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0 Introduction

In the classical setting the theory of period domains has been introduced by Griffiths
[G]. They are certain open subsets of generalized flag varieties over the field of complex
numbers. They parametrize polarized R-Hodge structures of a given type. In the p-adic
setting the notion of a period domain exists as well, representing an analog of the classical
case. Here the notion of a weakly admissible isocrystal is an important ingredient, which
has been established by Fontaine [Fo]. In order to explain this concept, let L be an
algebraically closed field of characteristic p > 0. Denote by W (L) the associated Witt
ring with fraction field K0 = K0(L). A filtered isocrystal (V, Φ,F) is an isocrystal (V, Φ)
over L (see section 1 for the definition of an isocrystal) together with a Z-filtration F of
the vector space V, which is defined over a finite field extension K of K0. The isocrystal
(V, Φ,F) is called weakly admissible if

∑

i

i · dim gri
F ′(V ′ ⊗K0 K) ≤ ordp det(Φ′)

for all subisocrystals (V ′, Φ′) of (V, Φ) and equality for (V ′, Φ′) = (V, Φ). Here F ′ denotes
the filtration on V ′⊗K0 K induced by F . Fix an isocrystal (V, Φ) over L. Considering only
filtrations of a specified type on V , the weakly admissible ones form a rigid-analytic variety
FJ wa over K0. This space is an open rigid-analytic subset of a generalized flag manifold
FJ . It is called the period domain of that specified data. By applying the machinery of
Tannaka formalism, we may extend the theory above - the GL(V )-case - to arbitrary
reductive groups G over Qp. For a detailed description see [RZ]. The most prominent
example of a period domain is the Drinfeld upper half plane Ω(V ) which is attained by
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a trivial isocrystal and the projective space FJ = P(V ). The Drinfeld upper half plane is
just the complement of all Qp-rational hyperplanes in the P(V ), i.e.,

Ω(V ) = P(V ) \
⋃

H(V

H is Qp-rat

P(H).

This example is discussed extensively in the paper [SS] by Schneider and Stuhler.

A natural problem which arises with period domains is the determination of their
cohomology, in this case the étale cohomology with compact support. The cohomology
groups are equipped in a natural way with smooth actions of a p-adic group J(Qp) and the
Galois group Gal(Es/Es) of some local field Es. Here J denotes the isomorphism group
of the given isocrystal, which is an inner form of a Levi subgroup of G. Further, Es is
the field of definition of FJ wa. The étale cohomology with torsion coefficients of Ω(V ) has
been computed in [SS]. For period domains where the considered isocrystal is basic (i.e.,
J is an inner form of G), there exists a formula for the continuous `-adic Euler-Poincaré
characteristic in the Grothendieck-group of smooth J(Qp)×Gal(Es/Es)-representations
due to Kottwitz and Rapoport [R1]-[R3]. Period domains are also definable over finite
base fields Fq, where much more is known. Instead of filtered isocrystals one considers
filtered vector spaces (V,F), where V is a finite-dimensional vector space over Fq and F
is a filtration of V defined over some finite extension of Fq. Subisocrystals are replaced by
rational subspaces of V. In contrast to the p-adic case the corresponding period domain
has the structure of a Zariski open subvariety of FJ . The reason is that there are only
finitely many rational subspaces of V. A precise formula for the `-adic cohomology in the
GL(V )-case has been computed in [O1]. A generalization of this computation to arbitrary
reductive groups G over Fq is given in [O2] due to an idea of B. Totaro.

The aim of this paper is to compute the étale cohomology of FJ wa for a basic isocrystal
with coefficients in Z/nZ, where n ∈ N is a suitable chosen number with (n, p) = 1
(compare Theorem 1.1). The computation is carried out for a quasi-split reductive group
G over Qp. The proof is based on the idea in [O1], [O2], which works as follows. In loc.cit.
there has been constructed an acyclic complex of étale sheaves on the complement Y of the
period domain, which is in that case a closed subvariety of FJ . The index set of this complex
corresponds to the Tits-building of the finite group of Lie type G(Fq). The étale sheaf
associated to a facet is just the constant sheaf on the closed subvariety consisting of points
where each vertex of the facet damages the weak admissibility. The resulting spectral
sequence degenerates in E2 and computes the cohomology of Y. If one tries to adapt this
idea to the p-adic case, one is confronted with two difficulties. The first one is the fact
that the complement of FJ wa in FJ is in general not a rigid-analytic variety. This problem
is solved by working in the bigger category of adic spaces defined by R. Huber [H1]. In the
language of adic spaces, the complement induces a closed pseudo-adic subspace Y ad of the
adic flag manifold FJ ad. The second problem consists of having infinitely many subobjects
of our fixed isocrystal, where the adapted complex is not defined. Here the solution is
to define a complex on Y ad, similar to the case of a finite field, but where the sheaves
involved give rise to locally constant sections with respect to the p-adic topology on the
Tits building. This complex is acyclic as well. Therefore, we get a spectral sequence
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degenerating in the E2-term and which converges towards the cohomology of Y ad. In
contrast to the finite field situation, where the Frobenius automorphism acts semi-simply
on representations, we use this time the vanishing of certain Ext-groups (see [D] resp.
[O3])

Ext1J(Qp)(v
J
P , vJ

Q)

to conclude that the canonical filtration on E2 = E∞ splits. Here P respectively Q are
Qp-parabolic subgroups of J and vJ

P respectively vJ
Q denote the corresponding generalized

Steinberg representations (see Section 1 for their definition). Applying the long exact
cohomology sequence to the triple (FJ wa,FJ ad, Y ad) we obtain finally the cohomology of
FJ wa.

Now we come to the content of this paper. The main result is formulated in Section
1. Section 2 deals with the connection to Geometric Invariant Theory, preparing the
foundation for the acyclicity of the fundamental complex introduced in section 3. At the
end of the third part we give the proof of its acyclicity. The fourth section deals with the
computation of some cohomology groups needed for the evaluation of the induced spectral
sequence. The evaluation is done in the fifth section. Finally, in the last section we give
a concluding example in the case G = GL4.

I would like to thank S. Biglari, U. Görtz, M. Harris, A. Huber, M. Rapoport, P.
Schneider and T. Wedhorn for helpful discussions. I also thank B. Totaro for his numerous
remarks on this work. I am especially grateful to R. Huber for explaining me his adic
spaces.

1 The main result

Let L be an algebraically closed field of characteristic p > 0. We denote by

K0 = Quot(W (L))

the corresponding fraction field of the ring of Witt vectors and by σ ∈ Aut(K0/Qp)
the Frobenius homomorphism. Let Qp be an algebraic closure of Qp with Galois group

ΓQp = Gal(Qp/Qp). Recall that an isocrystal over L is a pair (V, Φ) consisting of a finite-
dimensional vector space V over K0 together with a σ-linear bijective endomorphism Φ
of V.

Let G be a connected quasi-split reductive group over Qp. We repeat briefly the theory
of isocrystals with G-structure [RR], which has been first introduced by Kottwitz [K1].
An isocrystal with G-structure on L is an exact faithful tensor functor

RepQp(G) −→ Isoc(L)

from the category of finite-dimensional rational G-representations over Qp into the cate-
gory of isocrystals over L. Following [RR] Remark 3.5, every such isocrystal is induced by
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an element b ∈ G(K0) in the following way. For a finite-dimensional rational representa-
tion V of G, we put

Nb(V ) :=
(

V ⊗Qp K0, b(idV ⊗ σ)
)

which defines an isocrystal over L. The map on the level of morphisms is the obvious
one. This construction yields an isocrystal with G-structure Nb, where two elements
b, b′ ∈ G(K0) define isomorphic isocrystals if and only if they are σ-conjugated, i.e., if
there exists a point g ∈ G(K0) with b′ = gbσ(g)−1.

