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Nonstandard analysis, in its early period of development, shortly after
having been established by A. Robinson 1, dealt mainly with nonstandard
extensions of some traditional mathematical structures. The system of its
foundations, referred to as ”model-theoretic foundations” in the book un-
der review, was proposed by Robinson and E. Zakon 2. Their approach was
based on the type-theoretic concept of superstructure V (S) over some set
of individuals S and its nonstandard extension (enlargement) ∗V (S), usu-
ally constructed as a (bounded) ultrapower of the ”standard” superstructure
V (S). They formulated few principles concerning the elementary embed-

ding V (S)
∗→ ∗V (S), enabling the use of methods of nonstandard analysis

without paying much attention to details of construction of the particular
nonstandard extension. Such an approach—in spite of having been applica-
ble to any classical mathematical structure (not just a first-order one) —was
still perceived as a kind of ad hoc foundation, raising the need to search for
philosophically more satisfactory ones, allowing the extension of the whole
set-theoretic universe of contemporary mathematics to some richer ”nonstan-
dard universe” of a suitably modified set theory, providing at the same time
all the classical mathematical structures with canonic nonstandard exten-
sions, described in a uniform way.

1Non-standard analysis, North-Holland, Amsterdam, 1966; MR0205854 (34 #5680)
2Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sym-

pos., Pasadena, Calif., 1967), 109–122, Holt, Rinehart and Winston, New York, 1969;
MR0239965 (39 #1319) and improved by Zakon, Victoria Symposium on Nonstandard
Analysis (Univ. Victoria, Victoria, B.C., 1972), 313–339. Lecture Notes in Math., 369,
Springer, Berlin, 1974; MR0476500 (57 #16060)
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From among the early versions of axiomatic ”nonstandard” set theories
the internal set theory IST introduced by E. Nelson 3 seems to have attracted
the most followers. IST is formulated in the language containing the binary
symbol ∈ for the membership relation and an additonal unary symbol st
denoting the standardness predicate. The universe of IST consists entirely
of ”internal” sets, i.e., those corresponding in ”model-theoretic foundations”
to the elements of ∗V (S); however, unlike ∗V (S), it satisfies all the axioms
of ZFC. On the other hand, the fact that some parts of sets, defined by
formulas involving the predicate st, do not form sets in IST is a source of—
mostly minor but rather frequent—technical inconveniences. However, the
main obstacle barring a traditionally educated ”standard” mathematician
from accepting IST is perhaps of a psychological nature. The IST view of the
ideal world of mathematics is at odds with mathematical Platonism. In IST
all the classical infinite sets, e.g., N or R, acquire new, nonstandard elements
(like ”infinite” natural numbers or ”infinitesimal” reals). At the same time,
the families σ

N = {x ∈ N : stx} or σ
R = {x ∈ R : stx} of all standard, i.e.,

”true,” natural numbers or reals, respectively, are not sets in IST at all.
Thus, for a traditional mathematician inclined to ascribe to mathematical
objects a certain kind of objective existence or reality, accepting IST would
mean confessing that (s)he has lived in confusion, mistakenly having regarded
as, e.g., the set N just its tiny part σN (which is not even a set) and overlooked
the rest. Not surprisingly, many are not willing to reconsider their point of
view so dramatically.

Within ”model-theoretic foundations” this psychological obstacle is less
acute. Classical sets like N or R remain unchanged. They just gain some
standard companions ∗N or ∗R, respectively, and, identifing each element x
with its ∗-image ∗x, become equal to the sets of all standard elements of their
extensions ∗N or ∗R.

Almost simultaneously with Nelson, K. Hrbček introduced several ”non-
standard” set theories dealing with standard, internal and external sets (with
the class of internal sets corresponding to the universe of all sets in IST) 4.
The main reason for that multitude and for the lack of a canonical non-
standard set theory was his discovery of what is now known as the Hrbaček
paradox: besides the axiom of Regularity which necessarily fails already for

3Bull. Amer. Math. Soc. 83 (1977), no. 6, 1165–1198; MR0469763 (57 #9544)
4Fund. Math. 98 (1978), no. 1, 1–19; MR0528351 (84b:03084); Amer. Math. Monthly

86 (1979), no. 8, 659–677; MR0546178 (81c:03055)
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external sets of internal sets, the extension of a rather weak basic nonstandard
set theory by the scheme of Collection (or Replacement) for st-∈-formulas,
Standardization, Saturation for families of internal sets of size not bounded
by any in advance given classical cardinal, and either of the axioms of Power
Set or Choice turns out to be inconsistent. As a consequence, any consistent
nonstandard set theory has to sacrifice at least one of these axioms or to
weaken it to a form compatible with the rest. Naturally, there arise several
solutions.

