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1. Introduction

Let G0 be a reductive group over Fq. There are two classes of algebraic varieties over an

algebraic closure F of Fq attached to G0. Let us recall their definition. We set G = G0×Fq F.

To G there is associated the maximal torus, the Weyl group W and the set of fundamental

reflections in W , cf. [DL] 1.1. Let X = XG be the set of all Borel subgroups of G. Then X

is a smooth projective algebraic variety homogeneous under G. The set of orbits of G on

X×X can be identified with W, and this defines the relative position map inv : X×X → W

(associate to an element of X × X the G-orbit containing it). Let w ∈ W. The Deligne-

Lusztig variety associated to (G0, q, w) is the locally closed subset of X given by

X(w) = XG0
(w) = {x ∈ X | inv(x, Fx) = w} .

Here F : X → X denotes the Frobenius map over Fq. It is known ([DL], 1.4) that X(w)

is a smooth quasi-projective variety of dimension `(w), which is equipped with an action of

G0(Fq). If F e is the minimal power of F with F e(w) = w, then X(w) is defined over Fqe .

For the other class of varieties, fix a conjugacy class N of cocharacters ν : Gm → G.

Any such ν defines a parabolic subgroup Pν of G and all parabolics obtained from elements

ν ∈ N are conjugate. Let XG(N ) be the set of these conjugates, a smooth projective

algebraic variety homogeneous under G. Any ν ∈ N defines via the adjoint representation

a Z-filtration Fν on Lie(G), and ν is called semi-stable if (Lie(G0),Fν) is semi-stable as a

Fq-vector space equipped with a Z-filtration on the corresponding F-vector space, cf. [R, F].

This condition only depends on the point in X(N ) corresponding to ν and defines an open

subset X(N )ss = XG0
(N )ss of X(N ), called the period domain associated with (G0, q,N ), cf.

[R]. Hence X(N )ss is a smooth connected quasi-projective variety of dimension dimX(N ).

It is equipped with an action of G0(Fq). If the conjugacy class N is defined over the

extension Fqe , then X(N )ss is defined over Fqe .

The Drinfeld space Ωn (relative to Fq) is a DL-variety, as well as a period domain. More

precisely, let G0 = GLn . Let w = s1s2 · · · sn−1 = (1, 2, . . . , n) be the standard Coxeter

element. Then XG0
(w) can be identified with the Drinfeld space

Ωn = Ωn
Fq

= Pn−1 \
⋃

H/Fq
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(complement of all Fq-rational hyperplanes in the projective space of lines in Fn), cf. [DL],

§2. For any Coxeter element w for GLn, the corresponding DL-variety X(w) is universally

homeomorphic to Ωn, cf. [L’], Prop. 1.10. On the other hand, let us identify as usual the

set of conjugacy classes N for GLn with

(Zn)+ =
{

(x1, . . . , xn) ∈ Zn | x1 ≥ x2 ≥ . . . ≥ xn

}

.

Let (x, y(n−1)) ∈ (Zn)+ with x > y (here y(n−1) indicates that the entry y is repeated

n − 1 times). Then the corresponding period domain is equal to Ωn, cf. [R]. Similarly, if

(x(n−1), y) ∈ (Zn)+ with x > y, then the corresponding period domain is isomorphic to Ωn

(it is equal to the dual Ω̌n, the set of hyperplanes of Fn not containing any Fq-rational line).

In [R], §3, it is shown on examples that the Drinfeld space has various special features

that are not shared by more general period domains. In the present paper we exhibit

another such feature: the Drinfeld space is essentially the only period domain which is

at the same time a DL-variety. Before formulating the result, we note that both XG0
(w)

and XG0
(N )ss only depend on the adjoint group G0 ad. Also, if G0 is the direct product

of groups , then the corresponding Deligne-Lusztig varieties and period domains also split

into products. Hence we may assume that G0 is Fq-simple and adjoint. Then G0 is of the

form G0 = ResFq′/Fq
(G′

0) for an absolutely simple group G′
0 over Fq′ . Then N is of the form

(N1, . . . ,Nt) corresponding to the Fq-embeddings of Fq′ into F. Here t = |Fq′ : Fq| and

N1, . . . ,Nt are conjugacy classes of G′.

The main result of this note is the following theorem.

Theorem 1.1. Let G0 be absolutely simple of adjoint type over Fq. A Deligne-Lusztig

variety XG0
(w) is never universally homeomorphic to a period domain XG0

(N )ss, unless

G0 = PGLn, w is a Coxeter element and N corresponds to ν ∈ (Zn)+ of the form ν =

(x, y(n−1)) or ν = (x(n−1), y) with x > y, in which case XG0
(w) and XG0

(N )ss are both

universally homeomorphic to Ωn
Fq

.

More generally, let G0 = ResFq′/Fq
(G′

0) be simple of adjoint type, and let t = |Fq′ :

Fq|. Then a Deligne-Lusztig variety XG0
(w) is never universally homeomorphic to a period

domain XG0
(N )ss, unless G′

0 = PGLn, w is a Coxeter element in the sense of [L’], 1.7, and

N is of the form (ν1, . . . , νt) ∈ ((Zn)+)t with νi scalar for all indices i = 1, . . . , t, except

one index where the entry is of the form (x, y(n−1)) or (x(n−1), y) with x > y. In this case

XG0
(w) and XG0

(N )ss are both universally homeomorphic to Ωn
Fq′

.