Let b ∈ G(K0). Consider the tensor functor

RepQp(G) −→ Grad(V ecK0, Q)

V 7−→
⊕

i∈Q

Vi

from the category RepQp(G) into the category of Q-graded vector spaces over K0 which is
given by the slope-grading of the isocrystal Nb. Using the Tannaka formalism, we obtain
a rational 1-PS

νb : D −→ GK0

defined over K0, which induces this tensor functor. It is called the slope homomorphism
of Nb. Here D is the algebraic pro-torus over Qp with character group Q. We consider
the multiplicative group Gm, via the inclusion Z ↪→ Q of their character groups, as a
quotient of D. If b′ ∈ G(K0) is σ-conjugated to b by an element g ∈ G(K0), then we get
νb′ = Int(g) ◦ νb. For the remainder of this paper, we fix a decent element b ∈ G(K0), i.e.,
its slope homomorphism νb satisfies an equation

(bσ)s = sνb(p)σs

in the semi-direct product G(K0)o 〈σ〉 for some integer s ∈ N, such that sνb : D −→ GK0

factors through Gm. This is not really a restriction, since in any σ-conjugacy class there
is a decent element (see [K1] 4.3) due to the algebraically closeness of L. It follows that
b ∈ G(Qps) and that ν := νb is defined over Qps.

Suppose that there is given a 1-PS

λ : Gm −→ GK

of G defined over a field extension K of K0. We obtain for every finite-dimensional rational
representation V of G a Z-graded vector space

VK =
⊕

i∈Z

V λ
i

and a decreasing Z-filtration Fλ(V )• on VK defined by

Fλ(V )i =
⊕

j≥i

V λ
j , i ∈ Z.
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Thus, the pair (b, λ) yields a tensor functor from RepQp(G) into the category of filtered
isocrystals over K. Following [RZ] the pair (b, λ) is called weakly admissible if for all
faithful finite-dimensional G-representations V , the filtered isocrystal (Nb(V ),F•

λ(V )) is
weakly admissible, i.e., if

∑

i

dim gri
F•

λ(V )(N
′ ⊗K0 K) ≤ ordp det(b(σ ⊗ idV )|N ′)

for every subisocrystal N ′ of Nb(V ) and equality for N ′ = Nb(V ). It follows from the tensor
product theorem of Faltings [F] respectively Totaro [T], which says that the tensor product
of two weakly admissible filtered isocrystals is again weakly admissible, that it suffices to
check the weak admissibility for a single faithful representation. Although Colmez and
Fontaine have proved in [CF] that weak admissibility is the same as admissibility, we will
use the former term in the sequel.

We fix a conjugacy class
{µ} ⊂ X∗(G)

of one-parameter subgroups of G over Qp. Denote by StabΓQp
({µ}) ⊂ ΓQp the fixed group

of {µ}. Let

E =
{

x ∈ Qp; τ(x) = x ∀ τ ∈ StabΓQp
({µ})

}

be the Shimura field of {µ}, a finite intermediate field of Qp/Qp. Since G is quasi-split,
we may apply a lemma of Kottwitz ([K2] Lemma 1.1.3) which guarantees the existence
of a 1-PS µ ∈ {µ} that is defined over E. Hence, the conjugacy class {µ} defines a flag
variety

FJ := FJ (G, {µ}) := GE/P (µ)

over E. Here we denote for a 1-PS λ ∈ X∗(G) defined over some finite field extension
F/Qp, by P (λ) the parabolic subgroup of G over F, whose Qp−valued points are given
by

P (λ)(Qp) =
{

g ∈ G(Qp); lim
t→0

λ(t)gλ(t)−1exists in G(Qp)
}

.

Notice that the geometric points of FJ coincide with the set

{µ}/ ∼ ,

where λ1, λ2 ∈ {µ} are equivalent, written λ1 ∼ λ2, if they define the same filtration on
RepQp(G). In the following, we suppose for trivial reasons that µ does not factor through
the center of G.

Let Cp := Q̂p be the p-adic completion of the algebraic closure Qp of Qp. This field
is algebraically closed again. In the sequel we will often identify FJ with its Cp-valued
points. Put

Es := E.Qps

and
ΓEs := Gal(Es/Es).
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Following [RZ] (Proposition 1.36), the set of weakly admissible filtrations

FJ wa
b := {x ∈ FJ ; (b, x) is weakly admissible }

in FJ with respect to b has a natural structure of an admissible open rigid-analytic subset
of (FJ ⊗E Es)

rig, which is called the period domain of the triple (G, b, {µ}). In his paper
[K1], Kottwitz defines an algebraic group J over Qp - the automorphism group of Nb -
whose Qp-valued points are given by

J(Qp) = {g ∈ G(K0); g(bσ) = (bσ)g}.

It can be shown that J is an inner form of a Levi subgroup of G, which is therefore a
reductive group. Further, the period domain FJ wa

b is stable under the action of J(Qp). If
λ : Gm −→ J is a 1-PS of J , then we denote by P J(λ) the parabolic subgroup of J with

P J(λ)(Qp) = P (λ)(Qp) ∩ J(Qp).

Before we can state the main result of this paper, concerning the cohomology of FJ wa
b ,

we have to introduce a few more notations. Choose an invariant inner product on G. I.e.,
we have for all maximal tori T in G a non-degenerate positive definite pairing ( , ) on
X∗(T )Q := X∗(T )⊗Z Q, such that the natural maps

X∗(T )Q −→ X∗(T
g)Q

induced by conjugating with g ∈ G(Qp) and

X∗(T )Q −→ X∗(T
τ)Q

induced by τ ∈ ΓQp, are isometries for all g ∈ G(Qp), τ ∈ ΓQp. Here T g = gTg−1 is the
conjugated torus and T τ = τ · T is the image of T under the morphism τ : G→ G given
by τ. The invariant inner product together with the natural pairing

〈 , 〉 : X∗(T )Q ×X∗(T )Q −→ Q ,

give isomorphisms

X∗(T )Q −→ X∗(T )Q

λ 7−→ λ∗

for all maximal tori T in G. We call λ∗ the dual character of λ. Finally, we remark that
the invariant inner product on G gives rise to one on J.

For the remainder of this paper, we assume that the element b is basic. By definition
(see [K1]), the algebraic group J is then an inner form of G, or equivalently, the slope
homomorphism ν factors through the center of G. It follows that µ is already defined
over Qp (see loc.cit. 5.1). Let T be a maximal torus of G such that µ, ν ∈ X∗(T )Q

∼=
HomK0(D, T ). Denote by

W = N(T )/T
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the Weyl group of G. Inside T we fix a maximal Qp-split torus S of the derived group Jder

of J. Let
d := rk(S)

be the semi-simple Qp-rank of J. Fix a minimal parabolic subgroup P0 of J defined over
Qp such that S ⊂ P0 and denote by

∆ = {α1, . . . , αd} ⊂ X∗(S)

the corresponding set of relative simple roots. Let

{ωα; α ∈ ∆} ⊂ X∗(S)Q

be the dual basis of ∆, i.e., we have

〈ωα, β〉 = δα,β (Kronecker delta) ∀α, β ∈ ∆.

