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Abstract. For a split reductive group G over a finite extension L of Qp, and a parabolic

subgroup P ⊂ G we examine certain properties of the functors FG
P introduced in [22].

We discuss the aspects of faithfulness, projective and injective objects, Ext-groups and

some kind of adjunction formula.
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1. Introduction

This paper is a continuation of the work done in [22]. In loc.cit. we constructed locally an-

alytic representations in K-vector spaces of a p-adic reductive Lie group G by introducing

certain bi-functors FGP : Op
alg × Rep∞,aK (LP ) → Reploc.an.

K (G). Here P ⊂ G is a parabolic
1



2 SASCHA ORLIK

subgroup, p = Lie(P ) its Lie algebra, and Op
alg is a subcategory of the BGG-category1

Op. Furthermore, Rep∞,aK (LP ) is the category of smooth admissible representations of

the Levi group LP . We proved among others that these functors are exact in both ar-

guments and gave a criterion for the irreducibility of those objects lying in the image of

FGP . Using these properties one can derive a Jordan-Hölder series of any locally analytic

representation FGP (M,V ) from the corresponding series of M and V .

In this paper we want to concentrate on properties of these functors for a split group G.

We shall show that they behave fully faithful if the objects of the category Op are integral

(i.e., they are contained in the subcategory Op
alg of modules such that all non-zero weight

spaces belong to integral weights) or generalized Verma modules. This aspect has been

considered by Morita in the case of G = SL2, cf. [15, 16, 17, 18] and Féaux de Lacroix

[7]. Concretely, we shall show:

Theorem 1. For any M1,M2 ∈ Op
alg the canonical map

HomOp
alg

(M1,M2) → HomG(FGP (M2),FGP (M1))

f 7→ FGP (f)

is bijective (where FGP (M) := FGP (M,1) for the trivial LP -representation 1 ).

To prove this statement we make use of the (naive) topological Jacquet functor of locally

analytic representations and more generally of an analogue of the Casselman-Jacquet

functor GGP : U 7→ lim−→k
H0(ukP , U

′) which behaves almost like a section for FGP . This topic

is a continuation of the theory started in [20, 2].

By the above theorem we can characterize projective and injective objects which lie in the

essential image FPalg of the functor FGP : Op
alg → Reploc.an.

K (G). More precisely, it follows

that M ∈ Op
alg is projective (resp. injective) as an object in Op if and only if FGP (M) is

injective (resp. projective) in FPalg. Hence if we denote for a given integer i ≥ 0, by ExtiFPalg

the corresponding Ext-group then the natural morphism

ExtiOp
alg

(M1,M2) → ExtiFPalg
(FGP (M2),FGP (M1))

is bijective. These Ext-groups are of course different from those considered more generally

in the category of locally analytic G-representations, cf. [14]. These can be seen as an

1Deviating from the classical situation of modules over the enveloping algebra of a complex semisimple

Lie algebra, we introduced in [22] a version of this category which consists of modules over the enveloping

algebra U(g⊗L K).
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analogue of relating the groups Extig(M1,M2) and ExtiO(M1,M2) for two objects M1,M2 ∈
O.
For considering also smooth contributions in this context, we extend FGP to a bi-functor

FGP : Op
alg × Rep∞,∞K (LP ) → Reploc.an.

K (G) where Rep∞,∞K (LP ) denotes the category of

smooth LP -representations of countable dimension. The latter object has enough injec-

tives and projectives. We let ∞FP be the smallest abelian subcategory of Reploc.an.
K (G)

which contains the essential images of all bi-functors FGQ with Q ⊃ P. It turns out that
∞FP has enough injective and projective objects. More precisely, we deduce this fact

from the following statement.

Theorem 2: Let M ∈ Op
alg be a projective (resp. injective) object and let V be an injective

(resp. projective) smooth LP -representation of countable dimension. Then FGP (M,V ) is

injective (resp. projective) in ∞FP .

As an application we are able to determine extensions of generalized Steinberg representa-

tions in the category ∞FB. For a parabolic subgroup P ⊂ G the associated representation

is given by the quotient V G
P = IndGP (1)/

∑
Q)P IndG

Q(1) where IndGP (1) is the locally an-

alytic induction with respect to the trivial P -representation 1. For a subset I ⊂ ∆ of a

fixed set of simple roots, let PI be the corresponding standard parabolic subgroup. The

next result has the same structure as in the smooth setting [5, 19].

Theorem 3: Let G be semi-simple. Let I, J ⊂ ∆. Then

Exti∞FB(V G
PI
, V G

PJ
) =

{
K ; |I ∪ J \ I ∩ J | = i

(0) ; otherwise
.

Finally we deduce from the naive Jacquet functor applied to different Borel subgroups

lying in the same apartment an adjunction formula (in the sense of Bernstein). Let

UB be the unipotent radical of a fixed Borel subgroup B. If we denote for a given G-

representation V by VUB its (naive) topological Jacquet module then the map below is

defined as follows: For an element f of the LHS, the corresponding element on the RHS

is given by the composition of the inclusion ((w0 ·B χ)−1)w0 ↪→ IndG
B

(χ−1)UB with the map

fUB : IndG
B

(χ−1)UB → FGBw(M)UB .

Theorem 4: Let χ be a dominant algebraic character of T and let M ∈ Obw

alg be a highest

weight module. Then

HomG(IndG
B

(χ−1),FGBw(M)) = HomT (((w0 ·B χ)−1)w0 ,FGBw(M)UB) .
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Notation and conventions. We denote by p a prime number and consider fields L ⊂ K

which are both finite extensions of Qp. Let OL and OK be the rings of integers of L,

resp. K, and let | · |K be the absolute value on K such that |p|K = p−1. The field L is

our ”base field”, whereas we consider K as our ”coefficient field”. For a locally convex

K-vector space V we denote by V ′b its strong dual, i.e., the K-vector space of continuous

linear forms equipped with the strong topology of bounded convergence. Sometimes, in

particular when V is finite-dimensional, we simplify notation and write V ′ instead of V ′b .

