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Abstract. We determine the fundamental group of period domains over finite
fields. This answers a question of M. Rapoport raised in [R].

1. Introduction

Period domains over finite fields are open subvarieties of flag varieties defined by

a semi-stability condition. They were introduced and discussed by M. Rapoport in

[R]. In this paper we determine their fundamental groups which answers a question

raised in loc.cit.

Let G be a reductive group over a finite field k. We fix an algebraic closure k of

k and denote by Γ = Γk the corresponding absolute Galois group of k. Let N be

a conjugacy class of Q-1-PS of Gk. We denote by E = E(G,N ) the reflex field of

the pair (G,N ). This is a finite extension of k which is characterized by its Galois

group ΓE = {σ ∈ Γ | ν ∈ N =⇒ νσ ∈ N}. Every Q-1-PS ν induces via Tannaka

formalism a Q-filtration Fν over k̄ of the forgetful fibre functor ωG : Repk(G) → Veck

from the category of algebraic G-representations over k into the category of k-vector

spaces. Two Q-1-PS are called par-equivalent if they define the same Q-filtration.

There exists a smooth projective variety F(G,N ) over E with

F(G,N )(k) = {ν ∈ N modulo par-equivalence } .

The variety is a generalized flag variety for GE. More precisely, by a lemma of

Kottwitz [K], there is a Q-1-PS ν ∈ N which is defined over E = E(G,N ). Thus

we may write F(G,N ) = GE/P, where P = P (ν) is the parabolic subgroup of GE

attached to ν. Further, after fixing a maximal torus and a Borel subgroup in G, we

may suppose that ν is contained in the closure C̄Q of the corresponding rational Weyl

chamber CQ.

A point x ∈ F(G,N )(k̄) is called semi-stable if the induced filtration Fx(Lie(G)k̄)

on the adjoint representation Lie(G)k̄ = Lie(G) ⊗k k̄ of G is semi-stable. The latter

means that for all k-subspaces U of Lie(G), the following inequality is satisfied

1

dim U

( ∑
y
y · dim gry

F|Uk̄
(Uk̄)

)
≤ 1

dim Lie(G)

( ∑
y
y · dim gry

F(Lie(G)k̄)
)
.
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In [DOR] it is shown that there is an open subvariety F(G,N )ss of F(G,N ) parame-

trizing all semi-stable points, i.e. F(G,N )(k̄)ss = F(G,N )ss(k̄). This open subvari-

ety F(G,N )ss is called the period domain to (G,N ).

The most prominent example of a period domain is the Drinfeld upper half plane

Ω
(`+1)
k = P`

k \ ∪P(H) where H runs through all k-rational hyperplanes of k`+1. This

space corresponds to the pair (G,N ) where G = PGL`+1,k and ν = (x1, x2, . . . , x2) ∈
C̄Q with x1 > x2 and x1 + ` · x2 = 0. Here we identify C̄Q as usual with (Q`+1)0

+ =

{(x1, . . . , x`+1) ∈ Q`+1 | ∑
i xi = 0, x1 ≥ x2 ≥ . . . ≥ x`+1}. The period domain

Ω
(`+1)
k is isomorphic to a Deligne-Lusztig variety and admits therefore interesting

étale coverings, cf. [DL]. In [OR] it is shown that Ω
(`+1)
k is essentially the only period

domain which is at the same time a Deligne-Lusztig variety.

Period domains only depend on their adjoint data, cf. [OR], [DOR]. More precisely,

let Gad be the adjoint group of G, and let Nad be the induced conjugacy class of Q-

1-PS of Gad. Then

F(G,N )(k̄)ss ∼−→ F(Gad,Nad)(k̄)ss .

Also if G splits into a product G =
∏

i G, the corresponding period domain splits

into products, as well. Thus for formulating our main result, we may assume that G

is k-simple adjoint. Hence there is an absolutely simple adjoint group G′ over a finite

extension k′ of k with G = Resk′/kG
′. In this case N = (N1, . . . ,Nt) is given by a

tuple of conjugacy classes Nj of Q-1-PS of G′̄
k
, where t = |k′ : k|. Thus ν is given by

a tuple of Q-1-PS ν = (ν1, . . . , νt).

