Non-internal sets with internal initial segments

(June 30, 2004)

It follows from Theorem 1.4.6(ii) that Δ_2^{ss} sets of *-ordinals, with all proper initial segments internal, are necessarily internal themselves. However if the internality is replaced by a stronger condition of *h*-standardness¹ then the result is not true any more. We present here two counterexamples of this kind.

We argue in **HST**, but 1) the arguments are easily accomodable in the **BST** environment, and 2) the arguments are also accomodable to the model-theoretic setting (that is, models in the **ZFC** universe).

Example 1

The following theorem is, essentially, an **HST** version of a result communicated to us by Andreas Blass². As usual, **CH** is the continuum hypothesis $\aleph_1 = 2^{\aleph_0}$.

Theorem 1 (HST). Suppose that **CH** holds in the well-founded universe WF. Then for any $h \in {}^*\mathbb{N} \setminus \mathbb{N}$ there is a set $X \subseteq {}^*\mathbb{N}$ such that

- (i) $X \cap [0, a]$ is h-standard for any h-standard $a \in {}^*\mathbb{N}$;
- (ii) X itself is internal, but <u>not</u> h-standard.

Some questions can be addressed to this simple result: for instance is **CH** eliminable?

Proof. Let $F = \mathbb{N}^{\mathbb{N}}$ be the set of all maps $f : \mathbb{N} \to \mathbb{N}$. (Both F and all its elements belong to the well-founded universe $\mathbb{W}\mathbb{F}$.) The set $A = \{{}^{*}f(h) : f \in F\}$ of all h-standard elements of ${}^{*}\mathbb{N}$ is a standard size subset of ${}^{*}\mathbb{N}$ of cardinality $\leq \mathbf{c}$, hence, in the assumption of **CH**, $\operatorname{card} A = \mathbf{c} = \mathbb{N}_{1}$, and there exists a cofinal strictly increasing sequence $\{a_{\xi}\}_{\xi < \omega_{1}}$ of elements $a_{\xi} = {}^{*}f_{\xi}(h) \in A$, where $f_{\xi} \in F$ for all $\xi < \omega_{1}$. (Exercise: prove that A is not countably cofinal and does not have a largest element.) We assume w.l.o.g. that $a_{0} = 0$ and accordingly f_{0} is the constant 0.

Let, further, $\Phi = \mathscr{P}(\mathbb{N})^{\mathbb{N}}$ be the set of all maps $\varphi : \mathbb{N} \to \mathscr{P}(\mathbb{N})$, still a set in $\mathbb{W}\mathbb{F}$ together with all its elements. Note that in our assumptions $\operatorname{card} \Phi = \mathfrak{c}^{\aleph_0} = \mathfrak{c} = \aleph_1$, and hence Φ can be presented, in $\mathbb{W}\mathbb{F}$, in the form $\Phi = \{\varphi_{\xi} : \xi < \omega_1\}$. Then the set *B* of all *h*-standard sets $b \subseteq {}^*\mathbb{N}$ is equal to $\{{}^*\!\varphi_{\xi}(h) : \xi < \omega_1\}$.

To prove the theorem, it suffices to find an internal set $X \subseteq {}^*\mathbb{N}$ satisfying

⁽iii) $a_{\xi} \in X \iff a_{\xi} \notin {}^{*}\varphi_{\xi}(h)$ holds for any $\xi < \omega_{1}$

¹Recall that a set x is h-standard iff it has the form $x = {}^*f(h)$, where $f \in WF$ is a function and $x \in \operatorname{dom} {}^*f$.

² In the following form (in **ZFC**): assuming **CH**, if U is a non-principal ultrafilter over \mathbb{N} and $^*\mathbf{V}$ the corresponding ultrapower of the set universe \mathbf{V} then there is a non-internal set $X \subseteq ^*\mathbb{N}$ such that any intersection $X \cap [0, a)$, $a \in ^*\mathbb{N}$, is internal.

together with (i): indeed, (iii) implies that X is different from any set of the form ${}^*\!\varphi_{\xi}(h), \xi < \omega_1$, hence, it is not h-standard, as required.

To find such a set X, we define, by induction on ξ , an h-standard set $X_{\xi} \subseteq [0, a_{\xi}]$ satisfying (iii) (as X and for this particular ξ) and

(iv)
$$X_{\xi} = X_{\eta} \cap [0, a_{\xi}]$$
 whenever $\xi < \eta$.

If this is accomplished then, by Saturation, there is an internal set $X \subseteq {}^*\mathbb{N}$ such that $X_{\xi} = X \cap [0, a_{\xi}]$ for any $\xi < \omega_1$, and obviously X satisfies (i) and (iii).