All finite-dimensional K-vector spaces are equipped with the unique Hausdorff locally

convex topology.

We let G0 be a split reductive group scheme over OL and T0 ⊂ B0 ⊂ G0 a maximal

split torus and a Borel subgroup scheme, respectively. We denote by G, B, T the base

change of G0, B0 and T0 to L. By G0 = G0(OL), B0 = B0(OL), etc., and G = G(L),

B = B(L), etc., we denote the corresponding groups of OL-valued points and L-valued

points, respectively. Standard parabolic subgroups of G (resp. G) are those which contain

B (resp. B). For each standard parabolic subgroup P (or P ) we let LP (or LP ) be the

unique Levi subgroup which contains T (resp. T ) and UP (or UP ) its unipotent radical.

Finally, Gothic letters g, p, etc., will denote the Lie algebras of G, P, etc.: g = Lie(G),

t = Lie(T), b = Lie(B), p = Lie(P), lP = Lie(LP), etc.. Base change to K is usually

denoted by the subscript K , for instance, gK = g⊗L K.

We make the general convention that we denote by U(g), U(p), etc., the corresponding

enveloping algebras, after base change to K, i.e., what would be usually denoted by U(g)⊗L
K, U(p) ⊗L K, and so on. All distribution algebras appearing in this paper are tacitly

assumed to be distribution algebras with coefficient field K, and we write D(H) for the
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distribution algebra D(H,K). For a real number r < 1 with r ∈ pQ, and H compact we let

Dr(H) be the Banach space completion in the sense of [26] so that D(H) = lim←−rDr(H).

Finally, Reploc.an.
K (G) denotes the category of locally analytic representations of G on

barreled locally convex Hausdorff K-vector spaces.

2. A review of the categories Op
alg and the functors FGP

For the convenience of the reader we recall here the definitions of the categories Op
alg, as

well the functors FGP , and state some of the key results about those, cf. [22].

2.1. The categories Op and Op
alg. For a parabolic subalgebra p ⊂ g we define Op to be

the full subcategory of the category of all U(g)-modules consisting of objects M which

possess the following properties:

(1) M is a finitely generated U(g)-module.

(2) M decomposes as a direct sum of one-dimensional tK-modules.

(3) The action of p on M is locally finite, i.e., for every m ∈ M the K-subspace

U(p).m ⊂M is finite-dimensional.

We also put O = Ob. Given M ∈ ob(O) and λ ∈ t∗K we set

Mλ = {m ∈M | ∀x ∈ t : x.m = λ(x)m} .

We call λ ∈ t∗K algebraic if it is in the image of the canonical homomorphism

X∗(T) = Homalg. gps(T,Gm,L) −→ t∗K , χ 7→ dχ .

We define Op
alg to be the full subcategory of Op which consists of M ∈ ob(Op) such that

Mλ 6= 0 implies that λ is algebraic.

2.2. The functors FGP . We consider an object M of the category Op
alg. By [22, 3.2],

the locally finite action of p on M lifts canonically to a locally finite algebraic action of

the algebraic group PK . Since M is finitely generated over U(g), we can choose a PK-

subrepresentation W ⊂ M which generates M as a U(g)-module. Thus we get an exact

sequence

(2.2.1) 0 −→ d −→ U(g)⊗U(p) W −→M −→ 0

Let IndGP (W ′) be the locally analytic induction of the dual space W ′. There is a pairing



6 SASCHA ORLIK

〈·, ·〉Can(G,K) :
(
D(G)⊗D(P ) W

)
⊗K IndGP (W ′) −→ Can(G,K)

(δ ⊗ w)⊗ f 7→
[
g 7→ δ(x 7→ f(gx)(w))

]
which extends for any smooth admissible LP representation, to a pairing

(2.2.2) 〈·, ·〉Can(G,V ) :
(
D(G)⊗D(P ) (W ⊗K V ′)

)
⊗K IndGP (W ′ ⊗K V ) −→ Can(G,K) .

Here and in the following we always equip an admissible smooth representation V with

the finest locally convex topology (the final topology with respect to which all inclusion

maps V1 ↪→ V , where V1 ⊂ V is finite-dimensional, are continuous, cf. [24, ch. I, §5,

E]). As W is finite-dimensional, the topology of the inductive tensor product W ⊗K,ι V ′

coincides with that of the projective tensor product W ⊗K,π V ′, and we thus write simply

W ⊗K V ′ for this topological vector space (cf. [24, §17] for tensor products of topological

vector spaces and the notation used here). We set

IndGP (W ′ ⊗K V )d = {f ∈ IndGP (W ′ ⊗K V ) | ∀z ∈ d : 〈z, f〉Can(G,V ) = 0} .

Then IndGP (W ′ ⊗K V ) carries the structure of a K-vector space of compact type, and it

is easily seen that the linear maps IndGP (W ′ ⊗K V ) → Can(G,K) defined by the pairing

(2.2.2) are continuous. Hence IndGP (W ′ ⊗K V )d is a closed subspace of IndGP (W ′ ⊗K V ),

and we equip it with its subspace topology. As such it is again of compact type [25, 1.2].

By [6, 2.1.2], IndGP (W ′ ⊗K V ) is an admissible locally analytic representation of G, and

IndGP (W ′ ⊗K V )d is thus again an admissible locally analytic representation of G, cf. [26,

6.4].

If W1 ⊂ W2 are two finite-dimensional pK-stable subspaces which generate M as a U(g)-

module, then there is a canonical continuous morphism of G-representations

(2.2.3) IndGP (W ′
2 ⊗K V )d2 −→ IndGP (W ′

1 ⊗K V )d1 ,

where di is defined by the corresponding exact sequence 2.2.1. By [22, 4.5] the map 2.2.3

is actually an isomorphism of topological vector spaces. We thus see that the formation

of IndGP (W ′ ⊗K V )d is independent of the choice of W , and we put

(2.2.4) FGP (M,V ) = IndGP (W ′ ⊗K V )d .
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Denote by Rep∞,aK (LP ) the category of smooth admissible representations of LP and by

Reploc.an.
K (G) the category of locally analytic representations of G on K-vector spaces.