This theorem comes about by comparing a cohomology vanishing theorem for the DL-

varieties with a cohomology non-vanishing theorem for period domains. In the sequel we

denote for any variety X over F by H i
c(X) the `-adic cohomology group with compact

supports H i
c(X, Q`).

The vanishing theorem for DL-varieties is the following statement.

Proposition 1.2.

Hi
c(XG0

(w)) = 0 for 0 ≤ i < l(w).
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This vanishing property is due to Digne, Michel and Rouquier [DMR], Cor. 3.3.22. When

q ≥ h (where h denotes the Coxeter number of G) then all DL-varieties XG0
(w) are affine,

cf. [DL], Thm. 9.7. In this case, the vanishing statement follows by Poincaré duality from

a general vanishing theorem for the étale cohomology of affine varieties. Before we became

aware of the paper [DMR], we pursued a strategy for proving Proposition 1.2, which relates

its statement to the general problem of determining which DL-varieties are affine. Since we

believe that our approach has its own merits, we give it in §2. It seems more elementary

than the approach in [DMR], and is also applicable to the Deligne-Lusztig local systems on

DL-varieties. However, we did not succeed completely, since we have to base ourselves on

the following hypothesis.

Aff(G0, q, w): For every w′ of minimal length in the F -conjugacy class of w, the corre-

sponding DL-variety XG0
(w′) is affine.

It seems to us quite likely that this condition is always satisfied.1 Lusztig’s result [L’],

Cor. 2.8, that XG0
(w) is affine when w is a Coxeter element may be viewed as supporting

this belief. In any case, we show that Aff(G0, q, w) is satisfied when G0 is a split classical

group (cf. §5). It is also satisfied when G0 is of type G2, cf. [H’], 4.18. On the other hand,

we believe that the hypothesis that w be of minimal length in its conjugacy class cannot

be totally dropped, i.e., we believe it may happen for small q that there are DL-varieties

which are not affine, although we have no example for this (but a concrete candidate over

the field with 2 elements, cf. Remark 5.1).

On the other hand, there is the following non-vanishing result [O], Cor. 1.2 for period

domains. Let r0 = rkFq(G0) denote the Fq-rank of G0 (dimension of a maximal Fq-split

torus of G0).

Proposition 1.3. Let G0 be a simple group of adjoint type over Fq. If N is non-trivial,

then

Hr0

c (XG0
(N )ss) 6= 0 ;

in fact, the representation of G0(Fq) on this cohomology group is irreducible and is equivalent

to the Steinberg representation.

In order to carry out the comparison between these two results, we use the following

observation.

Proposition 1.4. Let G be a simple group of adjoint type over an algebraically closed field

k. For any proper parabolic subgroup P , the following inequality holds,

rk(G) ≤ dimG/P,

with strict inequality, except when G = PGLn and P is a parabolic subgroup of type (n−1, 1)

or (1, n − 1).

1X. He [He] has recently given a proof of this conjecture which is inspired by our method in §5. Another

proof is due to C. Bonnafé and R. Rouquier [BR’].
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Our approach to Proposition 1.2 is given in §2, and the proof of Proposition 1.4 in §3. The

main theorem is proved in §4. In the final section §5, we verify the condition Aff(G0, q, w)

for split classical groups by checking the criterion of Deligne and Lusztig [DL], 9.6.

Acknowledgements: We thank L. Illusie and Th. Zink for helpful discussions on `-adic

cohomology.

2. A vanishing theorem

Let F be a smooth Q̄`-sheaf on a connected normal variety X over F. We say that F is a

smooth prime-to-p Q̄`-sheaf, if it is defined by a constant tordu sheaf and the corresponding

representation of the fundamental group π1(X) = π1(X,x) on the fiber Fx at a geometric

point x of X factors through the prime-to-p part π1(X)(p) of π1(X). This is independent

of the choice of x. The extension of this definition to non-connected normal schemes is

immediate.

We will use the following stability property of smooth prime-to-p Q̄`-sheaves. Let S be a

normal scheme and let f : X −→ S be a smooth morphism of relative dimension one, with

all fibers affine curves. We assume that f factors as f = f̄ ◦ j, where j : X ↪→ X̄ is an open

immersion, and where f̄ : X̄ −→ S is proper and smooth, and such that D = X̄ \ X is a

smooth relative divisor over S. Let F be a prime-to-p smooth Q̄`-sheaf on X. Then Rif!(F)

is a smooth prime-to-p Q̄`-sheaf on S and is trivial for i 6= 1, 2. Indeed, F is tamely ramified

along D, so that the smoothness of Rif!(F) follows from [SGA4’], app. to Th. finitude, esp.