The parabolic subgroups P J(ωα) are exactly the maximal Qp-parabolic subgroups of J
that contain P0. Fix a Borel subgroup B of G such that

B ⊂ P (ωα) ∀α ∈ ∆. (1)

Replacing µ by a conjugated element under W, we may suppose that µ lies in the posi-
tive Weyl chamber with respect to B. Furthermore, we may assume that ∆ is given by
restriction of a root basis of G with respect to B ⊃ T. Put

µ̄ :=
1

|Gal(E/Qp)|

∑

γ∈Gal(E/Qp)

γµ.

By [FR] we know that FJ wa
b is non-empty if and only if µ̄ is greater or equal to ν with

respect to the dominance order on X∗(T )Q induced by B. In our situation, the latter
condition simply means that µ̄ − ν ∈ X∗(Tder), where Tder ⊂ T is the maximal torus of
the derived group Gder of G. In the sequel we assume that these equivalent conditions are
satisfied.

Let Wµ be the stabilizer of µ with respect to the action of W on X∗(T ). We denote by
W µ the set of Kostant-representatives with respect to W/Wµ. These are by definition the
representatives of shortest length in their cosets. Consider the action of ΓEs on W. Since
µ is defined over Es, this action preserves W µ. Denote the corresponding set of orbits by
W µ/ΓEs and its elements by [w], where w is in W µ. Clearly the length of an element in
W only depends on its orbit. So, the symbol l([w]) makes sense. Fix an integer n ∈ N

which is prime to p. For any orbit [w] ∈ W µ/ΓEs, we define the induced representation

ind[w] := Ind
ΓEs

StabΓEs
(w)(Z/nZ)

of ΓEs, where we consider the trivial action of StabΓEs
(w) on Z/nZ. This induced rep-

resentation is independent of the specified representative. For any subset I ⊂ ∆, we
set

ΩI :=
{

[w] ∈ W µ/ΓEs; (wµ, ωα) > (ν, ωα) ∀α 6∈ I
}

.
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We have the following inclusion relation

I ⊂ J ⇒ ΩI ⊂ ΩJ .

Furthermore, we denote for [w] ∈ W µ/ΓEs, by I[w] the minimal subset of ∆ such that [w]
is contained in ΩI[w]

. Obviously we have

I[w] ⊂ I ⇒ [w] ∈ ΩI

and thus
I[w] =

{

α ∈ ∆; (wµ, ωα) ≤ (ν, ωα)
}

.

For a parabolic subgroup P ⊂ J defined over Qp, we consider the trivial representation
of P (Qp) on Z/nZ. We denote by

iJP = Ind
J(Qp)

P (Qp)(Z/nZ) = C∞(J(Qp)/P (Qp), Z/nZ)

the induced representation of J(Qp) consisting of locally constant functions on (J/P )(Qp)
= J(Qp)/P (Qp) with values in Z/nZ. If Q ⊃ P is another parabolic subgroup, then
we have an injection iJQ ↪→ iJP which is induced by the surjection J(Qp)/P (Qp) →
J(Qp)/Q(Qp). We set

vJ
P = iJP /

∑

P(Q

iJQ

and call vJ
P the generalized Steinberg representation with respect to P. Finally, if I ⊂ ∆

we put

PI :=
⋂

α6∈I

P J(ωα),

which is a standard-parabolic subgroup of J defined over Qp. As extreme cases we have
P∆ = J and P∅ = P0.

In [O3] (resp. [D] in the split case) it is shown that

Ext1J(Qp)(v
J
PI

, vJ
PI′

) = 0

in the category of smooth J(Qp)-representations with values in Z/nZ for

|(I ∪ I ′) \ (I ∩ I ′)| 6= 1

and for a suitable choice of n ∈ N. Those extensions appear in a spectral sequence given by
the fundamental complex (see section 3) used in the proof of our main theorem. ’Suitable’
means here that

• the pro-order of J(Qp) is prime to n

• the natural injective homomorphisms

X∗(M)Qp ⊗Z Z/nZ −→ Hom(M(Qp)/
0M(Qp), Z/nZ)

induced by the composition of the valuation val : Qp → Z and the natural homo-
morphism Z→ Z/nZ are surjective for all Levi subgroups M of J. Here 0M(Qp) is
the normal open subgroup of M(Qp) generated by all compact subgroups in M(Qp).
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• Let
ρ = det AdLie(U)|S ∈ X∗(S)

be the character given by the determinant of the adjoint representation of P0 on
Lie(U) restricted to S, where U is the unipotent radical of P0. Write ρ in the shape

ρ =
∑

α∈∆

nαα,

where nα ∈ N. Following the definition of a bon algebraically closed field by J.-F.
Dat [D], we assume that

∏

r≤sup{nα; α∈∆}

(1− pr)

is prime to n.

• Let k/Qp be a finite splitting field of J. Then we further suppose that |Gal(k/Qp)|
is prime to n.

Now we can state the main result. It describes the étale cohomology with compact
support of the period domain FJ wa

b with values in Z/nZ as representation of the locally
profinite topological group J(Qp)× ΓEs.

Theorem 1.1 Let b ∈ G(K0) be a basic element such that FJ wa
b 6= ∅. Under the assump-

tions above on n ∈ N, we have

H∗
c (FJ wa

b , Z/nZ) =
⊕

[w]∈W µ/ΓEs

vJ
PI[w]
⊗ ind[w](−l([w]))[−2l([w])− |∆ \ I[w]|].

Here the symbol (m), m ∈ N, indicates the m-th Tate twist and [−m], m ∈ N, symbolizes
that the corresponding module is shifted into degree m of the graded cohomology ring.

2 The relationship of period domains to GIT

In this section we want to explain the relationship between period domains and Geometric
Invariant Theory. For details we refer to the papers [T] resp. [R2].

Let
M := P (µ)/Ru(P (µ))

be the Levi-quotient of P (µ) with center ZM . Then µ defines an element of X∗(ZM). Let
TM be a maximal torus in M. Then we have ZM ⊂ TM and TM is the isomorphic image
of a maximal torus in G. Thus, we get an invariant inner product on M . Consider the
dual character

µ∗ ∈ X∗(TM)Q.
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As µ belongs to X∗(ZM), the dual character µ∗ is contained in

X∗(Mab)Q
∼= Hom(P (µ), Gm)⊗Z Q.

The inverse character −µ∗ induces a homogeneous line bundle Lµ := L−µ∗ on FJ . The
reason for the sign is that this line bundle is ample. Applying the above machinery to the
inverse λb := −νb of our slope homomorphism, we get an ample line bundle Lb := L−λ∗

b

on the flag variety FJ b := GQps/P (λb). Consider the closed embedding

FJ Es ↪→ FJ Es × FJ
b
Es

,

given by the identity on the first factor and by the Qps-rational point λb of FJ b on the
second factor. Let L be the restriction - via this embedding - of the line bundle Lµ × Lb

to FJ Es. We consider L as a JEs-equivariant line bundle.

For any point x ∈ FJ and any 1-PS λ : Gm → J, we denote by µL(x, λ) the slope - in the
sense of Geometric Invariant Theory - of x relative to λ and the line bundle L (see [M] Def.
2.2 ). The following theorem of Totaro (see [T] Theorem 3) describes the relation between
the notion of weak admissibility and semi-stability in Geometric Invariant Theory.