The construction of X_0 and the step $\xi \to \xi + 1$ are trivial. (For instance, we put $X_{\xi+1} = X_{\xi}$ or $X_{\xi+1} = X_{\xi} \cup \{a_{\xi}\}$ in cases, resp., $a_{\xi} \in {}^*\!\varphi_{\xi}(h)$ and $a_{\xi} \notin {}^*\!\varphi_{\xi}(h)$.) Now suppose that $\lambda < \omega_1$ is a limit ordinal, and $0 = \xi_0 < \xi_1 < \cdots < \xi_n < \ldots$ is a cofinal sequence in λ (in WF). By the inductive hypothesis, for any *n* there is an an *h*-standard set $X_{\xi_n} \subseteq [0, a_{\xi_n}]$ satisfying (iii) and $X_{\xi_n} = X_{\xi_m} \cap [0, a_{\xi_n}]$ whenever $n < m < \omega$. Then for any *n* there is a function $\varphi_n \in \Phi$ such that $X_{\xi_n} = {}^*\!\varphi_n(h)$ (Standard Size Choice is applied).

Now, arguing in \mathbb{WF} we define $\varphi \in \Phi$ as follows: for any $x \in \mathbb{N}$ and any n, if $f_{\xi_n}(x) \leq f_{\xi_{n+1}}(x)$ then

$$\varphi(x) \cap [f_{\xi_n}(x), f_{\xi_{n+1}}(x)] = \varphi_{n+1}(x) \cap [f_{\xi_n}(x), f_{\xi_{n+1}}(x)]$$

and, in addition, $\varphi(x) \cap [M, +\infty) = \emptyset$ whenever $M = \sup_{n \in \mathbb{N}} f_{\xi_n}(x) < +\infty$. Exercise: use *-Transfer to prove that $X_{\lambda} = {}^*\!\varphi(h)$ is as required.

Example 2

The following theorem is essentially from Blass [Bl 1977] (where it is given in terms of ultrapowers). Let $\Xi = \bigcup_{\alpha < \omega_1} {}^*\!\!\alpha$: this is a proper and non-internal initial segment of ${}^*\!\!\omega_1$. In the following theorem, $\Sigma_1^{\text{st}}(h)$ means the class of all sets $X \subseteq \mathbb{I}$ that admit a Σ_1^{st} definition in \mathbb{I} with h and standard sets as parameters.

Theorem 2 (HST). For any $h \in {}^*\mathbb{N} \setminus \mathbb{N}$ there is a $\Sigma_1^{st}(h)$ set $X \subseteq \Xi$ such that

- (i) all intersections of the form $X \cap {}^{*}\!\!\alpha$, $\alpha < \omega_1$, are h-standard;
- (ii) there does not exist a h-standard set $H \subseteq {}^*\!\omega_1$ such that $X = H \cap \Xi$.

Proof. Step 1. Arguing in \mathbb{WF} , let us fix a sequence $\{W_{\gamma}\}_{\gamma < \omega_1}$ of sets $W_{\gamma} \subseteq \mathbb{N}$ such that $W_{\gamma} \triangle W_{\delta}$ is infinite whenever $\gamma \neq \delta < \omega_1$. We are going to define a set $Y_{\alpha}(n) \subseteq \alpha = [0, \alpha)$ for any $\alpha < \omega_1$ and $n \in \mathbb{N}$, so that

(1) the set $C_{\alpha\beta} = \{n : Y_{\alpha}(n) = Y_{\beta}(n) \cap \alpha\}$ is cofinite whenever $\alpha < \beta < \omega_1$;

³In other words, X is not h-standardly extendable. Note that by \aleph_2 -Saturation there exist internal sets $H \subseteq *\omega_1$ such that $X = H \cap \Xi$, but by the theorem they cannot be h-standard.

(2) for any limit ordinal $\gamma < \omega_1$ there exists a cofinal map $b_{\gamma} : \mathbb{N} \to \gamma^{-4}$ such that (*) for any n and any ordinal α , $b_{\gamma}(n) \leq \alpha < \gamma$, of the form $\alpha = \lambda + k$, λ limit and $k \in \mathbb{N}$, we have $\alpha \in Y_{\gamma}(n)$ iff $k \in W_{\gamma}$.

To begin with, put $Y_0(n) = \emptyset$ and $Y_{\alpha+1}(n) = Y_{\alpha}(n)$ for all α and n.

Now let us concentrate on the limit step: let $\gamma < \omega_1$ be a limit ordinal. Let $\alpha_0 < \alpha_1 < \alpha_2 < \ldots$ be a cofinal ω -sequence in γ . It follows from (1) that the sets $D_m = \bigcap_{j < m} C_{\alpha_j, \alpha_{j+1}}$ are cofinite (in N). Then the sets $D'_m = \{n \in D_m : n \ge m\} \subseteq D_m$ are still cofinite and $\bigcap_m D'_m = \emptyset$. Note in addition that $D'_0 = D_0 = \mathbb{N}$ and $D_{m+1} \subseteq D_m$ for all m. Thus the map $b_{\gamma}(n) = \alpha_m$, where m is the least index m with $n \notin D'_{m+1}$, is cofinal in γ .