1.3.3 and 2.7. Also, the vanishing of Rif!(F) for i 6= 1, 2 follows from the proper base change

theorem, and the calculation of the cohomology of affine curves. Alternatively, one may

use Poincaré duality to reduce the question to the analogous statement concerning R if∗(F)

(for i 6= 0, 1 and for the dual sheaf), and refer to [SGA1], XIII, Prop. 1.14 and Remark

1.17 for the smoothness of Rif∗(F), and to loc. cit., Thm. 2.4, 1) for the commutation of

Rif∗(F) with base change. For i = 0, 1, (Rif∗(F))s = Hi(Xs,F) is equal to the Galois

cohomology group H i(π1(Xs, x),Fx), cf. [M], Thm. 14.14. Under this identification, the

action of π1(S, s) is obtained from the action of π1(X,x) on Fx in the sense of [S], I.2.6, b)

[Illusie pointed out to us that this requires justification. For this, it suffices to prove the

analogous statement for a smooth torsion sheaf F . By restricting f to smaller and smaller

open subsets of S, we may pass to the generic fiber and are then in the following situation.

Let X be an affine smooth curve over a field k and let F be a smooth torsion sheaf on X.

Consider the exact sequence of fundamental groups

1 −→ π1(Xk̄, x) −→ π1(X,x) −→ Gal(k̄/k) −→ 1 .

The étale cohomology groups H i(Xk̄,F) may be identified with the Galois cohomology

groups H i(π1(Xk̄, x),Fx) since the inverse image of F to the universal covering of Xk̄ is

acyclic [M], Thm. 14.14. There are two actions of Gal(k̄/k) on these cohomology groups:

one on the Galois cohomology group coming from the fact that the action of π1(Xk̄, x) on

Fx comes by restricting the action of the bigger group π1(X,x) on Fx, and the action of



DELIGNE-LUSZTIG VARIETIES AND PERIOD DOMAINS 5

Gal(k̄/k) on the étale cohomology group H i(Xk̄,F) by functoriality. It is obvious that these

two actions coincide for i = 0. Since the two functors arise as derived functors, the two

actions coincide then for all i.]

Now the homomorphism π1(X,x) −→ π1(S, s) is surjective [SGA1], IX, 5.6, hence this

action factors through π1(S, s)(p).

After these preliminaries, we may state the vanishing theorem.

Theorem 2.1. Assume Aff(G0, q, w). Let F be a smooth prime-to-p Q̄`-sheaf on X(w).

Then

Hi
c(X(w),F) = 0 for 0 ≤ i < `(w) .

For the constant sheaf F = Q̄`, we obtain the statement of Proposition 1.2, except that

here we have to make the hypothesis Aff(G0, q, w).

Let T0 be a maximal torus in G0, with corresponding maximal torus T of G. We identify

the Weyl group with the Weyl group of T . Then to every w ∈ W and every character

θ : T (F)wF −→ Q̄×
` , Deligne and Lusztig have associated a smooth prime-to-p sheaf Fθ on

X(w), cf. [DL], p.111 (when θ is trivial, then Fθ = Q̄`). As an application of Theorem 2.1

we have the following result.

Corollary 2.2. Assume Aff(G0, q, w). For any θ

Hi
c(X(w),Fθ) = 0 for 0 ≤ i < `(w) .

If θ is nonsingular, then

Hi
c(X(w),Fθ) = 0 for i 6= `(w) .

Proof. The first statement follows from Theorem 2.1. For the second statement, we use

the fact [DL], Thm. 9.8 that if θ is nonsingular, then the natural homomorphism from

Hi
c(X(w),Fθ) to H i(X(w),Fθ) is an isomorphism. Therefore the assertion follows from

Poincaré duality. �

Remark 2.3. The previous statement for nonsingular θ is due to Haastert [H], Satz 3.2,

as an application of his result that X(w) is quasi-affine, cf. [H], Satz 2.3. He does not have

to assume the hypothesis Aff(G0, q, w). Of course, when X(w) is affine, this statement is

proved in [DL].

For the proof of Theorem 2.1 we first recall the following result of Geck, Kim and Pfeiffer.

Denote by S the set of simple reflections in W. Let w,w ′ ∈ W and s ∈ S. Set w
s
→F w′

if w′ = swF (s) and `(w′) ≤ `(w). We write w →F w′ if w = w′ or if there exist elements

s1, . . . , sr ∈ S and w = w1, . . . , wr = w′ ∈ W with wi
si→F wi+1, i = 1, . . . , r − 1.

Theorem 2.4. (([GKP], Thm. 2.6) Let C be an F -conjugacy class of W and let Cmin be

the set of elements in C of minimal length. For any w ∈ C, there exists some w ′ ∈ Cmin

such that w →F w′.
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We also recall the following lemma (Case 1 of Thm. 1.6 in [DL]).

Lemma 2.5. Let w and w′ be F -conjugate. Suppose that there are w1, w2 ∈ W with

w1w2 = w, w2F (w1) = w′ and `(w) = `(w1) + `(w2) = `(w′). Then X(w) and X(w′) are

universally homeomorphic and hence H∗
c (X(w),F) ∼= H∗

c (X(w′),F) for any Q̄`-sheaf F .

As is well-known, this lemma has the following consequence.

Lemma 2.6. Let s ∈ S and let w,w′ ∈ W with w′ = swF (s). Suppose that `(w) =

`(w′). Then X(w) and X(w′) are universally homeomorphic and hence H∗
c (X(w),F) ∼=

H∗
c (X(w′),F) for any Q̄`-sheaf F .

Proof. We consider the following three cases.