Theorem 2.1 (Totaro) Let x be a point of FJ . Then x is weakly admissible if and only
if µL(x, λ) ≥ 0 for all 1-PS λ of Jder defined over Qp.

Remark: If b ∈ G(K0) was not basic, then we would have to replace Jder by the
algebraic group J ∩Gder, in order that the theorem above remains valid. Furthermore, we
may consider the derived group of J , since we have made the assumption that FJ wa

b 6= ∅
(see [RZ] 1.51/1.52).

In the case we have chosen a faithful rational representation V of G, we can compute
the slope of a point explicitly. If F•

1 and F•
2 are two filtrations on a finite-dimensional

vector space V , we set

(F•
1,F

•
2) =

∑

α,β

α · β · dim grα
F•

1
(grβ

F•
2
(V )).

The following lemma is proved in [O2] in the case of a finite field, but the case treated
here is proved similarly. It also follows from the results in [T] Lemma 6.

Lemma 2.2 Let V be a faithful rational representation of G.

(i) Let x ∈ FJ and λ ∈ X∗(J). Denote their filtrations on VCp := V ⊗Qp Cp by F•
x

respectively by F•
λ. Furthermore, let F•

b be the filtration on VCp which is induced by λb.
Then we have

µL(x, λ) = −
(

(F•
x,F

•
λ) + (F•

b ,F
•
λ)

)

.

(ii) Let T ⊂ G be a maximal torus and let λ, λ′ ∈ X∗(T )Q. Assume that the inner invariant
product on G is induced by the standard inner invariant product on GL(V ). Then we have

(λ, λ′) = (F•
λ,F

•
λ′).
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In order to investigate the GIT-semi-stability of points on varieties, it is useful to
consider the spherical building of the given group. Let B(Jder)Qp be the real Qp-rational
spherical building of the derived group Jder (see [CLT]). It is well-known that the space
B(Jder)Qp is homeomorphic to the geometric realisation of the combinatorial building of
J (see [CLT], 6.1). Thus, we have a simplicial structure on B(Jder)Qp which is defined as
follows. For a Qp-rational parabolic subgroup P ⊂ J, we let

D(P ) := {x ∈ B(Jder)Qp; P (x) ⊃ P}

be the facet corresponding to P. If P is a minimal Qp-parabolic subgroup, then D(P )
is called a chamber of B(Jder)Qp. If in contrast P is a proper maximal Qp-parabolic
subgroup, then D(P ) is called a vertex. Consider the rational 1-PS ωα ∈ X∗(S)Q, α ∈ ∆,
introduced in the previous section. These 1-PS correspond to the vertices of the base
chamber D0 := D(P0), since the P J(ωα), α ∈ ∆, are the maximal Qp-rational parabolic
subgroups that contain P0. For any other chamber D = D(P ) in B(Jder)Qp, there exists
an element g ∈ J(Qp), such that the conjugated 1-PS Int(g) ◦ ωα, α ∈ ∆, correspond to
the vertices of D. The element g is unique up to multiplication by an element of P0(Qp)
from the right.

For every chamber D in B(Jder)Qp, we define the simplex

D̃ :=
{

∑

α∈∆

rαλα ; 0 ≤ rα ≤ 1,
∑

α∈∆

rα = 1
}

⊂ X∗(S̃)R,

where the 1-PS λα ∈ X∗(S̃)R, α ∈ ∆, for some maximal split torus S̃ ⊂ Jder, represent
the vertices of D. The topological spaces D and D̃ are obviously homeomorphic. We can
extend µL(x, · ) in a well-known way to a function on X∗(S̃)R for every maximal Qp-split
torus S̃ in J. Notice that the slope function µL(x, · ) is not defined on D but on D̃. In
spite of this fact, we we say that µL(x, · ) is affine on D, if it is affine on D̃, i.e., if the
following equality holds:

µL(x,
∑

α∈∆

rαλα) =
∑

α∈∆

rαµL(x, λα) for all
∑

α∈∆

raλα ∈ D̃.

This definition does not depend on the choice of the 1-PS λα, α ∈ ∆.

The proof of the next proposition, which is the same as in the case of a finite field [O2],
follows from Lemma 2.2.

Proposition 2.3 Let x ∈ FJ be an arbitrary point. The slope function µL(x, · ) is affine
on each chamber of B(Jder)Qp.

Corollary 2.4 Let x be a point in FJ . Then x is not weakly admissible if and only if there
exists an element g ∈ J(Qp) and a simple root α ∈ ∆ such that µL(x, Int(g) ◦ ωα) < 0.

11



3 The fundamental complex

In the case of a finite base field [O1], [O2], there was constructed an acyclic complex of
étale sheaves on the complement of the period domain, which computes the cohomology of
it. In this case the complement is a closed subvariety of FJ . Unfortunately in our situation,
the set Y := FJ rig \ FJ wa

b is not in general an object of our category, i.e., a rigid-analytic
variety. This can be already seen in the simplest case where

FJ wa
b = Ω2 = P1(Cp) \ P1(Qp).

Therefore, we can’t simply adopt the proof of the finite field case. The idea to avoid this
problem is to work in the category of Huber’s adic spaces [H1]. He has defined for every
complete non-archimedean field k a fully faithful functor

ad : {k-rigid-analytic varieties} −→ {k-adic spaces},

X 7−→ Xad

where the category on the right hand side is a full subcategory of the category of topo-
logically and locally ringed spaces with an equivalence class of valuations on each stalk of
the corresponding structure sheaf. This functor respects open embeddings and converts
open admissible coverings X =

⋃

i∈I Xi of a rigid-analytic variety X into coverings by
open subsets Xad =

⋃

i∈I Xad
i . Furthermore, it induces for a fixed rigid-analytic variety

X a bijection between the quasi-compact open subsets of X and the quasi-compact open
subsets of Xad. If X is an algebraic variety over k, then we denote the adic space (X rig)ad

simply by Xad.

For both a rigid-analytic variety and an adic space X, we denote by Xét its étale site
(see [H1], [JP]). Let X be a rigid-analytic variety. Then the above functor induces a
morphism of sites

Xét → Xad
ét

giving an equivalence of the associated topoi

S(Xét) −→ S(Xad
ét )

F 7−→ F ad.

Hence, we have for every rigid-analytic variety X and for every étale sheaf on X, functorial
isomorphisms

Hp
ét(X, F )

∼
→ Hp

ét(X
ad, F ad).

To deal with adic spaces in our situation has the advantage that this time, the complement

Y ad := FJ ad \ (FJ wa
b )ad

has a reasonable topological structure. In fact, it is a so-called closed pseudo-adic subspace
of FJ ad (see Lemma 3.2). This means that it is a locally pro-constructible subset for the
adic topology and convex with respect to the specializing order of points ([H1] 1.10.3).
For these spaces, Huber has defined an étale site and hence a topos as well ([H1] 1.16).

12



But besides of the phenomenon above, we have another difficulty in order to apply the
construction of the fundamental complex in [O1], [O2]. In our case we must deal with
infinitely many subobjects of our fixed isocrystal. Thus, the fundamental complex with
its summands is not well-defined. The first thought of substituting these summands by
products turns out to fail. The reason is that infinite products of sheaves do not behave
well with respect to localisation. The solution is to define a mixture between these two
kind of sheaves, which we explain in the following.