Then we have a bi-functor

(2.2.5) FGP : Op
alg × Rep∞,aK (LP ) −→ Reploc.an.

K (G) .

If V = 1 denotes the trivial representation, then we simply write FGP (M) for FGP (M,V ).

Theorem 2.2.6. [22, 4.9, 5.3]

a) The bi-functor FGP is exact in both arguments.

b) (PQ-formula) If Q ⊃ P is a parabolic subgroup, q = Lie(Q), and M an object of OQ,

then

FGP (M,V ) = FGQ (M, i
LQ
LP (LQ∩UP )(V )) ,

where i
LQ
LP (LQ∩UP )(V ) = iQP (V ) = indQP (V ) denotes the corresponding induced representa-

tion in the category of smooth representations.

c) Suppose M ∈ Op
alg is simple and that p is maximal for M (i.e., if M ∈ Oq with q ⊃ p,

then q = p). Let V be a smooth and irreducible LP -representation. Then FGP (M,V ) is

topologically irreducible as a G-representation2.

2.3. A description of the dual space of FGP (M). By [25, 3.2], M carries a canonical

structure of a module over the locally analytic distribution algebra D(P ) = D(P,K). Let

D(g, P ) be the subring ofD(G) generated by U(g) andD(P ) insideD(G). By [22, 3.6], the

U(g)-module structure on M and the D(P )-module structure on M agree on the subring

U(p), and there is a unique structure of a module over D(g, P ) on M which extends these

module structures. By [22, 3.7] there is a canonical isomorphism of D(G)-modules

(2.3.1) FGP (M)′ ∼= D(G)⊗D(g,P ) M .

2Here we assume that if the root system Φ = Φ(g, t) has irreducible components of type B, C or F4,

then p > 2, and if Φ has irreducible components of type G2, we assume that p > 3.
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3. Jacquet functors

3.1. Jacquet module for irreducible objects FGP (M,V ). The first part of this section

deals with a résumé of results formulated in [20, 2], where the Jacquet functor of simple

objects FGP (M,V ) with M ∈ Op
alg was discussed.

Let P be a parabolic subgroup of G with Levi decomposition P = LPUP . For a locally

analytic P -representation V , let V (UP ) be the subspace generated by the expressions

uv − v, with u ∈ UP , v ∈ V and let V (UP ) be its topological closure which is a P -stable

subspace of V . Denote by

H0(UP , V ) := VUP := V/V (UP )

the corresponding quotient (the naive topological Jacquet module). It is the largest

Hausdorff quotient of V on which UP acts trivially.

Lemma 3.1.1. The space H0(UP , V ) has the canonical structure of a locally analytic

P -representation.

Proof. Since V (UP ) is a closed subspace of V , the quotient is a barreled locally convex

Hausdorff vector space. Moreover the orbit maps P → H0(UP , V ) are clearly locally

analytic since these are induced by the locally analytic orbit maps P → V. 2

On the other hand, if V is of compact type then its dual V ′ is a K-Fréchet space equipped

with a continuous and locally analytic action of P . We let H0(UP , V
′) be the subspace of

V ′ consisting of vectors which are fixed by UP . This is a closed subspace so that H0(UP , V
′)

inherits the structure of a K-Fréchet space equipped with an action of P , as well. Since

the action of P is locally analytic we can define the subspace

H0(uP , V
′) = {w ∈ V ′ | x · w = 0,∀x ∈ uP}

and the Hausdorff quotient H0(uP , V ) = V/uPV , as well. Then H0(uP , V
′) is by the conti-

nuity of the p-action a closed P -equivariant subspace of V ′ with H0(UP , V
′) ⊂ H0(uP , V

′).

Lemma 3.1.2. Let V be of compact type. Under the duality pairing V × V ′ → K

the subspace H0(UP , V
′) (resp. H0(uP , V

′)) is the topological dual of H0(UP , V ) (resp.

H0(uP , P )) as P -representations.

Let Q be another parabolic subgroup with P ⊂ Q and let Q = LQ · UQ be its Levi

decomposition. In this sequel we want to determine for certain objects M ∈ Oq
alg and

smooth admissible LQ-representations V the LP -representations H0(UP ,FGQ (M,V )′).
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For a compact open subgroup H ⊂ G0, let PH = H ∩P and let D(PH , g) ⊂ D(H) be the

subring generated by g and PH . Moreover, let Dr(PH , g) be the Banach space completion

of D(PH , g) inside Dr(H) and set Mr := Dr(PH , g)⊗D(PH ,g) M.

Proposition 3.1.3. Let M be an object of Op
alg. We have an inclusion preserving bijection{

closed U(lP )-invariant subspaces of Mr

}
∼−→

{
U(lP )-invariant subspaces of M

}
.

S 7−→ S ∩M

The inverse map is induced by taking the closure.

Proof. By [20] we have such an inclusion preserving bijection{
closed U(t)-invariant subspaces of Mr

}
∼−→

{
U(t)-invariant subspaces of M

}
.

S 7−→ S ∩M

for U(t)-submodules. But for a closed U(t)-submodule N ⊂ Mr the intersection N ∩M
is lP -stable if and only if N is U(lP )-stable. Indeed, whereas one direction is obvious the

other one follows by density arguments. The claim follows. 2

Recall that if M is a Lie algebra representation of g, then H0(uQ,M) = {m ∈M | x ·m =

0 ∀ x ∈ uQ} denotes the subspace of vectors killed by uQ.

Corollary 3.1.4. Let M be an object of Op
alg. Then H0(uP ,Mr) = H0(uP ,M). In partic-

ular, H0(uP ,Mr) is finite-dimensional.

