, \mathcal{F}\})$, if g is a real valued function and $g(s) = \sum_{k \in \mathbb{N}} g_k \mathbf{1}_{A_k}(s)$, $A_k \in \mathcal{F}$
- c) Let $p \ge 1$, $\|\cdot\|_p$ is the norm in $\mathcal{L}^p(\Omega, \mathcal{F}, \mu)$

d)
$$\mathcal{B}(\mathbb{R}) := \sigma(\{(a, b] : a \le b\})$$

Ex. I:

1) Define in two ways the "standard form" of $g \in \tau(\{\Omega, \mathcal{F}\})$ and prove that these are equivalent.

Ex. II:

Let $p \ge 1$ be fixed.

- 2) Prove that $\tau(\{\Omega, \mathcal{F}\})$ is dense in $\Sigma_{\infty}(\{\Omega, \mathcal{F}\})) \cap \mathcal{L}^{p}(\Omega, \mathcal{F}, \mu)$ w.r.t the norm $\|\cdot\|_{p}$.
- 3) Prove that $\tau(\{\Omega, \mathcal{F}\})$ is dense in $\mathcal{L}^p(\Omega, \mathcal{F}, \mu)$ w.r.t the norm $\|\cdot\|_p$.

Ex. III:

4) Let $0 \le p < 1$ be fixed. Compute $\mathbb{E}[exp(X)]$ for a random Variable X which is B(n,p) distributed (minimizing the effort and passages. Find a smart way!) **Ex. IV:** Given a probability space (Ω, \mathcal{F}, P) .

5) Given $A \in \mathcal{F}$ such that P(A) = 1, or P(A) = 0. Prove that any $B \in \mathcal{F}$ is stochastic independent of A.

Ex. V: (two students)

6) Suppose you plan to continue to throw a dice and stop only when you have got 10 times consecutively the number 6. Prove that with probability 1 you will stop in a finite time.

Ex. VI:

7) Find a two dimensional random variable (X, Y) such that its marginals X and Y are normal Gauss distributed, but such that it is not Gauss distributed (i.e. the two dimensional distribution of (X, Y) is not Gaussian)

Ex. VII: Let $p \in (0, 1)$ be fixed. Let X take value 20 with probability p, and -10 with probability 1 - p.

- 8) Give all sets of the Product σ -algebra $\sigma(X) \otimes \sigma(X)$. In particular prove that in this case $\sigma(X) \otimes \sigma(X) = \sigma(X) \times \sigma(X)$, i.e. the Product σ -algebra contains only the product sets.
- 9) Give an example of a random variable Y where $\sigma(Y) \otimes \sigma(Y)$ is not equal to $\sigma(Y) \times \sigma(Y)$

Ex. VIII: An asset $\{S_n\}_{n \in \mathbb{N}}$ has value 100 Euro in the first month. It increases each month with a value X_n which is distributed like X defined in EX VII. X_n for $n \in \mathbb{N}$ are stochastic independent.

- 10) Write the distribution of the asset $S_n = \sum_{k=1}^n X_k$ for each $n \in \mathbb{N}$ as a combination of Delta distributions.
- 11) Write the distribution function of S_4 and sketch a picture of it.
- 12) Prove that $\sigma(X_1, ..., X_n) = \sigma(S_1, ..., S_n)$
- 13) Compute the probability that the asset increases infinitly often.
- 14) Given $N \in \mathbb{N}$. Compute the probability of the event that there exists a month n, such that for all k > n the asset has value $S_k > N$
- Ex. VIII:
- 15) Prove that $\mathcal{B}(\mathbb{R}) = \sigma(\{[a, b] : a \leq b\})$
- 16) Prove that the $\mathcal{B}(\mathbb{R})$ coincides with the sigma algebra generated by the open sets on \mathbb{R} defined by the usual topology.

Remark: all results must be motivated and proven