The present book is devoted to Hrbaček set theory HST, an axiomatic
”nonstandard” set theory formulated by the authors as the extension of
Hrbaček’s theory NS1(ZFC) by the axioms of Regularity over I, Stan-
dard Size Choice and Dependent Choice (see below). However, it should be
pointed out that HST does not coincide with any of Hrbaček’s original theo-
ries and the authors’ contribution—both to its development and its detailed
(meta)mathematical analysis—is so enormous that should it be properly ac-
knowledged: the theory—especially if it becomes widely accepted —would
be more adequately called Hrbaček-Kanovei-Reeken set theory and denoted
by HKR.

The general view and more detailed structure of the universe of HST,
the way it can be used as ”working foundations of nonstandard mathe-
matics”, its merits as well as connections to other—both ”standard” and
”nonstandard”— set theories, and related metamathematical issues will emerge
when reviewing the book by chapters, necessarily in a rather selective way.

Chapter 1. Getting started. In spite of its relaxed title, this chapter
is crucial because the whole axiomatic system of HST is introduced here.
Therefore, we dwell a bit longer on it.

The language of HST consists of the binary membership relation symbol
∈ and the unary standardness predicate symbol st. The world of HST is
a vast all-comprising ”external” universe H, and three of its subuniverses
are singled out: the universe S = {x : stx} of all standard sets, the universe
I = {x : intx} of all internal sets, where intx means ∃y (sty ∧ x ∈ y), and
the universe WF = {x : wfx} of all well-founded sets, where wfx stands for
the ∈-formula ”there exists a transitive set X such that x ⊆ X and ∈ is
well-founded on X”.

The external universe (H;∈, st) satisfies all the axioms of ZFC except
for the axioms of Power Set, Regularity and Choice, with the schemata of
Separation and Collection (i.e., Replacement as well) for all st-∈-formulas.

The universe of standard sets (S,∈) satisfies literally all of the axioms of
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ZFC (with the schemata of Separation and Collection just for ∈-formulas).
The inclusion S ⊆ I is an immediate consequence. Additionally, the universe
(I;∈) of all internal sets satisfies the axiom of Transitivity:

⋃
I ⊆ I, i.e., I

is a transitive class. The specific ”nonstandard character” of the theory is
guaranteed by the following two axioms. Transfer: Φst ⇐⇒ Φint, for any
closed ∈-formula Φ with standard parameters; in other words, the universe
(I;∈) of all internal sets is an elementary extension of the universe (S ∈) of
all standard sets.

Standardization: ∀X ∃stY (X ∩ S = Y ∩ S); this necessarily unique Y is
denoted by SX. As a consequnce, the only sets in H consisting entirely of
standard sets are those of the form σY = Y ∩ S where Y ∈ S.

The failure of Regularity in H is compensated by the axiom of Regularity
over I: X 6= ∅ =⇒ ∃x ∈ X(x ∩X ⊆ I). Thus H is built over I as a kind of
urelements, similar to the way WF is built over the empty set ∅.

The last group of axioms deals with sets of the form {f(x) : x ∈ X ∩ S},
where X is any set, called sets of standard size.

The third specific ”nonstandard axiom” is that of standard size Saturation
of the class I: if X ⊆ I is a set of standard size, such that x 6= ∅ and x∩y ∈ X
for any x, y ∈ X, then

⋂
X 6= ∅.

The available amount of choice in H is given by the last two axioms in
the list. Standard Size Choice ensures the existence of a choice function for
any set of standard size containing just nonempty sets as elements.