For a rational 1-PS subgroup λ ∈ X∗(J)Q of J, we let

Yλ := {x ∈ FJ ; µL(x, λ) < 0}

be the closed subvariety of FJ consisting of points where λ damages the semi-stability
condition. For a subset I ( ∆, we put

YI :=
⋂

α/∈I

Yωα

which is a closed subvariety of FJ . The following statements are proved in loc.cit. in the
case of a finite base field. The proof of the case considered here is the same.

Lemma 3.1 Let I ( ∆. The variety YI is defined over Es. The natural action of J(Qp)
on FJ restricts to an action of PI(Qp) on YI .

Fix a subset I ⊂ ∆. Let g be a point in J/PI(Qp). Choose a representative g′ ∈ J(Qp)
of g. By the lemma above we see that the image g ′YI of YI under the natural translation
morphism induced by g′ does not depend on the chosen representative. For this reason,
we set gYI := g′YI . Consider the closed adic subspace gY ad

I of FJ ad. For any subset W ⊂
J/PI(Qp), we put

ZW
I :=

⋃

g∈W

gY ad
I .

We consider it as an prepseudo-adic subspace of FJ ad, i.e., simply as a subset of FJ ad (see
[H1] 1.10.1). Applying Corollary 2.4 it follows that

Y ad =
⋃

I⊂∆
|∆\I|=1

Z
J/PI(Qp)
I .

Lemma 3.2 The subset ZW
I is a closed pseudo-adic subspace of FJ ad for every compact

open subset W ⊂ J/PI(Qp).

Proof: We follow the construction of [RZ] 1.3.2. Let HI be the closed subvariety of
J/PI × FJ defined over Es consisting of (geometric) points (t, x) ∈ J/PI × FJ such that
x ∈ tYI . Thus, as a set ZW

I is nothing but the union

ZW
I =

⋃

t∈W

(Had
I )t,
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where (Had
I )t ⊂ FJ

ad denotes the fibre through the point t ∈ J/PI(Qp). Let

fα(X0, . . . , Xn; T0, . . . , Tm) ∈ O[X0, . . . , Xn, T0, . . . , Tm], α ∈ A

be a system of equations of HI in some projective space Pn × Pm, where O is the ring of
integers in Es. For a real number ε > 0 and a point t ∈ J/PI(Qp), we denote by (Had

I )t(ε)
the closed epsilon tube around (Had

I )t, i.e.,

(Had
I )t(ε) = {x ∈ FJ ad; |f t

α(x)| < ε , ∀α ∈ A},

where
f t

α := fα(X0, . . . , Xn; t) ∈ O[X0, . . . , Xn]

are the equations of the variety tYI (compare [H2]). As in Lemma 1.33 [RZ], we conclude
the existence of a δ > 0 such that

(Had
I )t(ε) = (Had

I )t′(ε)

for ||t′− t|| < δ (the maximum norm). From the compactness of W we deduce for a fixed
ε > 0, the existence of a finite subset S ⊂ W with

⋃

t∈W

(Had
I )t(ε) =

⋃

t∈S

(Had
I )t(ε).

Thus, the subset
⋃

t∈W (Had
I )t(ε) is closed inHad

I . Consider for a fixed x ∈ FJ ad the function

W −→ R≥0.

t 7−→ min{ε ∈ R≥0; x ∈ (Had
I )t(ε)}

This function is continuous by the argument above. So it assumes its minimum since W
is compact. We conclude that

ZW
I =

⋂

ε>0

(

⋃

t∈W

(

Had
I )t(ε)

)

. (2)

Thus, ZW
I is closed in FJ ad. Further, we see by (2) that it is locally pro-constructible and

convex. Hence, it is a closed pseudo-adic subspace of FJ ad. �

For a compact open subset W ⊂ J/PI(Qp), I ⊂ ∆, and a point g ∈ W, we denote by

Φg,I : gY ad
I −→ Y ad

resp.
Φ̃g,I,W : gY ad

I −→ ZW
I

resp.
ΨI,W : ZW

I −→ Y ad

the natural closed embeddings of pseudo-adic spaces. Let Z/nZ be the constant étale
sheaf on Y ad, where n ∈ N is prime to p. Put

(Z/nZ)g,I := (Φg,I)∗(Φ
∗
g,I(Z/nZ))
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resp.
(Z/nZ)ZW

I
:= (ΨI,W )∗(Ψ

∗
I,W (Z/nZ))

and let
Φ̃#

g,I,W : (Z/nZ)ZW
I
−→ (Z/nZ)g,I

be the adjunction homomorphism given by restriction. We denote by

′
∏

g∈J/PI(Qp)

(Z/nZ)g,I

the subsheaf of
∏

g∈J/PI(Qp)(Z/nZ)g,I , which is defined as the sheaf associated to the

following presheaf P
′

∏

g∈J/PI(Qp)

(Z/nZ)g,I . For any element U → Y ad of the étale site Y ad
ét , we

put

(

P
′

∏

g∈J/PI (Qp)

(Z/nZ)g,I

)

(U) :=
{

(sg)g ∈
∏

g∈J/PI(Qp)

(Z/nZ)g,I(U); there exists a (finite)

disjoint covering J/PI(Qp) =
·
⋃

j∈A

Wj by compact open

subsets and sections sj ∈ (Z/nZ)
Z

Wj
I

(U), j ∈ A, such

that Φ̃#
g,I,Wj

(sj) = sg for all g ∈ Wj

}

.

If we work with the restricted étale site Y ad
ét,f.p. consisting of objects U in Y ad

ét where the

structure morphism U → Y ad is quasi-compact and quasi-separated, it is easy to see that

the presheaf P
′

∏

g∈J/PI(Qp)

(Z/nZ)g,I is already a sheaf. In fact, since Y ad is quasi-compact

the site Y ad
ét,f.p. is noetherian (thus every étale covering can be refined into a finite étale

covering). Notice that the topoi of Y ad
ét,f.p. and Y ad

ét are equivalent [H1] 2.3.12. Another
description of the sheaf above is given by viewing it as an inductive limit of sheaves. To
explain this, let CI be the category of compact open disjoint coverings of J/PI(Qp) ordered
in the usual way, i.e., by refinement. Then we may write

′
∏

g∈J/PI(Qp)

(Z/nZ)g,I = lim
−→

c∈CI

Gc, (3)

where, for a covering c = (Wj)j∈A ∈ CI , Gc is the sheaf defined by

Gc(U) :=
{

(sg)g ∈
∏

g∈J/PI(Qp)

(Z/nZ)g,I(U); there are sections sj ∈ (Z/nZ)
Z

Wj
I

(U),

j ∈ A, such that Φ̃#
g,I,Wj

(sj) = sg for all g ∈ Wj

}
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for any element U → Y ad of the étale site Y ad
ét . Notice that Gc is just the image of the

natural morphism of sheaves

⊕

j∈A

(Z/nZ)
Z

Wj
I

↪→
∏

g∈J/PI(Qp)

(Z/nZ)g,I .

We call
′

∏

g∈J/PI(Qp)

(Z/nZ)g,I the subsheaf of locally constant sections of
∏

g∈J/PI (Qp)

(Z/nZ)g,I .

