Prof. Dr. Hartmut Pecher (im Ruhestand)
Fakultät für Mathematik und Naturwissenschaften
Bergische Universität Wuppertal
D-42119 Wuppertal
Germany
e-mail: pecher@uni-wuppertal.de
Publications and preprints:
Local well-posedness of the coupled Yang-Mills and Dirac
system in temporal gauge. Partial Diff. Equs. and Applications 3:33
(2022), arXiv:2111.15511 pdf
Local well-posedness for the Maxwell-Chern-Simons-Higgs system in
Fourier-Lebesgue spaces. arXiv:2108.13279 pdf
Local well-posedness for the Maxwell-Dirac system in temporal gauge.
Discrete Cont. Dyn. systems (2022), arXiv:2106.14768 pdf
Local well-posedness
of the coupled Yang-Mills and Dirac system for low regularity data
. Nonlinearity 35 (2022), 1 , Corrigendum
Nonlinearity 35 (2022),C3
,
arXiv:2103.06770 pdf
Low regularity well-posedness for the Yang-Mills system in 2D.
arXiv: 2010.06170 pdf
Local well-posedness for the Klein-Gordon-Zakharov system in
3D. Discrete Cont. Dyn. systems 41(2021), 1707-1736,
arXiv:2005.04563 pdf
Low regularity well-posedness for the Yang-Mills system in
Fourier-Lebesgue spaces. SIAM Journal on Mathematical Analysis
52(2020), 3131-3148. pdf
Well-posedness for a generalized
Klein-Gordon-Schrödinger system. Journal of Mathematical Physics 60,
101510 (2019) pdf
Local well-posedness of the two-dimensional Dirac-Klein-Gordon
equations in Fourier-Lebesgue spaces. J. Hyp. Diff. Equs.
17(2020), 785-796. arXix:1910.03972 pdf
Almost optimal local well-posedness for the Maxwell-Klein-Gordon
system in Fourier-Lebesgue spaces. Comm.
Pure Appl. Analysis 19(2020), 3303-3321.
arXiv:1908.5651 pdf
The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in
Fourier-Lebesgue spaces. Discrete Cont. Dyn. Systems 39 (2019),
4875-4893
Local well-posedness for low regularity data for the
higher-dimensional Maxwell-Klein-Gordon system in Lorenz gauge. Journal of Mathematical
Physics 59, 101503 (2018)
Unconditional well-posedness below energy norm for the
Maxwell-Klein-Gordon system. arXiv:1710.11099 pdf
Low regularity local well-posedness for the (N+1) - dimensional
Maxwell-Klein-Gordon equations in Lorenz gauge. arXiv:1705.00599 pdf
Low
regularity local well-posedness for the higher dimensonal Yang-Mills
equation in Lorenz gauge. Adv. Diff. Equ. 24 (2019), 283-320
Low regularity local well-posedness for the Yang-Mills equation in
Lorenz gauge. arXiv:1703.01949 pdf
Low regularity solutions for the (n+1) - dimensional
Maxwell-Klein-Gordon equations in temporal gauge. arXiv:1608.02831 pdf
Low regularity solutions for the (2+1) - dimensional
Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure
and Applied Analysis 15(2016), 2203 - 2219 pdf
Low regularity solutions for Chern-Simons-Dirac systems in the
temporal and Coulomb gauge. Electron.
J. Differential Equations 2016(2016), No. 174, 1-16 pdf
Local well-posedness for the (n+1)-dimensional Yang-Mills and
Yang-Mills-Higgs system in temporal gauge. Nonl. Diff. Equ. Appl. 23(2016), 23-40 pdf
Unconditional global well-posedness in energy space for the
Maxwell-Klein-Gordon system in temporal gauge. Adv. Diff. Equ.
20(2015), 1009-1032 pdf
Global well-posedness in
energy space for the Chern-Simons-Higgs system in temporal
gauge. J. Hyperbolic Diff. Equ. 13(2016), 331-351 pdf
Local solutions with infinite energy of the
Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete Cont. Dyn.
Systems 36(2016), 2193-2204 pdf
Low regularity local well-posedness for the Maxwell-Klein-Gordon
equations in Lorenz gauge. Advances in Diff. Equations 19(2014),
359-386 pdf
Local well-posedness for the nonlinear Dirac equation in two space
dimensions. Communications on Pure and Applied Analysis 13(2014),
677-685
Corigendum: Communications on Pure and Applied Analysis 14(2015),
737-742, cf. also arXiv:1303.1699 pdf
Global solutions for 3D nonlocal Gross-Pitaevskii equations with
rough data. Electron. J.
Differential Equations 2012(2012), No. 170, 1-34 pdf
Unconditional global well-posedness for the 3D Gross-Pitaevskii
equation for data without finite energy. Nonl. Diff. Equ. Appl.
20(2013), 1851-1877 pdf
Some new well-posedness results for the Klein-Gordon-Schrödinger
system. Differential Integral Equations 25(2012), 117-142 pdf
Low regularity well-posedness for the 3D Klein - Gordon -
Schrödinger system. Communications on Pure and Applied
Analysis 11(2012), 1081-1096 pdf
Unconditional well-posedness for the Dirac-Klein-Gordon system in
two space dimensions. arXiv:1001.3065 pdf
(with A. Grünrock) Global solutions for the Dirac-Klein-Gordon
system in two space dimensions. Comm. PDE 35(2010), 89-112 pdf
(with D. Fang and S. Zhong) Low regularity global well-posedness for
the two-dimensional Zakharov system. Analysis 29(2009), 265-282 pdf
Modified low regularity well-posedness for the one-dimensional
Dirac-Klein-Gordon system. Nonl. Diff. Equ. Appl.
15(2008), 279-294 pdf
An improved local well-posedness result for the
one-dimensional Zakharov system. J. Math. Analysis Appl.
342(2008), 1440-1454 pdf
Low regularity well-posedness for the one-dimensional Dirac - Klein
- Gordon system. Electron. J. Differential Equations
2006(2006), No. 150, 1-13 pdf
Well-posedness for a modified Zakharov system. Hokkaido Math. J.
Vol. 36(2007), 467-506 pdf
Rough solutions of a Schrödinger - Benjamin - Ono system.
Differential Integral Equations 19(2006), 517-535 pdf
The Cauchy problem for a Schrödinger - Korteweg - de Vries system
with rough data. Differential Integral Equations 18(2005), 1147-1174
pdf
Global solutions with infinite energy for the 1-dimensional Zakharov
system. Electron. J. Differential Equations 2005(2005), No. 41,
1-18 pdf
(with A. Grünrock) Bounds in time for the Klein-Gordon-Schrödinger
and the Zakharov system. Hokkaido Math. J. 35(2006), 139-153
pdf
Global solutions of the Klein-Gordon-Schrödinger system with rough
data. Differential Integral Equations 17(2004), 179-214 pdf
Global well-posedness below energy space for the 1-dimensional
Zakharov system. Internat. Math. Res. Notices 2001, no. 19,
1027-1056 pdf