Case 1: `(sw) = `(w) − 1. Then we put w1 = s, w2 = sw and apply the previous lemma.

Case 2: `(wF (s)) = `(w) − 1. We put w1 = s, w2 = sw′. Again we apply the previous

lemma, with the roles of w and w′ interchanged.

Case 3: `(sw) = `(w) + 1 and `(wF (s)) = `(w) + 1. Then we apply Lemma 1.6.4 of [DL]

to deduce that w = w′. �

Proof of Theorem 2.1: We prove the claim by induction on `(w). The case `(w) = 0 is

trivial.

Let w ∈ W and suppose that the vanishing property holds for all elements in W with

length smaller than `(w). If w is minimal within its F -conjugacy class, then the vanishing

follows by our assumption Aff(G0, q, w) from Poincaré duality and a general vanishing

property of affine schemes. If w is not minimal, there is by Theorem 2.4 a chain of simple

reflections s1, . . . , sr ∈ S and w = w1, . . . , wr ∈ W with wi
si→F wi+1, i = 1, . . . , r − 1 such

that wr is minimal. By Lemma 2.6 and by induction, we may assume that w ′ = swF (s)

where s ∈ S and `(swF (s)) < `(w), i.e., `(w′) = `(w) − 2. As in the proof of Theorem 1.6

in [DL], we may write X(w) as a (set-theoretical) disjoint union

X(w) = X1 ∪ X2

where X1 is closed in X(w) and X2 is its open complement. By applying the long exact

cohomology sequence, it suffices to show that H i
c(X1,F|X1

) = 0 and H i
c(X2,F|X2

) = 0 for i <

`(w). Note that the restrictions F|X1
and F|X1

are also prime-to-p, since the corresponding

representations of their fundamental groups are induced by the canonical maps π1(Xi) −→

π(X(w)), i = 1, 2. Now X1 has the structure of an A1-fibering over X(w′). Let f : X1 −→

X(w′) be the A1-fibering. Consider the Leray spectral sequence

Hi
c(X(w′), Rjf!F|X1

) ⇒ H i+j
c (X1,F|X1

) .

The stalks of Rjf!F are isomorphic to Hj
c (A1,F|A1). Now π1(A

1)(p) = 0, cf. [SGA1], XIII,

Cor. 2.12. Since F is prime-to-p, F|A1 is constant and H1
c (A1,F) = 0. We deduce that

Hi
c(X1,F) = H i−2

c (X(w′), R2f!F) .
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Since F ′ = R2f!F is a smooth prime-to-p Q̄`-sheaf on X(w′), the induction hypothe-

sis applies to it and it follows that H i−2(X(w′),F ′) = 0 for all i − 2 < `(w′). Thus

Hi
c(X1,F|X1

) = 0 for all i < `(w).

The vanishing of H i
c(X2,F|X2

) is even easier. In the proof of [DL], Thm. 1.6, it is shown

that X2 is universally homeomorphic to a line bundle over X(sw ′) with the zero section

removed. Let g : X2 −→ X(sw′) be the corresponding morphism. Then the Leray spectral

sequence gives a long exact sequence

· · · → H i−1
c (X(sw′), R1g!F) → H i

c(X2,F|X2
) → H i−2

c (X(sw′), R2g!F) → · · ·

We have `(sw′) = `(w′)+1. By induction H i
c(X(sw′), Rjg!F) = 0 for all i < `(sw′) = `(w)−1

and all j. Thus H i−1
c (X(sw′), R1g!F) = 0 and H i−2

c (X(sw′), R2g!F) = 0 for i < `(w). The

claim follows. �

3. Proof of Proposition 1.4

We retain the notation of the statement of the proposition. It obviously suffices to prove

the statement for a maximal parabolic subgroup P . Let B be a Borel subgroup contained

in P and let T be a maximal torus in B. Let M be the Levi subgroup of P containing T.

Then
dimG/P = dimG/B − dimM/M ∩ B

= |Φ+| − |Φ+
M | ,

where Φ+ = Φ+
G resp. Φ+

M denotes the set of positive roots of G resp. of M . The assertion

is now reduced to a purely combinatorial statement that can be checked mechanically for

each type in the tables [Bou]. We adopt the notation used in these tables.

TypeA` : Here |Φ+| = `(`+1)
2 . If ∆M is obtained by deleting the root αi, then ΦM is of

type Ai−1 × A`−i (with the convention A0 = ∅). Hence |Φ+
M | = i(i−1)

2 + (`−i)(`−i+1)
2 . Hence

|Φ+| − |Φ+
M | ≥ `, with equality iff i = 1 or i = `.

TypeB` (` ≥ 2) : Here |Φ+| = `2. If ∆M is obtained by deleting αi, then ΦM is of type

Ai−1 × B`−i (with the convention B0 = ∅ , B1 = A1) and |Φ+
M | = i(i−1)

2 + (` − i)2. Hence

|Φ+| − |Φ+
M | > ` in all cases. The type C` is identical.