Now define, for any n, a set $Y_{\gamma}(n) \subseteq \gamma$ so that $Y_{\gamma}(n) \cap \overline{\gamma}(n) = Y_{\overline{\gamma}(n)}(n)$ and (2)(*) holds (for this n). It remains to show that (1) holds, that is, the sets $C_{\alpha\gamma} = \{n : Y_{\alpha}(n) = Y_{\gamma}(n) \cap \alpha\}, \ \alpha < \gamma$, are cofinite. Let $\alpha < \gamma$. Then $\alpha \leq \alpha_m$ for some m. As obviously $C_{\alpha,\alpha_m} \cap C_{\alpha_m,\gamma} \subseteq C_{\alpha\gamma}$, it remains to show that $C_{\alpha_m,\gamma}$ is cofinite — but this is clear because $D'_m \subseteq C_{\alpha_m,\gamma}$.

Step 2. We consider the *-extensions $\{{}^{*}b_{\gamma}\}_{\gamma < {}^{*}\omega_{1}}$ (then ${}^{*}b_{\gamma} : {}^{*}\mathbb{N} \to \gamma$), $\{{}^{*}Y_{\gamma}(n)\}_{\gamma < {}^{*}\omega_{1}, n \in {}^{*}\mathbb{N}}$ (${}^{*}Y_{\gamma}(n) \subseteq \gamma$) and ${}^{*}C_{\alpha\beta} = \{n \in {}^{*}\mathbb{N} : {}^{*}Y_{\alpha}(n) = {}^{*}Y_{\beta}(n) \cap \alpha\}$ ($\alpha < \beta < {}^{*}\omega_{1}$) — all of them standard sequences or matrices (of internal objects). Take any $h \in {}^{*}\mathbb{N} \setminus \mathbb{N}$. If $\alpha < \beta < \omega_{1}$ then the set ${}^{*}C_{{}^{*}\alpha{}^{*}\beta} = {}^{*}(C_{\alpha\beta})$ is a standard finite subset of ${}^{*}\mathbb{N}$, and hence ${}^{*}C_{{}^{*}\alpha{}^{*}\beta}$ consists of standard elements, thus $h \notin {}^{*}C_{{}^{*}\alpha{}^{*}\beta}$. It follows, by *-Transfer, that ${}^{*}Y_{\alpha}(h) = {}^{*}Y_{\beta}(h) \cap {}^{*}\alpha$ for any pair of $\alpha < \beta < \omega_{1}$. Thus, the $\Sigma_{1}^{st}(h)$ set $X = \bigcup_{\alpha < \omega_{1}} {}^{*}Y_{\alpha}(h) \subseteq {}^{*}\omega_{1}$ satisfies ${}^{*}Y_{\alpha}(h) = X \cap {}^{*}\alpha$ for any $\alpha < \omega_{1}$, and hence (i) of the theorem holds.

We claim that (ii) of the theorem also holds.

Step 3. Assume towards the contrary that $\eta \in \mathbb{WF}$ is a map $\mathbb{N} \to \mathscr{P}(\omega_1)$, and the (*h*-standard) set $H = {}^*\!\eta(h) \subseteq {}^*\!\omega_1$ satisfies $X = H \cap \Xi$, that is, $H \cap {}^*\!\alpha = {}^*\!Y_{\alpha}(h)$ for all $\alpha < \omega_1$.

Step 4. Arguing in WF, we prove

Lemma 3 (in \mathbb{WF}). For any $Z \subseteq \omega_1$ and n, the set Λ of all <u>limit</u> ordinals $\gamma < \omega_1$, such that $Y_{\gamma}(n) = Z \cap \gamma$, does not contain any its limit point.

Proof. Assume on the contrary that $\gamma \in \Lambda$ is a limit ordinal, and $\{\gamma_j\}_{j \in \mathbb{N}}$ is a sequence of (limit) ordinals $\gamma_j \in \Lambda$, cofinal in γ . As $\alpha = b_{\gamma}(n) < \gamma$, there is an index j with $\alpha < \gamma_{j-1} < \gamma_j < \gamma$. Let ξ be the largest of the ordinals α and $\alpha_j = b_{\gamma_j}(n)$. Then, since both γ and γ_j are limit, the infinite interval $U = [\xi, \xi + \omega)$ satisfies $U \subseteq [\alpha_j, \gamma_j) \cap [\alpha, \gamma)$. Therefore, by (2), the intersection $Y_{\gamma_j}(n) \cap U$ corresponds to W_{γ_j} (or rather to a cofinite "tail" of W_{γ_j} because ξ is not necessarily limit) while the intersection $Y_{\gamma}(n) \cap U$ corresponds to W_{γ} , in such a way that surely $Y_{\gamma_j}(n) \cap U \neq Y_{\gamma}(n) \cap U$ because W_{γ_j} and W_{γ} have infinitely many differences. But this contradicts to the assumption that both γ_j and γ belong to Λ .

