Bergische
Universität Wuppertal
Fachbereich Mathematik und
Naturwissenschaften
Angewandte Mathematik - Stochastik
Information
Zufallsprozesse und stochastische Integration
Dozent:
M.Sc. Brice Hakwa
Vorlesung:
Beginn der Vorlesung: 09.04. bis 12.07.2012
Mo. 16:00 - 18:00 G.15.25 / wöchentlich
Do. 14:00 - 16:00 G.16.09 / wöchentlich
Ausfalltermin:
keineInhaltsverzeichnis
- Motivation
- Element of Probability Theory
- Probability Space
- Random Variable
- Distribution and density Function
- Characteristic function
- Moment of random variable
- Transformation Formula and Somme of Random Variables
- Infinitely divisible and Stable Distribution
- Type of Convergence for random Variables
- Conditional expectation
- Generalities of stochastic processes
- Definition and Classification
- Definition
- Measurability and filtration
- Variation of a Process
- Moments, Covariance and Increment of a Process
- Equivalence of Processes^
- Martingale
- Stopping times
- Markov Property
- Generalities
- Discrete Time Markov Chain
- Limiting and Stationary Distribution
- Continuous time Markov Process
- Stochastic Process in Finance
- Brownian motion
- Processes derived from the BM.
- Counting and marked processes
- Poisson process Poisson.pdf
- Compound Poisson process Anwendungsbeispiel
- Compensated Poisson processes
- Stochastic calculus with respect to the BM.
- Wiener stochastic integral
- Stochastic integral of simple function
- Ito stochastic integral
- Stochastic differential equation
- Diffusion process
- Existence and uniqueness
- Markov property
- Infinitesimal generator
- Dynkin's formula and Martingale
- Simulation methods for SDE Link:Zusatzliteratur.pdf
- Monte-Carlo-Simulation.pdf
- Introduction to Levy process Link: Zusatzliteratur.pdf
- Definition
- Markov property of levy processes
- Jump measure and Levy measure
- Mean and variance of levy process
- Pathwise properties of levy process
Litteratur:
- Steven E. Shreve, Stochastic Calculus for Finance II, Continuous-Time Models
- Bernt Øksendal, Stochastic Differential Equations: An Introduction with Applications
- Ken-Iti Sato, Levy Processes and Infinitely Divisible Distribution
- Erhan Cinlar, Probability and Stochastics
- Rama Cont, financial modelling with jump processes
- Nicholas H. Bingham Rüdiger Kiesel, Risk-Neutral Valuation
Übung:
Beginn: 04.04.12 - 11.07.2012
Mi. 14:00 - 16:00 D.13.08 / wöchentlich
Übungsleiter:
Voraussetzungen
Master an Universitäten - Mathematik