Our main result is the following. Let ` be the (absolute) rank of G′. We denote by

π1 the functor which associates to a variety its geometric fundamental group.

Theorem 1. Let G be absolutely simple adjoint over k. Then π1(F(G,N )ss) = {1}
unless G = PGL`+1,k and ν = (x1 ≥ x2 ≥ . . . ≥ x`+1) ∈ (Q`+1)0

+ with x2 < 0 or

x` > 0. In the latter case we have π1(F(G,N )ss) = π1(Ω
(`+1)
k ).

More generally, let G = Resk′/kG
′ be k-simple adjoint. Then π1(F(G,N )ss) = {1}

unless G′ = PGL`+1,k′ and such that the following two conditions are satisfied. Write

νi = (x
[i]
1 ≥ x

[i]
2 ≥ . . . ≥ x

[i]
`+1) ∈ (Q`+1)0

+, i = 1, . . . , t. Then there is a unique

1 ≤ j ≤ t, such that

(i) x
[j]
2 < 0 or x

[j]
` > 0.

(ii)
∑

i6=j x
[i]
1 < −x

[j]
2 if x

[j]
2 < 0 resp.

∑
i6=j x

[i]
`+1 > −x

[j]
` if x

[j]
` > 0.

In the latter case we have π1(F(G,N )ss) = π1(Ω
(`+1)
k′ ).

Acknowledgements: I thank M. Rapoport for helpful remarks on this paper.



THE FUNDAMENTAL GROUP OF PERIOD DOMAINS OVER FINITE FIELDS 3

2. Some preparations

In this section we recall some results concerning the relation of period domains to

Geometric Invariant Theory (GIT).

Let G be a reductive group over k and let N = {ν} be a conjugacy class of Q-1-PS

of Gk̄. We abbreviate F = F(G,N ). We fix an invariant inner product ( , ) on G

over k. Recall that this is a positive-definite bilinear form ( , ) on X∗(T )Q for any

maximal torus T of G defined over k. The following conditions are required:

(i) For g ∈ G(k), the inner automorphism Int(g) induces an isometry

Int(g) : X∗(T )Q −→ X∗(T g) , T g = g · T · g−1 .

(ii) Any σ ∈ Γ induces an isometry

σ : X∗(T )Q −→ X∗(T σ)Q .

The choice of such an inner invariant product induces together with the standard

pairing 〈 , 〉 : X∗(T )Q × X∗(T )Q → Q an identification X∗(T )Q ∼= X∗(T )Q for all

maximal tori T of G defined over k. To the pair (G,N ) there is attached an ample

homogeneous Q-line bundle L on F given by

L = G×PGa,−ν∗ .

Here ν∗ denotes the rational character of T which corresponds to ν under the above

identification (it extends to a character of P ). The following theorem of Totaro [To]

describes the semi-stable points F ss inside F via GIT. Here we denote by µL(x, λ)

the slope of x ∈ F(k̄) with respect to the 1-PS λ and the ample line bundle L in the

sense of GIT, cf. [MFK].

Theorem 2.1. Let x ∈ F(k̄). Then x ∈ F ss(k̄) if and only if for all 1-PS λ of Gder

defined over k the Hilbert-Mumford inequality holds, i.e.

µL(x, λ) ≥ 0 .

Let ∆k = {α1, . . . , αd} be the set of relative simple roots with respect to a fixed

maximal split torus S ⊂ G and a Borel subgroup B ⊂ G containing S. Note that G

is quasi-split since k is a finite field. Let T = Z(S) be the centralizer of S which is a

maximal torus over k. We let ∆ be the set of absolutely simple roots of G with respect

to T ⊂ B. Then the relative simple roots are given by ∆k = {α|S | α ∈ ∆, α|S 6= 0},
cf. [Ti]. By conjugating ν with an element of the (absolute) Weyl group W , we may

assume that ν is contained in the closure of the dominant Weyl chamber, i.e.,

ν ∈ C̄Q = {λ ∈ X∗(T )Q | 〈λ, α〉 ≥ 0 ∀α ∈ ∆}.
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We denote by (ωα)α∈∆ ⊂ X∗(T )Q the set of co-fundamental weights. Recall that they

are defined by (ωα, β∨) = δα,β for α, β ∈ ∆. For 1 ≤ i ≤ d, let

Ψ(αi) = {β ∈ ∆ | β|S = αi}.
We set

(2.1) ωi =
∑

β∈Ψ(αi)
ωβ.