Finally, Dependent Choice postulates the existence of an ω-sequence of
choices, in case the domain of the n-th choice depends on the result of the
preceding choice.

Thus, the authors’ solution of the Hrbaček paradox consists in sacrificing
Choice and Power Set by weakening the former to its standard size form and
retaining the latter in the universe WF of well-founded sets.

By well-founded induction, there is a unique map WF
∗→ →S such that

∗w = S{∗u : u ∈ w} for any w ∈ WF. Using the principles formulated so
far, it is possible to show that the star map is an isomorphism of (WF;∈)
onto (S,∈) and a proper elementary embedding of (WF,∈) into (I,∈), and
that way reproduce the ”model-theoretic” ∗-Transfer in HST, as well. This
style of argumentation, referred to as the ”scheme WF

∗→ →I [in H]”, is
preferred in the book. Similarly, even more in the ”model-theoretic style” of
nonstandard analysis, given any ”classical” structure M ∈ WF for a finite
first order language L, the restriction of the ∗-map to the base set of M
gives rise to the canonic elementary embedding of M into the standard size
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saturated L-structure ∗M∈ I. If L ∈WF is infinite then ∗M∈ I becomes a
structure of the extended language ∗L; however, the ∗-map is still a canonic
elementary embedding ofM into the L-reduct ∗M � L of ∗M. Though ∗M �
L itself does not belong to I, its base set and all its relations and operations
do, i.e., ∗M � L is internally presented and standard size saturated.

The other way round, putting emphasis on the universe I of all internal
sets and its subuniverse S, i.e., on the ”scheme S ⊆ I”, makes it possible
to argue in HST entirely in the style of the axiomatic approach typical for
IST. In both schemes, the external universe H serves as a useful source of
auxilliary sets.

One of the main advantages of HST is the unlimited Saturation: any
system of internal sets with (external) cardinality equal to any classical car-
dinal and having the finite intersection property has an element in common.
As a (perhaps psychologically difficult to accept) consequence, (externally)
infinite internal sets are indeed huge: however ”big” set X ⊆WF or X ⊆ S
and however ”small” (in particular, ∗-finite) infinite set Y ∈ I we choose,
there is an injection X → Y . In other words, the external cardinality of any
infinite internal set is bigger than any classical, i.e., well-founded cardinal.

Another impressive consequence of the standard size Saturation and the
closedness properties of WF is the collapse of the hierarchy over internal
sets built by alternating application of unions and intersections of standard
size (ss) families. Any such a set belongs to the class ∆ss

2 = Σss
2 ∩ Πss

2 ,
which is closed with respect to projections as well. In other words, every set
X ⊆ I, definable by an st-∈-formula with parameters from I, is of the form
X =

⋃
α∈A

⋂
β∈B uαβ =

⋂
γ∈C

⋂
δ∈D vγδ, where uαβ, vγδ are internal sets and

A, B, C, D are some well-founded sets.
Chapter 2. Elementary real analysis in the nonstandard universe. This

chapter serves primarily as an illustration of how the fundamentals of real
nonstandard analysis can be developed in HST. Besides the traditional
”compulsory” parts, Euler’s famous factorization of the sine function is proved
in an intrinsically nonstandard way, making rigorous the intuitively appeal-
ing, though sometimes obscure, use of infinitesimals and infinitely large num-
bers in the original argument. The fairly elementary proof of the Jordan curve
theorem gives some idea of the strength of methods of nonstandard analysis.

All of those particular topics could be developed within any satisfac-
tory foundational framework of nonstandard analysis. The advantage of the
present approach, besides the unlimited Saturation, is that the nonstandard
extensions of classical structures need not be constructed—they are already
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given, and are unique and canonical in a well defined sense.
Chapter 3. Theories of internal sets. Inspecting what HST says about

just internal and standard sets, it comes out that the structure (I;∈,st) is not
a model of IST. In particular, in IST there is a(n internal) set containing
(among other elements) all the standard sets; no such set exists in the HST
universe I. However, (I;∈,st) still satisfies the bounded set theory BST, a
modification of IST introduced by Kanovei 5 by weakening the axiom of Ide-
alization to Basic Idealization and adding the axiom of Inner Boundedness:
every (internal) set is an element of a standard set. The chapter is devoted to
a detailed foundational study of BST, IST and their common part, the ba-
sic internal set theory BIST, as well as to clarifying some relations between
them.

