Prof. Dr. Barbara Rüdiger Bergische Universität Wuppertal, Due 19.12.2018

Exercise Sheet I - Probability

Notation:

- 0) $\{\Omega, \mathcal{F}, \mu\}$ denotes a measure space (finite or σ finite measure), $\{\Omega, \mathcal{F}, P\}$ a probability space
- a) $g \in \tau(\{\Omega, \mathcal{F}\})$, if g is a real valued function and $g(s) = \sum_{k=0}^{n-1} g_k \mathbf{1}_{A_k}(s)$, $A_k \in \mathcal{F}$
- b) $g \in \Sigma_{\infty}(\{\Omega, \mathcal{F}\})$, if g is a real valued function and $g(s) = \sum_{k \in \mathbb{N}} g_k \mathbf{1}_{A_k}(s)$, $A_k \in \mathcal{F}$
- c) $||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$ for f real -valued measurable function.
- d) λ denotes the Lesbesgues measure , μ_u the uniform distribution.
- e) Let $p \geq 1$, $\|\cdot\|_p$ is the norm in $\mathcal{L}^p(\Omega, \mathcal{F}, \mu)$
- f) μ_c denotes the distribution wich distribution function is given by the Cantor function.

Ex. I:

1) Define in two ways the "standard form" of $g \in \tau(\{\Omega, \mathcal{F}\})$ and prove that these are equivalent.

Ex. II:

Let $p \ge 1$ be fixed.

- 2) Prove that for each $\mathcal{F}/\mathcal{B}(\mathbb{R})$ -measurable function g, with $g \ge 0$, there is $g_n \in \Sigma_{\infty}(\{\Omega, \mathcal{F}\})$, so that $\lim_{n \to \infty} ||g g_n||_{\infty} = 0$, and $g_n \le g_{n+1}$ for all $n \ge 0$
- 3) Prove that if $g \in \mathcal{L}^p(\Omega, \mathcal{F}, \mu)$ then g_n , $n \in \mathbb{N}$, can be chosen so that $g_n \in \mathcal{L}^p(\Omega, \mathcal{F}, \mu)$ and convergence holds in $\|\cdot\|_p$, too.
- 4) Prove that $\tau(\{\Omega, \mathcal{F}\})$ is dense in $\Sigma_{\infty}(\{\Omega, \mathcal{F}\})) \cap \mathcal{L}^{p}(\Omega, \mathcal{F}, \mu)$ w.r.t the norm $\|\cdot\|_{p}$.
- 5) Prove that $\tau(\{\Omega, \mathcal{F}\})$ is dense in $\mathcal{L}^p(\Omega, \mathcal{F}, \mu)$ w.r.t the norm $\|\cdot\|_p$.

Ex. III:

6) Let $X_n, n \in \mathbb{N}$, be real valued random variables on (Ω, \mathcal{F}, P) . Prove that $sup_{n \in \mathbb{N}}(X_n)$ is a random variable.

Ex. IV:

Let $0 \le p < 1$ be fixed.

- 7) Write the distribution of B(n, p) as a combination of Delta -Distributions. Write its Distribution function and sketch a picture.
- 8) Compute $\mathbb{E}[exp(X)]$ for a random Variable X which is B(n, p) distributed (minimizing the effort and passages. Find a smart way!)

Ex. V:

9) Prove: if X is a random variable which distribution function F is strict monoton and continuous, then F(X) is uniformly distributed.

Ex. VI:

10) Let I be an Index set. Let \mathcal{F}_{α} be a σ -Algebra on a set Ω . Prove that $\bigcap_{\alpha \in I} \mathcal{F}_{\alpha}$ is a σ -Algebra on Ω .

Ex. VII:

- 11) Prove the monotonicity property of a Probability measure P for a sequence of measurable sets $A_n \subset A_{n+1}, n \in \mathbb{N}$
- 12) Use the result in 10) to prove the monotonicity property of a Probability measure P for a sequence of measurable sets $A_n \supset A_{n+1}$, $n \in \mathbb{N}$

Ex. VIII:

- 13) Let (Ω, \mathcal{F}) be a measurable space. Prove: let $A \in \mathcal{F}$, $A \neq \emptyset$, then $\mathcal{F}|_A := \{C = A \cap B : B \in \mathcal{F}\}$ is a σ -Algebra on A.
- 14) Let P be a probability measure on (Ω, \mathcal{F}) and P(A) > 0. Prove that $P(\cdot/A)|_{\mathcal{F}|_A}$ is a probability measure on $(A, \mathcal{F}|_A)$.

Ex. IX:

- 15) Find on $([0,1], \mathcal{B}([0,1]), \mu_u)$ a sequence $\{X_n\}_{n \in \mathbb{N}}$ of real valued random variables which each take two different values x_n, y_n and converge in probability to $X = 1_{[0,1]}$, but not in $L^1([0,1], \mathcal{B}([0,1]), \mu_u)$
- 16) Find on $([0,1], \mathcal{B}([0,1]), \mu_u)$ a sequence $\{X_n\}_{n \in \mathbb{N}}$ of real valued random variables, which each take two different values x_n, y_n , which converge in $L^1([0,1], \mathcal{B}([0,1]), \mu_u)$ but not in $L^2([0,1], \mathcal{B}([0,1]), \mu_u)$

Ex. X:

- 17) Prove that μ_C has no density
- 18) Analyze the convergence in probability μ_C of $\{X_n\}_{n\in\mathbb{N}}$, with $X_n:=6^n1_{[0,\frac{1}{3^n}]}$

Ex. XI:

- 19) Find an example of two random variables X, Y on $\{\Omega, \mathcal{F}, P\}$, which are uncorrelated, but not stochastic independent
- 20) Find an example of a sequence of random variables $X_n, n \in \mathbb{N}$, on $\{\Omega, \mathcal{F}, P\}$, which are parewise stochastic independent, but not stochastic independent.

Remark: all results must be motivated and proven