TypeD` (` ≥ 4) : Here |Φ+| = (`−1)`. If ∆M is obtained by deleting αi, then ΦM is of type

Ai−1 × D`−i except when i = ` − 1 or i = ` in which case ΦM is of type A`−1, and except

when i = ` − 2 in which case ΦM is of type A`−3 × A1 × A1, and except when i = ` − 3 in

which case ΦM is of type A`−4 × A3. For 1 ≤ i ≤ ` − 4, |Φ+
M | = i(i−1)

2 + (` − i)(` − i − 1)

and hence |Φ+| − |Φ+
M | > `. For i = ` − 1 or i = `, |Φ+

M | = (`−1)`
2 and for i = ` − 2,

|Φ+
M | = (`−3)(`−2)

2 + 2, and for i = `− 3, |Φ+
M | = (`−4)(`−3)

2 + 6. In all cases |Φ+| − |Φ+
M | > `.

For the exceptional types one gets for the differences |Φ+| − |Φ+
M |, as ∆M is obtained by

deleting α1, . . . , α`, the following integers:

E6 : 16, 21, 25, 29, 25, 16

E7 : 33, 42, 47, 53, 50, 42, 27
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E8 : 78, 92, 98, 106, 104, 97, 83, 57

F4 : 15, 20, 20, 15

G2 : 5, 5.

In each case the numbers are strictly larger than the rank. �

4. Proof of Theorem 1.1

Let us first treat the case when G0 is absolutely simple. Let us assume that X = XG0
(w)

is universally homeomorphic to XG0
(N )ss. By Proposition 1.2 we have H i

c(X) = 0 for

i < `(w) = dimX. Comparing with Proposition 1.3 we obtain

dimXG0
(w) ≤ r0 .

Now the relative rank r0 of G0 is at most the absolute rank r. From Proposition 1.4 we

obtain the chain of inequalities

(4.1) dimXG0
(w) ≤ r0 ≤ r ≤ dimX(N ) .

Hence all inequalities are equalities and by Proposition 1.4, we have that G = PGLn

and that N corresponds to (x, y(n−1)) or (x(n−1), y) with x > y. Indeed, the case where N

corresponds to (x(n)) is excluded, since this would imply that `(w) = dimX(N ) = 0, hence

X(w) = X(Fq) would not be connected. Also the equality r0 = r implies that G0 = PGLn.

It follows that XG0
(N ) ∼= Ωn and `(w) = n−1. On the other hand, since X(w) is connected,

w has to be an elliptic element in Sn, i.e., every fundamental reflection has to appear in a

minimal expression of w, cf. [L], p.26, and [BR] (the converse is also true, but more difficult

to prove). Hence every fundamental reflection appears exactly once, i.e. w is a Coxeter

element. Now, the assertion follows from the remarks in the introduction.

Now let G0 be of the form G0 = ResFq′/Fq
(G′

0), where G′
0 is absolutely simple of adjoint

type, and let t = |Fq′ : Fq|. As in the introduction we write N = (N1, . . . ,Nt), where the

Ni are conjugacy classes of G′. Let r be the absolute rank of G′
0. Let t1 be the number of

indices i, where Ni is nontrivial. The inequality (4.1) is replaced by

(4.2) dimXG0
(w) ≤ r0 ≤ rt1 ≤ dimX(N ) .

Since r0 ≤ r, we deduce from the fact all inequalities in (4.2) are equalities, that r0 = r and

t1 = 1 (as before the case t1 = 0 is excluded). As in the absolutely simple case we deduce

that G′
0 = PGLn, and that for the one index i with non-trivial Ni this conjugacy class of

PGLn corresponds to (x, y(n−1)) or (x(n−1), y) with x > y. Reasoning as before, this implies

that w is a Coxeter element in the sense of [L’], i.e., every F -orbit of simple reflections

appears precisely once in a minimal expression of w as a product of simple reflections.

All these Coxeter elements define universally homeomorphic DL-varieties, cf. [L’], Prop.

1.10. To identify the variety X = XG0
(w) = XG0

(N )ss with Ωn
Fq′

, one may use either

incarnation of X. On the DL-side, one can use the Coxeter element w = (w1, . . . , wt) with
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w1 = s1s2 . . . sn−1 and w2 = . . . = wt = 1. Since the action of F on the flag variety of G0

is given by F (B1, . . . , Bt) = (F tBt, B1, . . . , Bt−1), one sees easily that XG0
(w) ' Ωn

Fq′
. �

5. The condition Aff(G0, q, w)

In this section we show that the condition Aff(G0, q, w) is satisfied for classical split

groups.

We shall use the following criterion of Deligne and Lusztig [DL], 9.6. Let C ⊂ X∗(T )R

be the (open) Weyl chamber. For w ∈ W , let

D(C,−w−1C) = {x ∈ X∗(T )R | α(x) > 0 ∀α > 0 with w(α) < 0} .

Here α ranges over the roots of T .

DL-Criterion: A DL-variety X(w) is affine if there exists an element x ∈ D(C,−w−1C),

such that F ∗x − wx ∈ C.

Remark 5.1. It is not clear how close the Deligne-Lusztig criterion comes to being an

equivalence. In [H’], Haastert checks that for a split classical group, every conjugacy class

of W contains elements which satisfy the DL-criterion. However, there are not enough

elements of minimal length among his elements: there are elements w of minimal length in

their conjugacy class such that there is no w′ among Haastert’s elements with w →F w′ (e.g.

consider the root system D` and w = t′ below). Still, the method used below is modelled

on Haastert’s calculations. For G0 of type G2, he shows that the DL-criterion is satisfied

for all w ∈ W and all q, except q = 2 and w = s1s2s1, s2s1s2, when it is not. We expect

that these last two DL-varieties are not affine. It should be possible to check this with the

help of the computer.