Up to multiplication by a positive scalar these are just the relative fundamental

weights. In [O] we have shown1 that in Theorem 2.1 it suffices to treat the vertices

of the spherical Tits-complex [CLT] defined by Curtis, Lehrer and Tits. Thus

Proposition 2.2. Let x ∈ F(k̄). Then x ∈ F ss(k̄) iff for all g ∈ G(k) and for all i

the inequality µL(x, Int(g) ◦ ωi) ≥ 0 is satisfied.

We consider the closed complement Y := F \F ss of F ss. For any integer 1 ≤ i ≤ d,

we set

Yi(k̄) := {x ∈ F(k̄) | µL(x, ωi) < 0}.
The sets Yi(k̄) are induced by closed subvarieties Yi of Y which are defined over E.

Let Pi = P (ωi) be the parabolic subgroup corresponding to ωi. If n ∈ N is some

integer such that nωi ∈ X∗(T ), then

P (ωi)(k̄) = {g ∈ G(k̄) | limt→0 Int(nωi(t)) ◦ g exists in G(k̄)},
cf. [MFK]. This definition does not depend on n and Pi is defined over k since

ωi ∈ X∗(S)Q. The natural action of G on F restricts to an action of Pi on Yi for

every i. It is a consequence of Prop. 2.2 that we can write Y as the union

(2.2) Y =
⋃

i=1,...,d

⋃
g∈G(k)

gYi.

In [O] we proved that the varieties Yi are unions of Schubert cells. More precisely,

denote by WP ⊂ W the parabolic subgroup induced by P. We identify the elements

of W P := W/WP with representatives of shortest length in W .

Proposition 2.3. We have

Yi =
⋃

w∈WP

(ωi,wν)>0

PiwP/P

=
⋃

w∈WP

(ωi,wν)>0

BwP/P.

1Actually, in loc.cit. we considered the dual basis of ∆k which consists of certain positive multiples
of (ωi)i. This does not affect the statement.
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The proof follows from the identity

µL(pw[ν], ωi) = −(ωi, wν),

for all p ∈ Pi(k̄), w ∈ W. Here [ν] denotes the point of F(E) induced by ν.

We conclude by (2.2) that

dim Y = maxi=1,...,d dim Yi.

On the other hand, each subvariety Yi is a union of the Schubert cells BwP/P ,

w ∈ W P , with (ωi, wν) > 0. The dimension of BwP/P is `(w), cf. [Bo]. Thus we

deduce that

(2.3) dim Yi = max {`(w) | w ∈ W P , (ωi, wν) > 0}.
Let w0 resp. wP

0 be the longest element of the Weyl group W resp. of W P . Then

w0 = wP
0 · wP where wP is the longest element in WP . In particular

(2.4) w0ν = wP
0 ν

and

(2.5) dim F = `(wP
0 ).

We shall examine in the next section when it happens that dim Y = dim F − 1, i.e.,

codim Y = 1.

3. The proof of Theorem 1

From now on we assume that G is k-simple adjoint, i.e., G = Resk′/kG
′ for some

finite extension k′/k of degree t, cf. [Ti]. Let ` be the (absolute) rank of G′. We start

with the case where G is absolutely simple adjoint i.e., k′ = k.

Proposition 3.1. Let G be absolutely simple adjoint over k. Then codim Y ≥ 2

unless G = PGL`+1 and ν = (x1 ≥ x2 ≥ . . . ≥ x` ≥ x`+1) ∈ (Q`+1)0
+ with x2 < 0 or

x` > 0.

Proof. The elements of length `(w0)−1 in W are given by the expressions sw0, where

s ∈ W is a simple reflection. We deduce from (2.3) - (2.5) that there is some integer

1 ≤ i ≤ d with codimYi = 1, if and only if there is a simple reflection sβ ∈ W, β ∈ ∆,

with

(3.1) (ωi, sβw0ν) > 0.

By the equivariance of ( , ) we get

(3.2) (ωi, sβw0ν) = (sβωi, w0ν).
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1st case: G is split.