Let x̄ be a geometric point of Y ad with underlying point x ∈ Y ad (see [H1] 2.5.1/2 for
the definition of a geometric point). Then we have

(

′
∏

g∈J/PI(Qp)

(Z/nZ)g,I

)

x̄
=

′
∏

g∈J/PI(Qp)

((Z/nZ)g,I)x̄ ⊂
∏

g∈J/PI(Qp)

((Z/nZ)g,I)x̄, (4)

where the term in the middle is defined for abelian groups similarly as in the sheaf case:

′
∏

g∈J/PI(Qp)

((Z/nZ)g,I))x̄ :=
{

(sg)g ∈
∏

g∈J/PI(Qp)

((Z/nZ)g,I)x̄; there is a (finite) disjoint

covering J/PI(Qp) =
·
⋃

j∈A

Wj by compact open subsets

and sj ∈ ((Z/nZ)
Z

Wj
I

)x̄, j ∈ A, such that sj |gYI
= sg for

all g ∈ Wj

}

.

Thus, we may identify the stalk of
′

∏

g∈J/PI(Qp)

(Z/nZ)g,I at x̄ with the set of locally constant

Z/nZ -valued functions on the topological space {g ∈ J/PI(Qp); x ∈ gY ad
I }.

Now we are able to construct the fundamental complex of sheaves on Y ad which is
defined analogously as in [O1],[O2]. Let I ⊂ I ′ be two subsets of ∆. We get canonically
a homomorphism

pI,I′ :

′
∏

h∈J/PI′(Qp)

(Z/nZ)h,I′ −→
′

∏

g∈J/PI(Qp)

(Z/nZ)g,I

which is induced by the closed embeddings gY ad
I → hY ad

I′ , for g ∈ J/PI(Qp), h ∈ J/PI′(Qp),
such that g is mapped onto h via the projection J/PI(Qp)→ J/PI′(Qp). Choose an order
on the set ∆. For two subsets I, I ′ ⊂ ∆ with |I ′| − |I| = 1 and I ′ = {β1 < . . . < βr}, we
put

dI,I′ =

{

(−1)ipI,I′ : I ′ = I ∪ {βi}
0 : I 6⊂ I ′ .
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We thus get in the usual way a complex of sheaves on Y ad
ét with boundary morphisms

induced by the homomorphisms dI,I′:

(∗) : 0→ Z/nZ→
⊕

I⊂∆
|∆\I|=1

′
∏

g∈J/PI(Qp)

(Z/nZ)g,I →
⊕

I⊂∆
|∆\I|=2

′
∏

g∈J/PI(Qp)

(Z/nZ)g,I →

· · · →
⊕

I⊂∆
|∆\I|=d−1

′
∏

g∈J/PI (Qp)

(Z/nZ)g,I →
′

∏

g∈J/P∅(Qp)

(Z/nZ)g,∅ → 0.

Theorem 3.3 The complex (∗) is acyclic.

Before proving this theorem we remind the reader of the definition of an overconvergent
sheaf on an adic space X. Following [H1] Def. 8.2.1, an étale sheaf F on X is called
overconvergent, if for all geometric points x̄, ȳ of X such that x is a specialising point of
y, the resulting specialising homomorphism Fx̄ → Fȳ is bijective.

Lemma 3.4 All the sheaves in the complex (∗) are overconvergent.

Proof: Since every constant sheaf is overconvergent and the morphisms Φg,I are quasi-
compact, we may conclude from [H1] Prop. 8.2.3 resp. [JP] 3.5 that the étale sheaves
(Z/nZ)g,I are overconvergent as well. Applying of (4) yields the statement for the sheaf

′
∏

g∈J/PI(Qp)

(Z/nZ)g,I . Alternatively, one might use the identity (3). Obviously the direct

sum of overconvergent sheaves is overconvergent again. Thus, the claim is proved. �

Proof of Theorem 3.3: Since the complex (∗) consists of overconvergent sheaves, it is
enough to show the acyclicity of (∗) in the maximal geometric points (with respect to
the order given by specialising) of Y ad. So, let ξ be such a maximal geometric point. By
definition, this is just a morphism of adic spaces (see [H1] 2.5.1/2 )

Spa(Fξ) −→ FJ
ad

for some separably closed affinoid field Fξ = (F ., F ◦), which factors through Y ad. Here
F ◦ denotes the rank-one valuation ring consisting of power bounded elements in F . with
respect to the valuation on F .. This morphism corresponds to a flag F ξ ∈ FJ (F .), such that
Fξ ∈ Y ad⊗̂F . (Compare also [JP] for a description of these maximal points). Localizing
the above complex in ξ yields a chain complex with values in Z/nZ. The chain complex
corresponds to a subcomplex of the combinatorial Tits building of J, whose simplices are
given by

{gPIg
−1; g ∈ J,F ξ ∈ gYI(F

.), I ( ∆}.

Let Rξ be the canonical realisation of this subcomplex in B(Jder). In [O2] it was shown
by using Proposition 2.3, that the space Rξ is contractible. In our case we may apply
exactly the same arguments. Thus, the acyclicity follows, since the complex above is just
the homology version of locally constant functions of Rξ (Compare also the remark on p.
66 [SS]). �
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4 Some cohomology groups

In this chapter we determine the cohomology groups which appear in the evaluation of
the spectral sequence induced by (∗). We fix a subset I ( ∆.

Proposition 4.1 We have the following description of the closed varieties YI in terms
of the Bruhat cells of G with respect to P (µ) :

YI =
⋃

w∈Wµ

[w]∈ΩI

BwP (µ)/P (µ). (5)

Proof: Compare also Proposition 4.1 in [O2]. It is enough to show the assertion in
the case I = ∆ \ {α}, α ∈ ∆, since the sets ΩI and YI are compatible with forming
intersections with respect to the sets I ⊂ ∆, i.e.,

ΩI∩J = ΩI ∩ ΩJ

and
YI∩J = YI ∩ YJ , ∀I, J ⊂ ∆.

Denote by µ̌ the point of FJ which is induced by the 1-PS µ. Let b be a point of the Borel
subgroup B of G. Then we have

µL(bwµ̌, ωα) = µL(wµ̌, ωα)

since B ⊂ P (ωα) (see [M] Prop. 2.7). The notion of semi-stability does not depend on
the chosen invariant inner product [T] Theorem 3. Thus we may assume by Lemma 2.2
that

µL(wµ̌, ωα) = −((wµ, ωα)− (ν, ωα)).

It follows that ωα damages the weak admissibility if and only if (wµ, ωα) > (ν, ωα), i.e.,
[w] ∈ ΩI . �

The cell decomposition (5) allows us to compute the cohomology of the varieties YI . The
computation is the same as for Schubert varieties.

Proposition 4.2 We have

H∗
ét(YI , Z/nZ) =

⊕

[w]∈ΩI

ind[w](−l[w])[−2l([w])] (6)

Proof: See Proposition 4.2 [O2]. �

Next, we want to compute the cohomology of the sheaves
′

∏

g∈J/PI(Qp)

(Z/nZ)g,I .

18



Proposition 4.3 We have

H i
ét(Y

ad,

′
∏

g∈J/PI(Qp)

(Z/nZ)g,I) = C∞(J/PI(Qp), H
i
ét(YI, Z/nZ))

for all i ∈ N. Here C∞(J/PI(Qp), H
i
ét(YI , Z/nZ)) = iJPI

⊗H i
ét(YI, Z/nZ) denotes the space

of locally constant functions with values in H i
ét(YI, Z/nZ).