We now consider the root system of a split classical group. In [GP], Geck and Pfeiffer

construct a subset of the Weyl group which contains enough elements of minimal length

in their conjugacy class. To recall their result, we set up the notation as follows. Let

R` = (R`, ( , )) be the standard euclidian vector space with standard basis {e1, . . . , e`}. We

recall the sets of simple roots and simple reflections. The extraneous elements below are

introduced to give a reasonably uniform treatment of all types.

Type A`−1 (` ≥ 2) : ∆ = {α1, . . . , α`−1}, where αi = ei − ei+1, S = {s1, . . . , s`−1}, where

si = sαi
. Further we set s′i = 1 for all 0 ≤ i ≤ ` − 1. The Weyl chamber is given by

C = {(x1, . . . , x`) ∈ R` | x1 > x2 > · · · > x`−1 > x`,
∑

i
xi = 0}.

Type B` (` ≥ 2) : ∆ = {α0 = e1, α1, . . . , α`−1}, S = {t, s1, . . . , s`−1} where t = se1
, i.e,

t(ei) = ei,∀i 6= 1 and t(e1) = −e1. Further, we set s′0 = t and s′i = sisi−1 · · · s1ts1 · · · si−1si

for 1 ≤ i ≤ ` − 1. The Weyl chamber is given by

C = {(x1, . . . , x`) ∈ R` | x1 > 0, x1 > x2 > · · · > x`−1 > x`}.

Type D` (` ≥ 4) : ∆ = {α0 = e1+e2, α1, . . . , α`−1}, S = {t′, s1, . . . , s`−1} where t′ = se1+e2
is
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the reflection with t′(e1 +e2) = −(e1 +e2). Further we set s′0 = t′s1 and s′i = si+1si · · · s2(t
′ ·

s1)s2 · · · sisi+1 for 1 ≤ i ≤ ` − 2. The Weyl chamber is given by

C = {(x1, . . . , x`) ∈ R` | x1 + x2 > 0, x1 > x2 > · · · > x`−1 > x`}.

For a decomposition λ = (λ1, . . . , λk) of the integer ` in the cases A`−1 and B`, resp. of

` − 1 in the case D`, and a vector of signs ε = (ε1, . . . , εk) ∈ {±1}k, let wλ,ε =
∏k

i=1 wλi,εi
,

where

wλi,εi
:=

{

smi
smi+1 · · · sni−1 if εi = 1

s′mi−1 · smi
smi+1 · · · sni−1 if εi = −1

Here we put mi =
∑i−1

j=1 λj + 1 , ni =
∑i

j=1 λj, i = 1, . . . , k in the cases A`−1 and B`, resp.

mi =
∑i−1

j=1 λj + 2 , ni =
∑i

j=1 λj + 1 in the case D`. Since the elements wλi,εi
commute

with each other, the above product makes sense.

Proposition 5.2. ([GP] Prop. 2.3) For each w ∈ W , there is a decomposition λ =

(λ1, . . . , λk) of ` in the cases A`−1 and B`, resp. of ` − 1 in the case D`, and a vector of

signs ε = (ε1, . . . , εk) ∈ {±1}k such that w →F δ ·wλ,ε, where δ = 1 in the case of A`−1 and

B` and δ ∈ {1, s1, t
′} in the case of D`.

Remark 5.3. In the case A`−1 the elements δ · wλ,ε are all minimal in their conjugacy

class; this is not true in the cases B` and D`. In general, not all elements minimal in their

conjugacy class are of the form δ · wλ,ε.

We note that to prove the condition Aff(G0, q, w) for all q, w, it suffices to prove that

for the elements of the form δ · wλ,ε the corresponding DL-variety is affine. Indeed, if w

is an element of minimal length in its conjugacy class, then by Proposition 5.2 we find

w′ = δ · wλ,ε with w →F w′. Since then `(w) = `(w′), a repeated application of Lemma

2.6 shows that the DL-varieties X(w) and X(w′) are universally homeomorphic. Hence the

fact that X(w′) is affine implies that X(w) is affine as well.

We will show that X(w) is affine for elements w = δ · wλ,ε by checking the DL-criterion

for w. In the split case F -conjugacy is simply conjugacy and the action of the Frobenius

F ∗ is simply the multiplication by q. We will in fact even show that we can find x ∈ C such

that qx − wx ∈ C.

Type A`−1 : We will use the following lemma.

Lemma 5.4. Let w = sm · sm+1 · · · sn−1. Let x1 > x2 > · · · > xm > 0 be positive real

numbers. Then there exist xm+1 > xm+2 > · · · > xn+1 > 0 with xm > xm+1, such that for

any choice of xn+2 > xn+3 > · · · > x`−1 > x` > 0 with xn+1 > xn+2, we have

(qx − wx, α) > 0 ∀α ∈ ∆ and (qx − wx, αn) > xn+1 .