Thus we have ∆k = ∆. Further, by [Bou] ch. VI, 1.10, we have2

sβωi =

{
ωi if β 6= αi

ωi − αi if β = αi

.

Since w0ν ∈ −C̄Q we get (ωi, w0ν) < 0. Thus we conclude that β = αi is a neces-

sary condition in order that (3.1) holds. Further, in this situation we get by (3.2)

(ωi, sβw0ν) > 0 if and only if

(3.3) (ωi, w0ν) > (αi, w0ν).

We start to investigate inequality (3.3) for the root system of type A`(` ≥ 1). In

this case the data is given as follows:

αi = εi − εi+1, i = 1, . . . , `,

ωi =
1

` + 1

(
(` + 1− i)(i),−i(`+1−i)

)
, i = 1, . . . , `,

C̄Q = (Q`+1)0
+.

Here in the definition of ωi the exponent (j) means that we repeat the corresponding

entry j times. Further, w0 acts on Q`+1 via

w0(x1, x2, . . . , x`+1) = (x`+1, x`, . . . , x1).

Let ν = (x1 ≥ x2 ≥ . . . ≥ x`+1) ∈ (Q`+1)0
+. Then

(ωi, w0ν) = x`+1 + . . . + x`−i+2

and

(αi, w0ν) = x`−i+2 − x`−i+1.

Thus inequality (3.3) is satisfied if and only if

(3.4) x`+1 + . . . + x`−i+3 > −x`−i+1 if 1 < i < `

resp.

x` > 0 if i = 1

resp.

x2 < 0 if i = `.

Let 1 < i < `. Then

x1 + . . . + x`−i + x`−i+2 ≥ x`+1 + . . . + x`−i+3 + x`−i+1

2Here we make use of the identification X∗(T )Q = X∗(T )Q
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as x`−i+2 ≥ x`−i+3, x`−i ≥ x`−i+1 and
∑`−i−1

j=1 xj ≥ 0 resp.
∑i−3

j=0 x`+1−j ≤ 0. Thus

(3.4) cannot be satisfied if 1 < i < ` since the sum over all entries in ν vanishes.

Hence the proof follows in the case of the root system A`(` ≥ 1).

For the other split root systems, i.e., of type B`, C`, D`, E6, E7, E8, F4, G2, we pro-

ceed as follows. We write down ν =
∑`

i=1 niωi as linear combination of the co-

fundamental weights with non-negative coefficients ni ≥ 0. Note that ni = (ν, α∨i ), i =

1, . . . , `. We get

w0ν = −
∑`

j=1
njωτ(j).

where τ is the opposition involution of {1, . . . , `}, cf. [Ti]. In the case of B`, C`,

D`(` even), E7, E8, F4, G2 we have τ = id. For D`(` odd), we have τ = (` − 1, `).

Finally in the case E6 we have τ = (1, 6)(2, 5)(3, 4). In all cases

(ωi, w0ν) = −
∑`

j=1
nj(ωi, ωτ(j)).

and

(αi, w0ν) = −nτ−1(i) · 1

2
· (αi, αi)

as α∨i = 2αi

(αi,αi)
. Since (ωi, ωj) ≥ 0 for all i, j, cf. [Bou], ch. VI, 1.10, we get

(3.5) (ωi, w0ν) ≤ −nτ−1(i) · (ωi, ωi).

Further one checks case by case by the explicit representation of the co-fundamental

weights in loc.cit. p. 265-290, that

(ωi, ωi) ≥ 1

2
· (αi, αi) for i = 1, . . . , `.

Hence we get by using (3.5)

(ωi, w0ν) ≤ (αi, w0ν).

Thus we deduce that the inequality (3.3) cannot be satisfied for root systems different

from A`. Let us illustrate this argument for the root system of type G2. Here the

data is given by

α1 = ε1 − ε2, α2 = −2ε1 + ε2 + ε3,

ω1 = ε3 − ε2, ω2 = −ε1 − ε2 + 2ε3.