Generalizing Nelson’s translation algorithm, it is proved that any st-∈-
formula φ(x1, . . . , xn) is equivalent in BST to a Σst

2 formula, i.e., to a formula
of the form ∃sty∀stz φ(x1, . . . , xn, y, z) for some ∈-formula φ(x1, . . . , xn, y, z).
As a consequence, BST is shown to be finitely axiomatizable and to admit
certain natural coding of ”external sets” definable by st-∈-formulas.

A remarkable feature of IST is the existence of a uniform definition of
truth for closed ∈-formulas in its universe S of all standard sets. As (S;∈)
satisfies ZFC, one would expect that IST is stronger than ZFC. However,
as proved in Chapter 4, both theories are equiconsistent.

Finally, the ”second edition” of Nelson’s IST is considered, stronger in
some respect than IST itself 6. A widespread misinterpretation of three
results true within the stronger framework as being provable in IST itself
(referred to as three ”myths” of IST) is rectified.

Chapter 4. Metamathematics of internal theories. The main metamath-
ematical properties of BST and IST are established here. Either theory is
equiconsistent with and a conservative extension of ZFC.

The notion of standard core interpretation, enabling the assessment of the
difference between various nonstandard set theories, is introduced. Roughly
speaking, a nonstandard set theory T (i.e., a theory in a language containing
∈ and st with the usual meaning) is standard core interpretable in a standard
set theory U (i.e., a theory in a langauge containing ∈ but not st) if every
model v = (V ;∈, . . . ) of U can be extended to a model w = (W ;∈, st, . . . )
of T in such a way that the universe V of v coincides with the standard core

5Uspekhi Mat. Nauk 46 (1991), no. 6(282), 3–50, 240; MR1164200 (93i:03097)
6E. Nelson, Ann. Pure Appl. Logic 38 (1988), no. 2, 123–134; MR0938372 (89i:03121)

6



S
(w) = {x ∈ W : stx} of w.

It turns out that BST is ”realistic”, in the sense of being standard core
interpretable in ZFC, while IST is not, as the minimal transitive model of
ZFC is not standard core extendable to a model of IST. On the other hand,
IST is standard core interpretable in ZFGT , the extension of ZFC by a
global choice function and a truth predicate for ∈-formulas.

A fairly general construction of quotient power, generalizing ultrapowers,
ultralimits and limit ultrapowers, is introduced and systematically exploited
as the main technical tool throughout the chapter.

Chapter 5. Definable external sets and metamathematics of HST. The
results on BST are used as the starting point in examining the metamathe-
matics of HST. As an intermediate step, the elementary external set theory
EEST is introduced, describing the minimal extension E of the BST uni-
verse I by its external subsets definable by st-∈-formulas with parameters.
The collapse of the standard size projective hierarchy over internal sets to
the ∆ss

2 level proved in Chapter 2 implies that every such a set can be writ-
ten in the form

⋃
a∈A∩S

⋂
b∈B∩S p(a, b) (as well as in the dual form) for some

standard sets A, B and an internal function p with domain A × B, hence
coded by the triple (A,B, p) ∈ I.

The main purpose of EEST and E is to serve as a base for the construc-
tion of a more complex universe L[I] of sets constructible from internal sets,
containing (besides sets from E) also definable sets of sets from E, definable
sets of such sets, etc. L[I] is described and coded in I as the minimal cum-
mulative extension of E along well-founded trees decorated by internal sets.
(L[I];∈, st) is shown to satisfy HST, proving what is called internal core
interpretability of HST in BST, as well as standard core interpretability of
HST in ZFC. In particular, HST is a ”realistic” nonstandard set theory like
BST. The equiconsistency of HST with both BST and ZFC immediately
follows.

The constructible HST model L[I] exhibits some special features, not
provable in HST alone, e.g., ∗-infinite internal sets with different internal
cardinalities remain externally non-equinumerous in L[I]; moreover, there
exist externally non-equinumerous infinite ∗-finite internal sets in L[I].