[if n = `, the last condition is interpreted as empty, and the other chains of inequalities are

to be interpreted in the obvious way.]
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Proof. We compute

wx = (x1, · · · , xm−1, xn, xm, xm+1, · · · , xn−1, xn+1, xn+2, . . . , x`) .

Thus we get for i ≤ m − 2 and for i ≥ n + 1,

(qx − wx, αi) = q(xi − xi+1) − (xi − xi+1) = (q − 1)(xi − xi+1) .

Furthermore,

(qx − wx, αm−1) = q(xm−1 − xm) − (xm−1 − xn)

(qx − wx, αm) = q(xm − xm+1) − (xn − xm)

(qx − wx, αm+1) = q(xm+1 − xm+2) − (xm − xm+1)

...(5.1)

(qx − wx, αn−1) = q(xn−1 − xn) − (xn−2 − xn−1)

(qx − wx, αn) = q(xn − xn+1) − (xn−1 − xn+1) .

We immediately see that (qx − wx, αi) > 0 ∀i ≤ m − 2, ∀i ≥ n + 1 for any x = (x1 > x2 >

· · · > x` > 0) ∈ R`. For the remaining expressions, it suffices to treat the case q = 2. For

1 ≤ i ≤ n − m set xm+i := xm − ia with a > 0. Then

(2x − wx, αm−1) = 2(xm−1 − xm) − (xm−1 − xn) = (xm−1 − xm) − (xm − xn)

= (xm−1 − xm) − (n − m)a.

This expression is positive if a is small enough. The inequality

(2x − wx, αm) = 2(xm − xm+1) − (xn − xm) > 0

is clearly satisfied since xm > xn. Since (2x−wx, αi) = a > 0 for m+1 ≤ i ≤ n−1, it remains

to consider the term (2x − wx, αn). But (2x − wx, αn) = 2(xn − xn+1) − (xn−1 − xn+1) >

xn+1 > 0 if

2(xn − xn+1) − xn−1 > 0.

Set xn+1 = xn − b with 0 < b < xn. Then 2(xn − xn+1) > xn−1, provided that b > xn−1

2 . If

a is small enough, such that 2xn > xn−1, such b > 0 exists. �

Proposition 5.5. Let w = wλ,ε ∈ W . Then there is an x = (x1 > x2 > · · · > x` > 0) ∈ R`

with (qx − wx, α) > 0 for all α ∈ ∆.

Proof. Let w = wλ1,ε1 · · ·wλk ,εk
and put wi = wλi,εi

. Note that the vector of signs ε does

not affect this element. Set x1 = 1 and apply successively Lemma 5.4 (starting with w1).

We have (qx − wx, αk) = (qx − wix, αk) > 0 for k ∈ [mi, ni − 1]. Further,

(qx − wx, αni
) − (qx − wix, αni

) = −(xw−1(ni) − xw−1(ni+1)) + (xw−1

i (ni)
− xni+1)

= −xni+1 + xw−1(ni+1).
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Thus (qx − wx, αni
) > 0, since we arranged in Lemma 5.4 that (qx − wix, αni

) > xni+1.

�

Corollary 5.6. There exists x ∈ C with (qx − wx, α) > 0 for all α ∈ ∆.

Proof. We add to the x in Proposition 5.5 a multiple r · (1, 1, . . . , 1) such that x + r ·

(1, 1, . . . , 1) ∈ C. �

Type B` : In this case we use the following lemma.

Lemma 5.7. Let w = sm · · · sn−1 or w = s′m−1sm · · · sn−1. Let x1 > x2 > · · · > xm−1 >

xm > 0 be positive real numbers with xm−1 > 3xm if m ≥ 2. Then there exist xm+1 >

xm+2 > · · · > xn+1 > 0 with xm > xm+1 and xn > 3xn+1, such that for any choice of

xn+2 > xn+3 > · · · > x` > 0 with xn+1 > xn+2, we have

(qx − wx, α) > 0 ∀α ∈ ∆ and (qx − wx, αn) > 2xn+1 .

[if n = `, the last condition is interpreted as empty.]

Proof. The case of w = sm · · · sn−1 is similar to the one treated in Lemma 5.4. We only

have to check in addition that (qx − wx, e1) > 0 which is clear.

So, let w = s′m−1sm · · · sn−1. Again, it suffices to consider the case q = 2. We compute

wx = (x1, · · · , xm−1,−xn, xm, xm+1, · · · , xn−1, xn+1, xn+2, . . . , x`).

We get the same system of identities (5.1) as in the proof of Lemma 5.4 except for the first

two, which now become

(5.2) (2x − wx, αm−1) = 2(xm−1 − xm) − (xm−1 + xn)

and

(2x − wx, αm) = 2(xm − xm+1) + (xn + xm).

We also have to check that (2x − wx, e1) > 0. This is easy since

(2x − wx, e1) =

{

x1 if m 6= 1

2x1 + xn if m = 1
.

We only have to care of the first expression (5.2). We set xm+i := xm − ia with a > 0 for

1 ≤ i ≤ n − m and write

(2x − wx, αm−1) = 2(xm−1 − xm) − (xm−1 + xn) = (xm−1 − xm) − (xm + xn)

= (xm−1 − 3xm) + (n − m)a.