Let ν = n1ω1 + n2ω2 with n1, n2 ≥ 0. We get w0ν = −n1ω1 − n2ω2. Then

(ω1, w0ν) = −n1(ω1, ω1)− n2(ω1, ω2) = −2n1 − 3n2

and

(ω2, w0ν) = −n1(ω2, ω1)− n2(ω2, ω2) = −3n1 − 6n2.
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Further, we compute

(α1, w0ν) = −n1 · 1

2
· (α1, α1) = −n1

and

(α2, w0ν) = −n2 · 1

2
· (α2, α2) = −3n2.

Hence

(ω1, w0ν) ≤ −n1(ω1, ω1) = −2n1 ≤ (α1, w0ν) = −n1

and

(ω2, w0ν) ≤ −n2(ω2, ω2) = −6n2 ≤ (α2, w0ν) = −3n2.

2nd case: G is not split.

Recall that ωi =
∑

β∈Ψ(αi)
ωβ, cf. (2.1). We get

sβωi =

{
ωi if β 6∈ Ψ(αi)

ωi − β if β ∈ Ψ(αi)
.

Again we conclude that β ∈ Ψ(αi) is a necessary condition in order that (3.1) holds.

Further (ωi, sβw0ν) > 0, if and only if

(3.6) (ωi, w0ν) > (β, w0ν).

Now we have

(ωi, w0ν) =
∑

β∈Ψ(αi)
(ωβ, w0ν) ≤ (ωβ, w0ν) for all β ∈ Ψ(αi).

Thus by the computation in the 1st case, we conclude that a necessary condition in

order that (3.6) holds is that the root system of Gk̄ is of type A`(` ≥ 1).

In this case the group G = PU`+1 is the projective unitary group of (absolute) rank

` and d = [ `+1
2

], cf. [Ti]. The co-fundamental weights (ωi)i of PU`+1 are given as

follows. Let ∆ = {β1 = ε1− ε2, . . . , β` = ε`− ε`+1} be the set of standard simple roots

of type A`. Then

ωi = ωβi
+ ωβ`+1−i

, i = 1, . . . , d− 1

and

ωd =

{
ωβd

if `+1
2
∈ Z

ωβd
+ ωβd+1

if `+1
2
6∈ Z .

Thus by the explicit computation in the PGL`+1-case, we see that if inequality (3.6)

is satisfied, then we necessarily have i = 1 and β = β1 or β = β`. But we compute

(ω1, w0ν) = x`+1 − x1
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and

(β1, w0ν) = x`+1 − x`

resp.

(β`, w0ν) = x2 − x1.

Hence we see that inequality (3.6) cannot be satisfied for G = PU`+1 either. ¤

Next we determine explicitely the period domains for which the codimension of the

closed complement is 1. So by Prop. 3.1 we may assume that G = PGL`+1,k and

ν = (x1, x2, . . . , x`+1) ∈ (Q`+1)0
+. We rewrite ν in the shape ν = (y

(n1)
1 , . . . , y

(nr)
r ) with

y1 > y2 > · · · > yr and ni ≥ 1, i = 1, . . . , r. Let V = k`+1. Then F(G,N )(k̄) is given

by the set of filtrations

(0) ⊂ Fy1 ⊂ Fy2 ⊂ . . . ⊂ Fyr = Vk̄

with

dimFyi = n1 + · · ·+ ni.

If x2 < 0 then n1 = 1 resp. if x` > 0 then nr = 1. In order to determine the period

domain, one can replace in the definition of a semi-stable filtration the Lie Algebra

Lie(G) by V , cf. [DOR]. Thus a point F• is semi-stable if for all k-subspaces U of V

the following inequality is satisfied

1

dim U

( ∑
y
y · dim gry

F|Uk̄
(Uk̄)

)
≤ 1

dim V

( ∑
y
y · dim gry

F(Vk̄)
)
.

Then one computes easily that

F ss(k̄) = {F• ∈ F(k̄) | Fy1 is not contained in any k-rational hyperplane}
resp.

F ss(k̄) = {F• ∈ F(k̄) | Fyr does not contain any k-rational line}.
Thus the projections

F → P`
k resp. F → P̌`

k

F• 7→ Fy1 F• 7→ Fyr

induce surjective proper maps

(3.7) F ss → Ω
(`+1)
k resp. F ss → Ω̌

(`+1)
k

in which the fibres are generalized flag varieties.