Proof: We have
′

∏

g∈J/PI(Qp)

(Z/nZ)g,I = lim
−→

c∈CI

Gc (see (3)). Since Y ad is quasi-compact and

CI is pseudo-filtered, we get ([H1] 2.3.13)

H i
ét(Y

ad,
′

∏

g∈J/PI(Qp)

(Z/nZ)g,I) = lim
−→

c∈CI

H i
ét(Y

ad, Gc).

But Gc
∼=

⊕

W∈c(Z/nZ)ZW
I

. Thus, we obtain

H i
ét(Y

ad, Gc) =
⊕

W∈c

H i
ét(Z

W
I , Z/nZ).

Let (Ws)s∈N be a family of compact open neighbourhoods of the base point 1 · PI in
J/PI(Qp) such that

⋂

s∈N

Ws = {1 · PI} ⊂ J/PI(Qp).

For instance, we may choose for Ws the open tube around the base point in J/PI(Qp) of
radius |ps| = 1

ps , i.e.,

Ws = {t ∈ J/PI(Qp); |gα(t)| ≤ |ps| ∀α ∈ A},

where (gα)α∈A ∈ Zp[T0, . . . , TN ] is a system of equations for the vanishing ideal of {1 ·PI}
in some standard projective space PN containing J/PI . We need the following lemma.

Lemma 4.4
⋂

s∈N

ZW s

I = Y ad
I .

Proof: By (2) it is enough to show that for all ε > 0, there exists an integer s > 0 such
that ZWs

I ⊂ (Had
I )1·PI

(ε). But this follows from the considerations in the proof of Lemma
3.2. �

By applying [H1] 2.4.6 we get

lim
−→
s∈N

H i
ét(Z

W s

I , Z/nZ) = H i
ét(YI, Z/nZ).
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Using the transition maps YI → tYI , t ∈ J/PI(Qp), the corresponding statement is also
true for the spaces tYI

∼= YI. Combining these facts we get

lim
−→

c∈CI

H i
ét(Y

ad, Gc) = lim
−→

c∈CI

⊕

W∈c

H i
ét(Z

W
I , Z/nZ) = C∞(J/PI(Qp), H

i
ét(YI , Z/nZ)).

Thus, the proposition is proved. �

We finish this chapter with a result which is also needed for evaluating the spectral
sequence. We will construct a complex of smooth J(Qp)-representations in analogy to the
complex (∗). Let I ⊂ ∆ be a subset. Recall that iJPI

= C∞(J/PI(Qp), Z/nZ). For subsets
I ⊂ I ′ ⊂ ∆ with |I ′ \ I| = 1, we get a homomorphism

pI,I′ : iJPI′
−→ iJPI

,

which is induced by the projection (J/PI)(Qp) −→ (J/PI′)(Qp). For arbitrary subsets
I, I ′ ⊂ ∆ with |I ′| − |I| = 1, we define the homomorphism dI,I′ as in the case of the
complex (∗). Thus, we get for every I ⊂ ∆, a Z-indexed complex

K•
I : 0→ iJJ →

⊕

I⊂K⊂∆
|∆\K|=1

iJPK
→

⊕

I⊂K⊂∆
|∆\K|=2

iJPK
→ · · · →

⊕

I⊂K⊂∆
|K\I|=1

iJPK
→ iJPI

→ vJ
PI
→ 0

where the differentials are induced by the dI,I′ and the map iJPI
→ vJ

PI
is the natural one.

The component iJJ is in degree −1.

Proposition 4.5 The complex K•
I is acyclic.

Proof: See [BS] Cor. 3.3, [SS] §6 Prop. 13 resp. [O3] Proposition 11. �

5 The proof of Theorem 1.1

In this section we evaluate the spectral sequence which is induced by the acyclic complex
(∗). This computation ends with the determination of the cohomology of Y ad. The proof
of Theorem 1.1 then follows from the long exact cohomology sequence with respect to
(FJ wa

b )ad ⊂ FJ ad ⊃ Y ad.

Consider the spectral sequence

Ep,q
1 = Hq

ét(Y
ad,

⊕

I⊂∆
|∆\I|=p+1

′
∏

g∈J/PI(Qp)

(Z/nZ)g,I) =⇒ Hp+q
ét (Y ad, Z/nZ)

given by the acyclic complex (∗). By Proposition 4.3 we have

Ep,q
1 =

⊕

I⊂∆
|∆\I|=p+1

C∞(J/PI(Qp), H
q(YI, Z/nZ)).
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As in the finite field case [O1], [O2], we obtain by the cell-decomposition (5) of the varieties
YI , I ⊂ ∆, a decomposition

E1 =
⊕

[w]∈W µ/ΓEs

E1,[w]

into subcomplexes, where E1,[w] is the complex

(

⊕

I[w]⊂I

|∆\I|=1

iJPI
⊗ ind[w](−l([w]))→

⊕

I[w]⊂I

|∆\I|=2

iJPI
⊗ ind[w](−l([w]))→ · · ·

· · · → iJPI[w]
⊗ ind[w](−l([w]))

)

[−2l([w])].

By Proposition 4.5 we get for E2 =
⊕

[w]∈W µ/ΓEs
E2,[w] the following terms:

I[w] = ∆ : Ep,q
2,[w] = 0 p ≥ 0, q ≥ 0

|∆ \ I[w]| = 1 : E
0,2l([w])
2,[w] = iJPI[w]

⊗ ind[w](−l([w]))

Ep,q
2,[w] = 0 (p, q) 6= (0, 2l([w]))

|∆ \ I[w]| > 1 : E
0,2l([w])
2,[w] = iJJ ⊗ ind[w](−l([w]))

E
j,2l([w])
2,[w] = 0, j = 1, . . . , |∆ \ I[w]| − 2

E
j,2l([w]))
2,[w] = vJ

PI[w]
⊗ ind[w](−l([w])), j = |∆ \ I[w]| − 1

Ep,q
2,[w] = 0, q 6= 2l([w]) or p > |∆ \ I[w]| − 1.

Since Es is a local field, we conclude by weight arguments that E2 = E∞. In fact, the
argument which was pointed out to me by B. Totaro is the following. By the Chinese
remainder theorem we may assume that n = `a, a > 0, ` a prime number with (`, p) = 1.
All the objects appearing in E2 are free modules over their base ([SS] Cor. 5 §4) and
are given by the tensor product of a J(Qp)-module and a ΓEs-module. Furthermore, we
have E2(Z/`bZ)⊗Z/`bZ Z/`aZ = E2(Z/`aZ) for any integer b > a. Thus, we are reduced to
showing that any homomorphism da : µ⊗m

`a → µ⊗n
`a , m 6= n, of ΓEs-modules which sits in a

compatible projective system of such objects vanishes. For an integer b > a, we consider
the following commutative diagram of ΓEs-modules

µ⊗m
`b

db−→ µ⊗n
`b

↓ ↓

µ⊗m
`a

da−→ µ⊗n
`a ,
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where the vertical homomorphisms are the natural ones. Let Fq be the residue field of Es

and let γ ∈ ΓEs be an automorphisms which reduces to the arithmetic Frobenius on Fq.
Since Es is a local field, we can find a `b-root of unity ξ ∈ Es \ Es for some b � a. It
follows that db(ξ)

qm−qn
= 1. If ` is prime to qm− qn, we conclude that d(ξ) = 1. Otherwise

we may enlarge b such that the composition of db : µ⊗m
`b → µ⊗n

`b with the map µ⊗n
`b → µ⊗n

`a

vanishes. By the surjectivity of the latter homomorphism, we deduce that da must vanish.
Thus, we have for p, r ∈ N,

grp(Hr
ét(Y

ad, Z/nZ)) = Ep,r−p
∞ = Ep,r−p

2 =
⊕

[w]∈W µ

Ep,r−p
2,[w]