Proof. We clearly have H0(uP ,Mr)∩M = H0(uP ,M). As H0(uP ,Mr) is closed in Mr by

the continuity of the action of g and as H0(uP ,M) is finite-dimensional (!!!!) and therefore

complete the statement follows by Proposition 3.1.3. 2

Lemma 3.1.5. Let M be an object of Oq
alg where P ⊂ Q and let V be a smooth admissible

LQ-representation. Then there is an identification

H0(uP ,FGQ (M,V )′) = H0(uP ,FGQ (M)′)⊗̂KV ′

of Fréchet spaces with P -action (Here the action of P on V ′ is given by the composite

P ↪→ Q� LQ.) .

Proof. The proof is the same as in [20] by replacing uB by uP . 2

For M ∈ Oq
alg, let W ⊂ M be a finite-dimensional algebraic Q-subrepresentation such

that the map (a morphism in Oq
alg)

M(W ) := U(g)⊗U(q) W →M
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is surjective. If M is simple so that we may assume that W comes via inflation from

an irreducible LQ-representation then H0(uQ,M) = W . We set in this situation WM :=

H0(uQ,M).

Now we are able to state one of the building blocs of this paper which is an analogue of

a statement dealing with representations of real Lie groups and Harish-Chandra modules

[9, 8]. Its proof is already contained in [20, 2], so that this result is not really new.

Nevertheless, for later use we are going to give a proof of it.

Theorem 3.1.6. Let M be a simple object of Oq
alg with Q maximal for M . Let V be a

smooth admissible LQ-representation. Then for P ⊂ Q there are P -equivariant topological

isomorphisms

H0(UP ,FGQ (M,V )′) = H0(uP ,WM)⊗K JUP∩LQ(V )′,

and

H0(UP ,FGQ (M,V )) = H0(uP ,W
′
M)⊗K JUP∩LQ(V ),

where JUP∩LQ is the usual Jacquet functor for the unipotent subgroup UP ∩ LQ ⊂ LQ.

Proof. By the duality treated in Lemma 3.1.2 it suffices to check the first identity. Here

we assume first that V = 1 is the trivial representation and that P = Q. Write M = L(λ)

for some algebraic character λ of T.

We follow the proof of [20, Thm. 3.5]. Let I ⊂ G be the standard Iwahori subgroup.

For w ∈ W , let Mw = M be the D(g, I ∩wP0w
−1)-module with the twisted action given

by conjugation with w. Let I ⊂ ∆ be a subset with P = PI . The Bruhat decomposition

G0 =
∐

w∈W I IwP0 induces a decomposition

D(G0)⊗D(g,P0) M '
⊕
w∈W I

D(I)⊗D(g,I∩wP0w−1) M
w

'
⊕
w∈W I

D(w−1Iw)⊗D(g,w−1Iw∩P0) M.

For each w ∈ W I , we have

H0(uP , D(I)⊗D(g,I∩wP0w−1) M
w) ' H0(Ad(w−1)(uP ), D(w−1Iw)⊗D(g,w−1Iw∩P0) ⊗M).

We can write each summand in the shape

Mw := D(w−1Iw)⊗D(g,w−1Iw∩P0) M = lim←−
r

Mw
r
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where Mw
r = Dr(w

−1Iw) ⊗D(g,w−1Iw∩P0) M . If we denote by Mw
r the topological closure

of M in Mw
r , we get by [13, 1.4.2] finitely many elements u ∈ U−P0

such that

Mw
r '

⊕
u

δu ⊗Mw
r

and the action of x ∈ Ad(w−1)(uP ) is given by

x ·
∑

δu ⊗mu =
∑

δu ⊗ Ad(u−1(x))mu.

In [20, Thm 3.5] it is explained that for w 6= 1, there is a non-trivial element x ∈ u−P ∩
Ad(w−1)(uP ). Since P is maximal for M and M is simple we deduce by [21, Corollary 8.6],

that elements of u−P act injectively on M , and as explained in Step 1 of [21, Theorem 5.7]

they act injectively on Mw
r , as well. We conclude that H0(Ad(u−1)(Ad(w−1)(uP )),Mw

r ) =

0 for w 6= 1 since Ad(u−1)(x) ∈ u−P . So H0(Ad(w−1)(uP ),Mw
r ) = 0. Hence by passing to

the limit we get H0(Ad(w−1)(uP ),Mw) = 0 for w 6= 1.

Now consider the case w = 1. Again we may write D(I)r =
⊕

δuD(g, P0)r for a finite

number of u ∈ U−P,0, so that D(I)r ⊗D(g,P0)r M
1
r =

⊕
u δu ⊗M1

r . We shall show that if

u /∈ U−P,0 ∩D(g, P0)r, then H0(Ad(u−1)uP ,M
1
r ) = 0. Here we will use Step 2 in the proof

of [21, Theorem 4.7] where we have used that P is maximal for M. Let M̂ be the formal

completion of M , i.e. M̂ =
∏

µMµ which is a g-module. The action of u−P can be extended

to an action of U−P as explained in loc.cit. If x ∈ g and u ∈ U−P , the action of ad(u)x on

Mr is the restriction of the composite u ◦ x ◦ u−1 on M̂ . Let M̂ be the formal completion

of M , i.e. M̂ =
∏

µMµ which is a g-module. The action of u−P can be extended to an

action of U−P as explained in loc.cit. If x ∈ g and u ∈ U−P , the action of ad(u)x on Mr is

the restriction of the composite u ◦ x ◦ u−1 on M̂ . As a consequence, we get

H0(ad(u−1)uP ,M
1
r ) = M1

r ∩ u−1 ·H0(uP , M̂)

= M1
r ∩ u−1WM

since H0(uP , M̂) = H0(uP ,M) = WM (Here and in the sequel we copy the argumentation

of Breuil [2]). Let v+ be a highest weight vector of M . If the term H0(ad(u−1)uP ,M
1
r ) 6=