Proof of Theorem 1 in the absolute simple case: The proof follows from Proposition

3.1 and the following facts on fundamental groups of algebraic varieties. If codim Y ≥
2, then we get π1(F ss) = π1(F) = {1}, since F is simply connected, cf. [SGA1], ch.
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XI, Cor. 1.2. If codim Y = 1 we are in the situation (3.7). Then the statement follows

from [SGA1] Cor. 6.11 since the fibres of the maps (3.7) are simply connected. Note

that the fundamental groups of Ω
(`+1)
k and Ω̌

(`+1)
k are the same since both varieties

are isomorphic. ¤
Now we consider the general case of an k-simple adjoint group G.

Proposition 3.2. Let G = Resk′/kG
′ be k-simple adjoint. Then codim Y ≥ 2 unless

G′ = PGL`+1 and there is a unique 1 ≤ j ≤ t, such that the following two conditions

are satisfied. Let νj = (x
[j]
1 ≥ x

[j]
2 ≥ . . . ≥ x

[j]
`+1) ∈ (Q`+1)0

+, j = 1, . . . , t. Then

(i) νj as in the absolutely simple case, i.e., with x
[j]
2 < 0 or x

[j]
` > 0.

(ii)
∑

i6=j x
[i]
1 < −x

[j]
2 if x

[j]
2 < 0 resp.

∑
i6=j x

[i]
`+1 > −x

[j]
` if x

[j]
` > 0.

Proof. We conclude by the same argument as in the proof of Proposition 3.1, 2nd case,

that codimYi = 1 if and only if there is a simple root β ∈ Ψ(αi) such that

(3.8) (ωi, w0ν) > (β, w0ν).

Let Gal(k′/k) = {σj | 0 ≤ j ≤ t− 1} and denote by W ′ the Weyl group of G′. Since

G = Resk′/kG
′ we have W =

∏t
j=1 W ′ and w0 = (w′

0, . . . , w
′
0) ∈ W . Further, the

natural restriction map ∆′
k′ → ∆k is bijective where ∆′

k′ = {α′1, . . . , α′d} is the set

of relative simple roots of G′ with respect to a maximal k′-split torus S ′ such that

S(k) ⊂ S ′(k′). It follows that ωi =
∑t−1

j=0 σjω′i. Here (ω′i)i ∈ X∗(S ′)Q is defined with

respect to (α′i)i ∈ X∗(S ′)Q. Furthermore, ∆ is formed by t copies of the set ∆′ of

absolute simple roots to G′. We conclude that for each β ∈ Ψ(αi) there is an index

j(β) = j, 1 ≤ j ≤ t, with

(β, w0ν) = (β,w′
0νj).

For all other indices h 6= j, we have (β, w′
0νh) = 0. We compute

(3.9) (ωi, w0ν) =
∑t−1

j=0
(σjω′i, w0ν) ≤ (σjω′i, w0ν) = (ω′i, w

′
0νj).

Thus by the computation in the proof of Proposition 3.1 we conclude that a necessary

condition in order that (3.8) holds is that G′ is split and that the root system of G′

is of type A`(` ≥ 1).

So let G′ = PGL`+1,k′ . Then ∆ is given by the set {α[j]
i | 1 ≤ i ≤ `, 1 ≤ j ≤ t},

where

α
[j]
i = ε

[j]
i − ε

[j]
i+1.

Here ε
[j]
i is the appropriate coordinate function on Tk̄

∼= ∏t
j=1 Sk̄, where S is the

diagonal torus in PGL`+1,k′ . Furthermore, the sets Ψ(αi) are given by

Ψ(αi) = {α[j]
i | 1 ≤ j ≤ t}.
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Let ν = (ν1, . . . , νt) ∈ C̄Q. We get w0ν = (w′
0ν1, . . . , w

′
0νt), where the entries are given

by w′
0νj = (x

[j]
`+1, x

[j]
` , . . . , x

[j]
1 ), j = 1, . . . , t. In the proof of Proposition 3.1 we have

seen that if the inequalities (3.8) and (3.9) are satisfied then β = α
[j]
1 and x

[j]
` > 0

resp. β = α
[j]
` and x

[j]
2 < 0 for some integer j with 1 ≤ j ≤ t.