Since we have xm−1 > 3xm, this term is positive. Finally, we have to show that

(2x − wx, αn) = 2(xn − xn+1) − (xn−1 − xn+1) > 2xn+1

and

xn > 3xn+1.
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Write xn+1 = xn − b with 0 < b < xn. Then the first of the above inequalities becomes

2b > xn−1 + xn+1, i.e.,

3b > xn + xn−1

and the second becomes

3b > 2xn.

Similarly as in Lemma 5.4, we can find b such that these inequalities are solvable. �

Proposition 5.8. Let w = wλ,ε ∈ W . Then there is an x = (x1 > x2 > · · · > x` > 0) ∈ R`

with (qx − wx, α) > 0 for all α ∈ ∆.

Proof. The proof is the same as in the case of A`−1, except that we have

(qx − wx, αni
) − (qx − wix, αni

) = −xni+1 ± xw−1(ni+1).

Thus (qx−wx, αni
) > 0 since we made sure in Lemma 5.7 that (qx−wix, αni

) > 2xni+1. �

Note that the x in Proposition 5.8 lies in C.

Type D` : In this case we prove the following proposition.

Proposition 5.9. Let w = δwλ,ε ∈ W . Then there is an x = (x1 > x2 > · · · > x` > 0) ∈ R`

with (qx − wx, α) > 0 for all α ∈ ∆.

Proof. The element s′0 = s1t
′ is the reflection with e1 7→ −e1, e2 7→ −e2 and which fixes all

other ej . It follows that s′i(e1) = −e1, s′i(ei+2) = −ei+2 and s′i(ej) = ej for all j 6∈ {1, i+2}.

Let λ = (λ1, . . . , λk) be a decomposition of the closed interval [2, `] and consider a vector

of signs ε = (ε1, . . . , εk). Set |ε| := #{i | εi < 0}. Then one computes that the element

w = wλ,ε is given by

e1 7→ (−1)|ε|e1,

em1
7→ em1+1, em1+1 7→ em1+2, . . . , en1−1 7→ en1

, en1
7→ (−1)ε1em1

em2
7→ em2+1, em2+1 7→ em2+2, . . . , en2−1 7→ en2

, en2
7→ (−1)ε2em2

...

emk
7→ emk+1, emk+1 7→ emk+2, . . . , enk−1 7→ enk

, enk
7→ (−1)εkemk

.

It follows that wλ,ε corresponds to the element wλ̃,ε̃ of W (B`) with λ̃ = (1, λ) and ε̃ =

((−1)|ε|, ε).

If we multiply wλ,ε by δ ∈ {1, s1, t
′} from the left, only the first factor wλ1,ε1 of wλ,ε is

affected. In particular, we may reduce by Lemma 5.7 to the case λ = (λ1, 1, . . . , 1).

Case: δ = 1.

Let x ∈ R` be chosen as in Proposition 5.8. Then (qx − wx, αi) > 0 for all i ≥ 1. So, we

only have to ensure that (qx − wx, α0) = q(x1 + x2) − ((−1)|ε|x1 ± xw−1(2)) > 0 which is

clearly satisfied.

Case: δ = s1.
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Subcase: m1 = 2. Then w = δ · wλ1,ε1 is given by

e1 7→ (−1)|ε|e2,

e2 7→ e3, e3 7→ e4, . . . , en1−1 7→ en1
, en1

7→ (−1)ε1e1 .

If |ε| is even, this case is treated in Lemma 5.7. So, let |ε| be odd. We compute

wx = ((−1)ε1xn1
,−x1, x2, x3, . . . , xn1−1, xn1+1, . . . , x`) .

Hence

(qx − wx, α0) = q(x1 + x2) + (x1 + (−1)ε1+1xn1
) > 0

(qx − wx, α1) = q(x1 − x2) − x1 − (−1)ε1xn1

(qx − wx, α2) = q(x2 − x3) + (x1 + x2) > 0

(qx − wx, α3) = q(x3 − x4) − (x2 − x3)

...

(qx − wx, αn1−1) = q(xn1−1 − xn1
) − (xn1−2 − xn1−1)

(qx − wx, αn1
) = q(xn1

− xn1+1) − (xn1−1 − xn1+1)

If ε1 is even then we choose x1 > x2 > · · · > xn > 0 in the following way. Let x2 > 0

be arbitrary and set as in Lemma 5.7 x2+i = x2 − ia, i = 0, . . . , n − 3, with a > 0 small

enough. Further, let xn > 0 be such that xn−1 > 3xn. Finally choose x1 > x2 such that

x1 − x2 > x2 − xn. One checks that the above expressions are positive.

If ε1 is odd then one chooses x similarly.

Subcase: m1 > 2.

In this case, one reduces by Lemma 5.7 to the situation of w = s1 resp. w = s1 · t.

Case: δ = t′.

Subcase: m1 = 2. Then w = δwλ1,ε1 is given by

e1 7→ (−1)|ε|+1e2,

e2 7→ e3, e3 7→ e4, . . . , en1−1 7→ en1
, en1

7→ (−1)ε1+1e1 .

These cases are already covered by the previous one.

Subcase: m1 > 2.

In this case, one reduces by Lemma 5.7 to the situation of w = t′ resp. w = t′ · t.

�

Note that the x in Proposition 5.9 lies in C.
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