(0) does not vanish, then we have consequently u−1WM ∩ M1
r 6= (0). we deduce that

u−1WM ⊂ M1
r since WM is irreducible. In particular u−1v+ ∈ Mr. By the proof of [21,

Theorem 4.7], this gives a contradiction if u /∈ U−P ∩Dr(g, P0). Hence by passing to the

limit and using Corollary 3.1.4 we obtain finally an isomorphism of Fréchet spaces

H0(uP , D(I)⊗D(g,P0) M) ' H0(uP ,M) = WM .
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Next we consider the general situation where also a smooth representation is involved and

where P ⊂ Q. By Lemma 3.1.5 and what we proved above we get

H0(uP ,FGQ (M,V )′) = H0(uP , H
0(uQ,FGQ (M,V )′) = H0(uP ,WM)⊗K V ′,

Since H0(UP ,FGQ (M,V )′) is a subspace of H0(uP ,FGQ (M,V )′) the latter one is stable by

the action of UP . Thus we deduce by Lemma 3.1.5 that

H0(UP ,FGQ (M,V )′) = H0(UP , H
0(uP ,FGQ (M,V )′))

= H0(UP , H
0(uP ,WM)⊗K V ′)

= H0(uP ,WM)⊗K JUP∩LQ(V )′.

The last identity follows from the fact that the action of UP on WM is induced by the one

of uP . 2

3.2. An analogue of the Casselman-Jacquet functor. The next result generalizes

Theorem 3.1.6 by considering non-necessarily simple modules M .

Proposition 3.2.1. Let M ∈ Op
alg and let V be a smooth admissible LP -representation.

Then there are canonical (topological) identities

H0(uP ,FGP (M,V )′) =
⊕

W⊂H0(uP ,M)

W ⊗ SW (V )′

and

H0(uP ,FGP (M,V )) =
⊕

W⊂H0(uP ,M)

W ′ ⊗ SW (V )

of P -representations where SW (V ) is a quotient of iPWP (V )|P for some standard para-

bolic subgroup PW ⊃ P with V ⊂ (SW (V ))|P . (Here the sum is over all simple LP -

subrepresentations W of H0(uP ,M)′ with multiplicities.)

Proof. By Lemma 3.1.2 it is enough to prove the result for the uP -invariants of the (topo-

logical) dual FGP (M,V )′.

For simple objects M = L(λ) we use Theorem 3.1.6. If here the considered parabolic

subgroups P and Q are identical then the claim is trivial since

H0(uP ,FGP (M,V )′) = WM ⊗K V ′.

Otherwise, we get

H0(uP ,FGP (M,V )′) = H0(uP ,WM)⊗K iQP (V )′.
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Then we apply [12, II, Prop. 2.11]. The latter reference says that for an algebraic simple

G-module M the fix space MUP is a simple LP -module, as well. Hence the module LP -

module H0(uP ,WM) = WUP
M is simple and contributes to the index family of the direct

sum.

In general we fix a JH-series of M and apply induction to the number of irreducible

subquotients of M . More precisely, we consider an exact sequence

0→M1 →M
p→M2 → 0

in our category Op
alg where we suppose that M2 is simple. Hence we get by applying our

bi-functor FGP composed with taking the dual an exact sequence

0→ FGP (M1, V )′ → FGP (M,V )′ → FGP (M2, V )′ → 0.

Next we take uP -invariants which gives together with the induction hypothesis and the

start of induction a (left) exact sequence

0→
⊕

W⊂H0(uP ,M1)

W ⊗ SW (V )′ → H0(uP ,FGP (M,V )′)
g→ W2 ⊗ iQP (V )′

where Q is maximal for M2 and W2 = H0(uP ,M2). Next we consider the natural map

p̄ = H0(uP , p) : H0(uP ,M)→ H0(uP ,M2)

and distinguish the following two cases:

1st case: p̄ = 0. In this case we claim that the map g also vanishes. Indeed, for seeing this

we have to reenter the proof of Theorem 3.1.6. Here3 we saw the identities

H0(uP ,FGP (M)′) =
⊕
w∈W I

H0(Ad(w−1)(uP ), D(w−1Iw)⊗U(g,w−1Iw∩P0) ⊗M)

and

H0(Ad(w−1)uP , D(w−1Iw)⊗U(g,w−1Iw∩P0) ⊗M) = lim←−
r

∑
u

δu ⊗H0(Ad((wu)−1)(up),M)

where u varies in U−P,0 depending on r. The map H0(uP ,FGP (M)′)→ H0(uP ,FGP (M2)
′) is

clearly compatible (graded) with respect to the operations
⊕

w∈W I ,
∑

r and lim←−r .
If w 6∈ Q or u 6∈ Q, then H0(Ad((wu)−1)(uP ), D(w−1Iw)⊗U(g,w−1Iw∩P0) ⊗M2) = 0 by the

proof of Theorem 3.2.4. In particular, if P = Q we are done.

If w ∈ Q and u ∈ Q, then uQ = Ad((wu)−1)(uQ) ⊂ Ad((wu)−1)(uP ). By assump-

tion the contribution δu ⊗ H0(Ad((wu)−1)(up),M) vanishes under g for w = 1, u = 1.

3which holds for arbitrary modules M .
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Suppose on the other hand that for w 6= 1, u 6= 1, there is a non-trivial vector v ∈
H0(Ad((wu)−1)(uP ),M), v 6= 0. As Ad((wu)−1)(uP )∩ u−p 6= 0 there is a root α of u−P such

that the corresponding root subspace uα kills v. In particular, uα acts locally finitely on

v. The subspace N ⊂ M on which uα acts locally finitely is a U(g)-submodule, cf. [22,

Lemma 8.2] and contains v. Thus v ∈ H0(Ad((wu)−1)uP , N) ⊂ H0(Ad((wu)−1)uP ,M).