Chapter 6. Partially saturated universes and the Power Set problem.
Unlimited Saturation implies that the external subsets of any infinite internal
set form a proper class; henceforth it is incompatible with the Power Set
axiom. However, for each well-founded infinite cardinal κ, the universes I
and H admit certain subuniverses Iκ ⊆ I and L[Iκ] ⊆ L[I] ⊆ H, satisfying
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HST with Saturation (a bit stronger than that) restricted to families of size
≤ κ plus (full) Power Set and Choice restricted to families of size ≤ 2κ.
Here, Iκ consists of all internal sets belonging to standard sets of internal
cardinality ≤ ∗κ.

There is also another version, with suitable subuniverses I ⊆ Iκ and
WF[I] ⊆ H satisfying even full Choice and Power Set along with HST with
Saturation restricted to families of internal sets of size ≤ κ.

A unifying idea behind the constructions consists in extending the uni-
verse S of standard sets to the universe S[w] = {f(w) : f ∈ Sis a function ∧
w ∈ domf ⊆ I} of sets standard relative to a given internal set w. In
particular, Iκ = S[∗κ].

Chapter 7. Forcing extensions of the nonstandard universe. Regarding
internal sets as a kind of urelements and using the Regularity of H over
I, a method of forcing respecting Standardization (i.e., producing no new
standard sets) is developed and applied to models of HST.

As the first result, it is shown how two internal sets of different infinite
internal cardinalities in a ground model of HST (H = L[I], say) can be made
equinumerous in its appropriate generic extension. Together with the results
of Chapter 5 this shows that, for instance, the statement ”the internal sets
∗
N and ∗R have the same (external) cardinality” is independent of HST.

A more involved application is the proof of consistency with HST of
the isomorphism property IP introduced by C. W. Henson 7: there is a
model of HST in which any two elementarily equivalent internally presented
structures of any first order language of standard size are isomorphic. In
particular, under IP any two (externally) infinite internal sets (i.e., struc-
tures of the language of pure equality) are equinumerous. A rather welcome
consequence is the essential uniqueness of the canonic extensions of classical
first order structures. More precisely, if M = (M ; . . . ) ∈ WF is a structure
of a standard size first order language L, then any internally presented L-
structure elementarily equivalent toM is isomorphic to its canonic extension
∗ML. In particular, this applies to the canonic extensions ∗N and ∗R of the
classical natural numbers N and real numbers R, respectively. This makes
IP into a promising candidate for an additional axiom extending HST but
incompatible with the ”axiom of constructibility” H = L[I].

Chapter 8. Other nonstandard theories. As a matter of fact, there is
currently no generally accepted ”canonic” foundational framework for non-

7J. Symbolic Logic 39 (1974), 717–731; MR0360263 (50 #12713)
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standard analysis. If the authors were not convinced that their theory is
the right candidate for that task, they hardly would undertake the immense
work in writing the present book. Therefore, the comparison of HST with
other nonstandard set theories by them is a delicate issue, as one could easily
apply to other theories improper standards, adequate for HST but falling
short for others. The authors seem aware of that and one has to appreciate
their fairness in taking care not to forget to mention any merits of the ”rival”
theories.

It would not make much sense to review here the authors’ reviews of the
nonstandard theories by Kawäı, Hrbaček, Ballard-Hrbaček, Benci-di Nasso,
Gordon, etc., and it would not be possible within a reasonable length. Let
us just mention that, among other aspects, particular attention is payed to
different measures applied in order to avoid the Hrbaček paradox than those
adopted by HST.

Chapter 9. ”Hyperfinite” descriptive set theory. Given an internal (typ-
ically even a hyperfinite) set, one can build the usual Borel and projective
hierarchy over its internal (hyperfinite) subsets in essentially the same way
(in particular using just countable unions and intersections and not the stan-
dard size ones) as over open sets in a Polish, i.e., separable metric space.
There is a handful of results in ”hyperfinite” descriptive set theory which
are quite analogous to their Polish counterparts, whith Saturation replacing
completeness or compactness in some arguments. Several proofs, however,
making use of Transfer and hyperfinite combinatorial arguments, are often
rather different. Additionally, the ”hyperfinite” projective hierarchy is part
of a more extensive system of the so-called countably determined (CD) sets,
with nice closure properties and no direct analogue in Polish spaces. These
results require just Saturation restricted to countable families of internal sets
and could equally well be (in fact originally were) proved within different
nonstandard frameworks providing a sufficient supply of external sets.