=



































⊕

[w]∈Wµ/ΓEs
|∆\I[w]|=1

2l([w])=r

iJPI[w]
⊗ ind[w](−l([w]))⊕

⊕

[w]∈Wµ/ΓEs
|∆\I[w]|>1

2l([w])=r

iJJ ⊗ ind[w](−l([w])) : p = 0

⊕

[w]∈Wµ/ΓEs
2l([w])+|∆\I[w]|−1=r

p=|∆\I[w]|−1

vJ
PI[w]
⊗ ind[w](−l([w])) : p > 0

In order to show that the canonical filtration on E∞ splits, we proceed as follows. By re-
sults of Berkovich [B] it is known that the cohomology groups H r

ét(Y
ad, Z/nZ) are smooth

J(Qp)-modules. In [O3] (resp. [D] in the split case) it is shown that in the category of
smooth representations (with coefficients in Z/nZ, where n ∈ N is suitable chosen as in
the the introduction) we have

ExtiJ(Qp)(v
J
PI

, vJ
PI′

) =

{

(Z/nZ)(
r
j) : i = |I ∪ I ′| − |I ∩ I ′|+ j
0 : else

,

where r ∈ N is the Qp-rank of the center of J. Consider the equation

2l([w]) + |∆ \ I[w]| − 1 = r = 2l([w′]) + |∆ \ I[w′]| − 1

with [w], [w′] ∈ W µ/ΓEs. If l([w]) 6= l([w′]) then |∆ \ I[w]| and |∆ \ I[w′]| differ at least by
two. Hence |I[w]| and |I[w′]| differ at least by two, so that

Ext1J(Qp)(v
J
PI[w]

, vJ
PI

[w′]
) = 0.

Thus, we obtain

Hr
ét(Y

ad) ∼=
⊕

p∈N

grp(Hr
ét(Y

ad)) =
⊕

[w]∈Wµ/ΓEs
|∆\I[w]|=1

2l([w])=r

iJPI[w]
⊗ ind[w](−l([w]))
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⊕
⊕

[w]∈Wµ/ΓEs
|∆\I[w]|>1

2l([w])=r

iJJ ⊗ ind[w](−l([w]))⊕
⊕

[w]∈Wµ/ΓEs
2l([w])+|∆\I[w]|−1=r

p=|∆\I[w]|−1

vJ
PI[w]
⊗ ind[w](−l([w])).

Summarizing the discussion above, we get:

Theorem 5.1 The spectral sequence E1 degenerates in the E2-term and we get

H∗
ét(Y

ad, Z/nZ) =
⊕

[w]∈Wµ/ΓEs
|∆\I[w]|=1

(

iJPI[w]
⊗ ind[w](−l([w]))[−2l([w])]

)

⊕

⊕

[w]∈Wµ/ΓEs
|∆\I[w]|>1

(

(

iJJ⊗ind[w](−l([w]))[−2l([w])]
)

⊕
(

vJ
PI[w]
⊗ind[w](−l([w]))[−2l([w])−|∆\I[w]|+1]

)

)

.

As a consequence we are able to prove the main theorem.

Proof of Theorem 1.1: The computation of H∗
c (FJ wa

b , Z/nZ) and hence the proof of
Theorem 1.1 is shown by applying the long exact sequence

· · · → Hp
c (FJ wa

b , Z/nZ)→ Hp
ét(FJ

ad, Z/nZ)→ Hp
ét(Y

ad, Z/nZ)→ Hp+1
c (FJ wa, Z/nZ)→ · · ·

to the triple (FJ wa
b ,FJ ad, Y ad). This is done in [O1], [O2]. Thus, Theorem 1.1 is proved. �

Let n = ` be a prime fulfilling the assumptions at the end of the introduction. As a
corollary of Theorem 1.1, we want to treat the ordinary `-adic cohomology H ∗,ord

c (FJ wa
b , Q`)

of period domains. By ordinary `-adic cohomology, we mean that the cohomology groups
H∗,ord

c (FJ wa
b , Q`) are defined in the usual way, i.e, by

H∗,ord
c (FJ wa

b , Q`) = lim←−
m

H∗
c (FJ wa

b , Z/`mZ)⊗Q`.

For a parabolic subgroup P ⊂ J , we denote by Ccont(J/P (Qp), Q`) the J(Qp)-representation

consisting of continuous functions J/P (Qp) → Q`. Furthermore, let vJ,cont
P be the corre-

sponding continuous generalized Steinberg representation, i.e.,

vJ,cont
P = Ccont(J/P (Qp), Q`)/

∑

P ⊂
6=

Q

Ccont(J/Q(Qp), Q`).

As it was first pointed out by R.Huber in the Drinfeld case (compare [H3] Example 2.7),
we get for the ordinary `-adic cohomology the following result.

Corollary 5.2

H∗,ord
c (FJ wa

b , Q`) =
⊕

[w]∈W µ/ΓEs

vJ,cont
PI[w]

⊗ ind[w](−l([w]))[−2l([w])− |∆ \ I[w]|].

Remark: In order to get smooth J(Qp)-representations with values in Q`, one has to use
the continuous `-adic cohomology (compare loc.cit.) which will be done in an upcoming
paper by the author.
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6 A concluding example

We finish this paper with an example.

Example 6.1 Let G = GL(Q4
p). Identify rational characters resp. cocharacters of the

diagonal torus T in G with tuples in Q4 in the usual way. Let µ = (1, 1, 0, 0) ∈ Q4

and choose b ∈ G(K0) such that νb = (1
2
, 1

2
, 1

2
, 1

2
) ∈ Q4. Then FJ coincides with the

Grassmannian Gr2(Q
4
p) of degree two. We then have

• FJ wa
b = {W ∈ Gr2(C

4
p); W 6= N for all subisocrystals N ⊂ Nb(Q

4
p)}

• J = GL2(B), where B is a quaternion division algebra over Qp

• S = {diag(t · 1B, t−1 · 1B); t ∈ Gm} ⊂ Jder = SL2(B)

• Es = Qp2 .

Let α = (0, 1,−1, 0) ∈ X∗(T ) and denote by α|S its restriction to S. Then we have

• ∆ = {α|S}

• ωα|S
= (1

2
, 1

2
,−1

2
,−1

2
) ∈ X∗(S)Q

• Wµ = S2 × S2

• W µ = {w1 = 1, w2 = (2, 3), w3 = (1, 2, 3), w4 = (2, 4, 3), w5 = (1, 2, 4, 3), w6 =
(1, 3)(2, 4)}

• The action of ΓQ2 on W is trivial.

We get Iw1 = ∅ and Iwi
= {α} for i ≥ 1. Thus we have

H∗
c (FJ wa

b ) = vJ
P0

[−1] ⊕ vJ
J (−1)[−2] ⊕ (vJ

J (−2)[−4])2 ⊕ vJ
J (−3)[−6] ⊕ vJ

J (−4)[−8].
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