Further N ( M is a proper submodule. Indeed, suppose that N = M. Since M ∈ Op
alg

there must be a simple subquotient of M for which P is maximal, cf. [11, 9.3 Prop.] and

on which uα acts locally finitely, as well. But this is not possible by [22, Cor. 8.7].

If N is simple then there are the following 2 cases:

α) Let N ⊂M1. Then clearly g(v) = 0.

β) Let N * M1. Then N is mapped isomorphically onto M2 giving rise to a splitting of

the surjection M →M2. A contradiction to the vanishing of the map p̄.

In general we argue on induction on the length on M to see that g(v) = 0 (Indeed we

apply the induction hypothesis to N). It follows that the map H0(Ad((wu)−1)(uP ),M)→
H0(Ad((wu)−1)(uP ),M2) vanishes, as well. Thus g = 0.

2nd case: p̄ 6= 0. In this case p̄ is automatically surjective. Hence we see that there is an

exact sequence

0→
⊕

W⊂H0(uP ,M1)

W ⊗ SW (V )′ → H0(uP ,FGP (M,V )′)
g→ W2 ⊗ SW2(V )′ → 0

for some quotient SW2(V ) of iQP (V ). Since H0(uP ,M) is obviously always contained in

H0(uP ,FGP (M)′) we see that V ⊂ (SW2(V ))|P . On the other hand, it follows from the

definition of the category Op that we have H0(uP ,M) = H0(uP ,M1)
⊕

H0(uP ,M2) as

LP -modules with H0(uP ,M2) = W2. Since the action of UP is trivial on these spaces,

this identity holds even as P -representations. It follows that H0(uP ,FGP (M,V )′) ⊂
H0(uP , D(G) ⊗D(g,P ) H

0(uP ,M)⊗̂V ′). (For simple objects this is trivial and in general

use induction together with the argument above). Since D(G) ⊗D(g,P ) H
0(uP ,M)⊗̂V ′ =

(D(G) ⊗D(g,P ) H
0(uP ,M1)⊗̂V ′)

⊕
(D(G) ⊗D(g,P ) H

0(uP ,M2)⊗̂V ′) we see that above se-

quence splits.

. 2

We can generalize the previous result as follows. Fix an integer k ≥ 1. Let ukP ⊂ U(g) be

the subspace generated by all the products x1 · · ·xk with xi ∈ uP . With the same proof

one checks:
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Proposition 3.2.2. Let M ∈ Op
alg and let V be a smooth admissible LP -representation.

Then there are canonical (topological) identities

H0(ukP ,FGP (M,V )′) =
⊕

W⊂H0(ukP ,M)

W ⊗ SW (V )′

and

H0(u
k
P ,FGP (M,V )) =

⊕
W⊂H0(ukP ,M)

W ′ ⊗ SW (V )

of P -representations where SW (V ) is a quotient of iPWP (V )|P for some standard parabolic

subgroup PW ⊃ P with V ⊂ (SW )(V )|P . (Here the sum is over all maximal indecompos-

able P -subrepresentations W of the finite-dimensional P -representation H0(ukP ,M) with

multiplicities.)

Proof. We start with the remark that Lemma 3.1.2 generalizes to these ukP -invariants so

that H0(u
k
P ,FGP (M,V )) is the topological dual of H0(ukP ,FGP (M,V )′) as P -representation.

As already mentioned the proof coincides with that of Proposition 3.2.1. We list here the

corresponding modifications.

For the start of induction which is essentially Theorem 3.1.6 one has to pay attention. Here

we follow the proof of loc.cit. where k = 1. If w 6= 1, then some elements of ukP act injec-

tively on Mw
r , too. Hence all the contributions H0(Ad(w−1)(uP ), D(w−1Iw)⊗U(g,w−1Iw∩P0)

⊗M) vanish. As for w = 1 we observe that H0(ad(u−1)ukP ,M
1
r ) 6= 0 implies that

H0(ad(u−1)uP ,M
1
r ) 6= 0. Hence we obtain for a simple object M for which P is max-

imal the identity

H0(ukP ,FGP (M,V )′) = H0(ukP ,M)⊗ V ′.

The object H0(ukP ,M) is an indecomposable P -module which gives the claim in this case.

If Q ⊃ P is maximal for M we get

H0(ukP ,FGP (M,V )′) = H0(ukP , H
0(ukQ,M))⊗ iQP (V )′.

But the first factor is again indecomposable since even H0(ukB,M) is indecomposable as it

coincides with the sum
∑

i1+···+id<kK · y
i1
α1
· · · yidαd · v

+, where v+ is a highest weight vector

generating H0(uP ,M), {α1, . . . , αd} is a root basis and yα1 , . . . , yαd ∈ u−P are the usual

generators of the weight spaces.).

As for the induction step we note that p̄ : H0(up,M) → H0(up,M2) is surjective iff

H0(ukp,M)→ H0(ukp,M2) is surjective for all k (by considering the epimorphisms U(u−p )⊗
H0(up,M)→M and U(u−p )⊗H0(up,M2)→M2, respectively.). 2
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Remark 3.2.3. By the proof of the above propositions we deduce the following fact for

two integers l > k ≥ 1. If Wk ⊂ H0(ukP ,M) and Wl ⊂ H0(ulP ,M) are two maximal

indecomposable P -subrepresentations such that Wk ⊂ Wl then SWk
(V ) = SWl

(V ).

For a locally analytic T -representation V and a locally analytic character λ : T → K∗ we

denote by

Vλ := {v ∈ V | tv = λ(t)v ∀t ∈ T}
the λ-eigenspace of V . We set

Valg :=
⊕

λ∈X∗(T )

Vλ.

Corollary 3.2.4. Let M ∈ Op
alg and k ≥ 1. Then H0(UP ,FGP (M))alg = H0(uP ,M)′ and

H0(u
k
P ,FGP (M))alg = H0(ukP ,M)′.