⁴We mean that for any ordinal $\gamma' < \gamma$ the set $\{n : b_{\gamma}(n) < \gamma'\}$ is finite.

Coming back to the map $\eta : \mathbb{N} \to \mathscr{P}(\omega_1)$, we define, in \mathbb{WF} ,

$$\Lambda(n) = \{\gamma < \omega_1 : \gamma \text{ limit and } Y_{\gamma}(n) = \eta(n) \cap \gamma \}.$$

Corollary 4 (in WF). There exists a closed unbounded set $E \subseteq \omega_1^{-5}$ such that $E \cap \Lambda(n) = \emptyset$ for any n.

Proof. We can assume that all sets $\Lambda(n)$ are unbounded in ω_1 . In this assumption, a strictly increasing and continuous (that is, $\xi_{\lambda} = \sup_{\alpha < \lambda} \xi_{\alpha}$ for all limit ordinals λ) sequence $\{\xi_{\alpha}\}_{\alpha < \omega_1}$ of ordinals $\xi_{\alpha} < \omega_1$ can be defined so that any interval of the form $[\xi_{\lambda+m}, \xi_{\lambda+m+1})$, λ limit, contains at least one element of each set $\Lambda(n)$, $n \leq m$. Then $\xi_{\gamma} \notin \Lambda(n)$ for all n and all limit γ by the lemma, and hence $E = \{\xi_{\gamma} : \gamma \text{ limit}\}$ is as required.

Step 3: continuation. Using Corollary 4, we accomplish the proof of (ii) of the theorem. The set ${}^{*}\Lambda(h) = \{\beta < {}^{*}\omega_1 : {}^{*}Y_{\beta}(h) = H \cap \beta\}$ contains all *-ordinals of the form ${}^{*}\alpha, \alpha < \omega_1$ by the assumption of Step 3. In particular, ${}^{*}\varepsilon \in {}^{*}\Lambda(h)$, where ε is any ordinal in E (in WF). On the other hand, by *-Transfer, we have ${}^{*}\varepsilon \notin {}^{*}\Lambda(n)$ for any $n \in {}^{*}\mathbb{N}$, in particular, ${}^{*}\varepsilon \notin {}^{*}\Lambda(h)$, which is a contradiction.

 \Box (Theorem)

Remark 5. It remains to note the following. For any $h \in {}^{*}\mathbb{N}$ the class $\mathbb{S}[h] \subseteq \mathbb{I}$ of all *h*-standard sets (to be more exact, the structure $\langle \mathbb{S}[h]; \in, \mathfrak{st} \rangle$) satisfies the axioms of \mathbf{BST}'_{ω} , a partially saturated version of \mathbf{BST} with Saturation restricted to countable families and Inner Boundedness accordingly strengthened, see § 3.3a.

The proof of the theorem can be transformed to a formal deduction in \mathbf{BST}'_{ω} that there exists an "external subset" of ω_1 whose intersections with all standard ordinals are internal.

Problem 6. There are two possible generalizations of Theorem 2. First, consider $h \in {}^{*}X \setminus X$, where $X \in \mathbb{WF}$ is an uncountable cardinal, ω_1 to begin with. Second, consider subsets of ${}^{*}\kappa$ instead of ${}^{*}\omega_1$, κ be anything larger.

For instance, given $h \in {}^*\mathbb{N} \setminus \mathbb{N}$, does there exist ? a $\Sigma_1^{st}(h)$ set $X \subseteq \Xi_2$, where $\Xi_2 = \bigcup_{\alpha < \omega_2} {}^*\!\!\alpha$, such that

- (i) all intersections of the form $X \cap {}^*\!\alpha$, $\alpha < \omega_2$, are internal;
- (ii) there is no h-standard set $H \subseteq {}^*\omega_2$ such that $X = H \cap \Xi$.

The answer in the negative (for all $h \in {}^*\mathbb{N} \setminus \mathbb{N}$) may give a hint to Problem 3.2.5 (is any locally internal class $K \subseteq \mathbb{I} \in$ -definable in \mathbb{I} with parameters).

References

[Bl 1977] A. Blass, End extensions, conservative extensions, and the Rudin-Frolik ordering. Trans. Amer. Math. Soc. 1977, 225, pp. 325 – 340.

⁵In fact only $E \neq \emptyset$ will be used.