Applications include results on Loeb measures and probability theory in
hyperfinite domains, some intrinsically nonstandard topics concerning car-
dinalitiy theories for Borel and CD sets and some hyperfinite Ramsey type
theorems for CD sets.

Let us mention two intuitively appealing results on Borel and CD cardi-
nals. If A, B are two infinite ∗-finite sets with internal cardinalities m,n ∈
∗
N r N, then there is a bijection A → B with Borel graph if and only if
m/n is infinitely close to 1, and there is a bijection A → B with countably
determined graph if and only if m/n is neither infinitely big nor infinitesimal.
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Finally, we quote a Ramsey type result, using this opportunity to fix a
mistake in the conclusion of Theorem 9.7.7, reproduced also in its (otherwise
correct) proof. If k ∈ N, ν ∈ ∗N r N and E is a CD equivalence relation
on the set [ν]k of all k-element subsets of ν = {0, 1, . . . , ν − 1}, such that
there is no infinite internal pairwise E-inequivalent set I ⊆ [ν]k, then there is
an infinite internal E-homogeneous set A ⊆ ν (i.e., uEv for all u, v ∈ [A]k).
With A ⊆ [ν]k, as stated, this would not make much sense.

Having passed through the book, the reviewer agrees with the authors
in the point that HST seems so far to be the only nonstandard theory
disposing of a satisfactory universe of external sets, which at the same time
is ”realistic,” i.e. interpretable in ZFC in such a way that the class of
all standard sets coincides with the ZFC universe, provides every classical
structure M with a canonic elementary extension ∗M, with the degree of
saturation not limited by any in advance chosen cardinal, and guarantees
enough space for ”peaceful coexistence” of the model-theoretic and IST-like
versions of nonstandard analysis.

So has the problem of finding the nonstandard set theory finally been
solved and decided in favour of HST? Well, from the philosophical and
metamathematical point of view the positive answer seems very likely. How-
ever, it is neither philosophy nor metamathematics but the ”nonstandard
practicioners” who will decide. And this could be a problem. As a—most
probably unavoidable— byproduct of having successfully mastered all the
above-mentioned problems, the axiomatic system of HST became rather a
sophisticated one. Comparing with standard set theories, like ZFC, formu-
lated in a single universe, in the formulation of HST from the very beginning
four(!) universes WF, S, I and H are involved. Thus—unlike, say, ZFC—to
grasp HST intuitively, before rather detailed acquaintance with its formal
system and at least some experience with nonstandard analysis, seems im-
possible and requires a serious study even from a reader well trained in logic
and set theory.

Fortunately, HST includes a considerably simpler fragment, namely the
bounded set theory BST (with just two universes S and I), which could be
adopted by the IST followers almost without any change in their habits,
with the extra advantage of legalizing the informal use of external sets and
backward reference to classical (i.e., well-founded) set-theoretical structures.
One only has to be careful in applying external Choice and the Power Set
operation. Under the same caution HST can serve the ”model-theoretic non-
standard analysts” as well, offering them the luxury of unlimited Saturation
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and breaking the walls of their traditional ad hoc ”superstructure prisons”.
Of course, luxury is not free, nor does it free one from longing for the

former lucky modesty. This needs not become manifest as long as nonstan-
dard analysis is used just as a tool for proving results about mathematical
structures sitting firmly in the ”standard” ZFC universe. However, as soon
as nonstandard analysis starts to deal with its intrinsic problems, formulated
from the beginning in terms of standard, internal and external sets (which
seems to be an increasing trend), there naturally arise questions about the
minimal degree of Saturation needed for their proof, or, more generally, about
the frameworks within which they can be proved or refuted, transcending the
limits of any single nonstandard set theory. However, even in such a case
HST seems to offer a sufficient variety of subuniverses or consistent exten-
sions by additonal axioms that can be used to deal with such questions.
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