Proof. Since the weight spaces of M are algebraic we see that (W ⊗ SW (1))alg = W for

all contributions W in H0(ukP ,M). Hence the claim follows. 2

In the case of generalized Verma modules we can give a more precise statement.

Proposition 3.2.5. Let M = U(g) ⊗U(p) W ∈ Op
alg be a generalized Verma module for

some parabolic subgroup P and let V be a smooth admissible LP -representation. Then

H0(UP ,FGP (M,V )) = H0(uP ,M)′ ⊗ V and H0(u
k
P ,FGP (M,V )) = H0(ukP ,M)′ ⊗ V for all

k ≥ 1.

Proof. We may suppose that V is trivial. The start of the proof is the same as in Theorem

3.1.6. For w 6= 1 one checks that the contributions H0(ukP , D(I)⊗U(g,I∩wP0w−1) M
w) van-

ishes well since a generalized Verma module is free over U(u−P ) and consequently elements

of u−P act injectively on M.

Now consider the case w = 1. Here we shall show that if u ∈ U−P,0 \ {1}, then we

have H0(Ad(u−1)(uP ),M) = 0. Indeed, let u 6= 1. Since the normalisator of uP under

the adjoint action of G is the parabolic subgroup P , there is some v ∈ uP such that

uvu−1 6∈ uP . Write uvu−1 = v− + v+ where v− ∈ u−P and v+ ∈ p. Let m ∈ Mχ,m 6= 0 for

some weight χ. As we have already used above the action of u−P is injective on M . Hence

v− ·m 6= 0. But the elements v−, v+ shift the weights of M in opposite directions. Any

identity (v− + v+) ·m = 0 would imply 0 6= v−m = −v+m which yields thus for weight

reasons a contradiction. In general we decompose any element m ∈ M into its weight

components. For simplicity let m = m1 + m2 where mi ∈ Mχi and χ1 6= χ2 are weights.

Again we consider the sequence 0 6= v−m = v−m1 + v−m2 = −v+m1 − v+m2. Comparing



ON SOME PROPERTIES OF THE FUNCTORS FG
P 17

weights and that the action of u−P on M is injective we see that this is not possible. Hence

H0(Ad(u−1)(uP ),M) = 0 since uvu−1 acts injectively on M. With the same proof as in

Step 1 of [21, Thm. 5.7] one checks that v− acts injectively on Mr. As the weights for

the action of v+ on Mr are different from those of v−, we see that uvu−1 acts injectively

on Mr as well. Thus H0(Ad(u−1)(uP ),Mr) = 0. By repeating the arguments in Theorem

3.1.6 we obtain an isomorphism of Fréchet spaces

H0(uP , D(I)⊗U(g,P0) M) ' H0(uP ,M).

The claim follows moreover for all k ≥ 1 inductively since Ad(u−1)(ukP ) = Ad(u−1)(uP )k.

Indeed, set x = Ad(u−1)(uP ) and suppose that there is an m ∈ M with xkm = 0 for

all x ∈ Ad(u−1)(uP ). Then xk−1m = 0 by what we have shown above. By induction

hypothesis it follows m = 0. 2

Example 3.2.6. Let G = GL2 and consider the exact sequence 0→M(s · 0)→M(0)→
1→ 0. By applying of FGB and dualizing we get an exact sequence

0→ D(G)⊗D(g,B) M(s · 0)→ D(G)⊗D(g,B) M(0)→ (iGB(1))′ → 0.

Taking H0(uB,−)-invariants we get a left exact sequence

0→ Ks·0 → Ks·0
⊕

K0 → (iGB(1))′

which is not exact.

Remark 3.2.7. The same statement holds true (with the same proof) for objects M ∈
Op

alg of the shape M = U(g)⊗U(p)W where W is an arbitrary finite-dimensional algebraic

P -representation. In particular, it holds for objects M which are projective in the category

Op
alg since such an object it is free as a U(u−P )-module [11].

Next there is the following variant of the above proposition concerning the other parabolic

subgroups of type P lying in the same apartment induced by T . Let P = PI = LPUP
and set for w ∈ W I , Pw = w−1Pw,LwP = w−1LPw,U

w
P = w−1UPw. Here for a LwP -module

V , we let V w be the LP -module twisted by w, i.e. we consider the action induced by

composing the given action with the homomorphism LP → w−1LPw, g 7→ w−1gw.

Proposition 3.2.8. With the above notation, let M ∈ Opw

alg be a generalized Verma module

with respect to Pw or a simple module such that Pw is maximal for M . Let V be a

smooth admissible LwP -representation. Then H0(UP ,FGPw(M,V )) = (H0(u
w
P ,M)′)w ⊗ V w

and H0(u
k
P ,FGPw(M,V )) = (H0((u

w
P )k,M)′)w ⊗ V w for all k ≥ 1.
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Proof. The proof is the same as above. The difference is that this time all contributions

H0(Ad(x−1)ukP , D(x−1Ix)⊗U(g,x−1Ix∩Pw0 ) ⊗M) with x 6= w vanish. 2

Next we consider an analogue of the Casselman-Jacquet functor [4], i.e., limits of the

above functors H0(ukP ,−) (resp. H0(u
k
P ,−) by duality) with varying k. For a locally

analytic G-representation U , the expression lim−→k
H0(ukP , U

′) is a g o P -module as the

same reasoning as in loc.cit. applies. We denote by

GGP : RepK(G)loc.an. → ModgoP

the induced functor. As before let M be an object ofOp
alg and let V be a smooth admissible

LP -representation. Then the object lim−→k
H0(ukP ,FGP (M,V )′) is even a D(g, P )-module

since M is an inductive limit of finite-dimensional P -representations. In this way we get

in some sense a right adjoint to the globalisation functor FGP . Moreover, it defines a

”section” of it for some objects in Op
alg×Rep∞,aK (LP ) (i.e. GGP (FGP (M,V )) = M ⊗V ′) , cf.