Let β = α
[j]
1 and x

[j]
` > 0. Then

(ω1, w0ν) =
t∑

i=1

x
[i]
`+1

and

(β, w0ν) = x
[j]
`+1 − x

[j]
` .

Thus the inequality (3.8) is satisfied if and only if
∑

i 6=j
x

[i]
`+1 > −x

[j]
` .

Furthermore, we claim that the integer j is uniquely determined. In fact, suppose

first that h is another integer with 1 ≤ h ≤ t and
∑

i6=h
x

[i]
`+1 > −x

[h]
` .

Without loss of generality we may assume that −x
[j]
` ≤ −x

[h]
` . Then

−x
[j]
` ≤ −x

[h]
` <

∑
i6=h

x
[i]
`+1 ≤ x

[j]
`+1 ≤ −x

[j]
` ,

which is a contradiction. Here the latter inequality follows from the fact that x
[j]
`+1 +

x
[j]
` ≤ 0, since νj ∈ (Q`+1)0

+.

If in the opposite direction h is another integer with 1 ≤ h ≤ t and
∑

i6=h
x

[i]
1 < −x

[h]
2

then

x
[j]
1 ≤

∑
i6=h

x
[i]
1 < −x

[h]
2 ≤ −x

[h]
`+1 ≤ −

∑
i6=j

x
[i]
`+1 < x

[j]
` ,

which is a contradiction, as well.

The case β = α
(j)
` and x

[j]
2 < 0 behaves dually and yields

∑
i6=j x

[i]
1 < −x

[j]
2 . ¤

Again we determine explicitly the period domains where the codimension of the

closed complement is 1. So let ν = (ν1, . . . , νt) ∈ C̄Q such that codim Y = 1. After

reindexing we may suppose that ν1 ∈ (Q`+1)0
+ is the vector with

∑
i6=1 x

[i]
1 < −x

[1]
2

or
∑

i 6=1 x
[i]
`+1 > −x

[1]
` . Over the algebraic closure k̄ the flag variety F(G,N ) is the

product

F(G,N )k̄ =
∏t

j=1
F(PGL`+1,k̄,Nj)k̄,
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where Nj is the PGL`+1,k̄-conjugacy class of νj. Let ν1 = (y
(n1)
1 , . . . , y

(nr)
r ) with y1 >

y2 > · · · > yr and ni ≥ 1, i = 1, . . . , r. The corresponding period domain is then given

by

F(G,N )ss
k̄ = F(PGL`+1,k′ ,N1)

ss
k̄ ×

∏
j≥2

F(PGL`+1,k′ ,Nj)k̄.

In the case
∑

i6=1 x
[i]
1 < −x

[1]
2 , we have

F(PGL`+1,k′ ,N1)
ss(k̄) = {F• ∈ F(PGL`+1,k′ ,N1)(k̄) | Fy1 is not contained in

any k′-rational hyperplane}.
For

∑
i6=1 x

[i]
`+1 > −x

[1]
` , we have

F(PGL`+1,k′ ,N1)
ss(k̄) = {F• ∈ F(PGL`+1,k′ ,N1)(k̄) | Fyr does not contain

any k′-rational line }.

Proof of Theorem 1 in the general case: The proof is the same as in the absolutely

simple case and uses Proposition 3.2. ¤
We finish this paper by considering a non-trivial example.

Example 3.3. Let G = Resk′/kPGL2,k′ with |k′ : k| = 2. Then ν corresponds to

a tuple (ν1, ν2) ∈ (Q2)0
+ × (Q2)0

+. Let ν1 = (x1 ≥ x2) and ν2 = (y1 ≥ y2). Then

x2 = −x1 ≤ 0 and y2 = −y1 ≤ 0. If ν1 6= ν2 then we may assume after changing

ν1 and ν2 that −x2 > y1. Note that we allow ν2 = (0, 0) to be trivial. Thus F =

P1 × Pj, j = 0, 1, depending on whether ν2 is trivial or not. Then E = k and the

period domain is given by

F ss = Ω2
k′ × Pj.

In particular, we get π1(F ss) = π1(Ω
2
k′). In the case ν1 = ν2 we get E = k′ and

F ss = P1 × P1 \∆(P1(k′)),

where ∆ : P1 ↪→ P1×P1 denotes the diagonal morphism. Here we have π1(F ss) = {1}.
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