Proposition 3.2.5 and Theorem 3.1.6. In general we can deduce the following statement.

Proposition 3.2.9. Let M ∈ Op
alg and let V be a smooth admissible LP -representation.

Then there is a canonical (topological) identity

GGP (FGP (M,V )) =
⊕
N⊂M

N ⊗ SN(V )′

of P -representations where SN(V ) is a quotient of iPNP (V )|P with V ⊂ (SN)(V )|P for the

uniquely standard parabolic subgroup PN ⊃ P which is maximal for N. (Here the sum is

over all simple constituents N of M with multiplicities.)

Proof. This follows from Proposition 3.2.2 by taking the inductive limit. Note that

lim−→k
H0(ukp,M) = M. 2

Proposition 3.2.10. Let U be some irreducible subquotient of some FGP (M,V ) with M ∈
Op

alg. Then GGP (U) is a simple D(g, Q)-module for some parabolic subgroup Q ⊂ G with

P ⊂ Q.

Proof. Since U is simple it must coincide by the JH-theorem applied to FGP (M,V ) with

some object of the shape FGQ (N,W ) where N is a simple subquotient of M , Q is maximal

for N and W is an irreducible subquotient of iQP (V ). But for these objects we deduce by

Proposition 3.2.9 that GGQ(U) = N ⊗W ′. On the other hand, we have GGQ(U) = GGP (U)

since any element of N is killed by weight reasons by some ukP , k ≥ 1. Hence we get the

claim. 2
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As a by-product we get the following statement by applying the functor GGP and Propo-

sition 3.2.2. One part of it was already given by Breuil [2, Cor. 2.5].

Corollary 3.2.11. Let U be an irreducible subobject (quotient) of some FGP (M,V ) with

M ∈ Op
alg. Then U has the shape FGQ (N,W ) where P ⊂ Q and N is a simple quotient of

M (submodule) and W is an irreducible subrepresentation (quotient) of iQP (V ).

Proof. In the proof of the foregoing proposition we saw that U has the shape FGQ (N,W )

where N is a simple subquotient of M , Q is maximal for N and W is an irreducible

subquotient of iQP (V ). If U is a quotient then we get by the left exactness of the functor

GGP an injection GGP (U) ↪→ GGP (FGP (M,V )) of D(g, P )-modules. In particular, we see that

N is a submodule of M since GGP (U) = N ⊗W ′ . Further we see, e.g., by Proposition

3.2.9 that W ′ ⊂ SN(V ) = iQP (V ). The claim follows.

If i : U ↪→ FGP (M,V ) is a subobject we get a morphism GGP (i) : GGP (FGP (M,V ))→ GGP (U).

The dual of i is a homomorphism i′ : D(G)⊗D(g,P ) M⊗̂V ′ → D(G)⊗D(g,Q) N⊗̂W ′ which

gives rise by the very definition (taking lim−→k
of ukp-invariants) to the morphism GGP (i).

Since M ⊗ V ′ = lim−→k
H0(ukP ,M) ⊗ V ′ we see that the composite of the natural map

M ⊗V ′ → GGP (FGP (M,V )) with GGP (i) is a map M ⊗V ′ → N ⊗W ′. The latter one induces

by taking the composite of D(G)⊗D(g,P )− with the natural map D(G)⊗D(g,P )N ⊗W ′ →
D(G)⊗D(g,Q)N ⊗W ′ the map i′. In particular the map M ⊗V ′ → N ⊗W ′ is non-trivial.

By Frobenius reciprocity we get a non-trivial homomorphism M ⊗ iQP (V )′ → N ⊗ W ′

of g × Q-modules. As the latter module is simple we obtain surjections M → N and

iQP (V )′ → W ′. The claim follows. 2

4. Are the functors FGP faithful?

In this section we want to address the question whether the functors FGP are faithful resp.

fully faithful. This aspect was discussed for G = SL2 already in the series of papers by

Morita [15, 16, 17].

Theorem 4.1.1. Let M1,M2 ∈ Op
alg. Then the map

HomOp
alg

(M1,M2) → HomG(FGP (M2),FGP (M1))

f 7→ FGP (f)

is bijective.
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Proof. The proof is divided into several steps.

1) Let M1 = M(Z) be a generalized Verma module for some finite-dimensional algebraic

L-representation Z. Then FGP (M1) = IndGP (Z ′) and U acts trivially on Z. Now we have

H0(U,FGP (M2))alg = H0(u,M2)
′ by Lemma 3.2.4. We consider the identities induced by

Frobenius reciprocity and the previous observations

HomG(FGP (M2),FGP (M1)) = HomP (FGP (M2), Z
′)

= HomL(H0(U,FGP (M2)), Z
′)

= HomL(H0(U,FGP (M2))alg, Z
′)

∼= HomL(H0(u,M2)
′, Z ′)

∼= HomL(Z,H0(u,M2))

= HomP (Z,M2)

= HomD(g,P )(M1,M2).

Here the third equality follows from that fact that Z is algebraic and HomG(iGP ,1) = 0

for all parabolic subgroups P ( G. .

2) Let M1 be a quotient of some generalized Verma module, i.e., there is a surjective

homomorphism M(Z) → M1 for some finite-dimensional algebraic L-representation Z.

Let d be its kernel. Then by definition we have FGP (M1) = FGP (M(Z))d. We consider the

commutative diagram

HomD(g,P )(M1,M2) ↪→ HomD(g,P )(M(Z),M2)

↓ ↓

HomG(FGP (M2),FGP (M1)) ↪→ HomG(FGP (M2),FGP (M(Z))).

By Step 1) the right vertical map is an isomorphism. It follows that the left vertical

map is injective. To show surjectivity we consider the dual objects, i.e. the commutative

diagram

HomD(g,P )(M1,M2) ↪→ HomD(g,P )(M(Z),M2)

↓ ↓

HomD(G)(M
D(G)
1 ,M

D(G)
2 ) ↪→ HomD(G)(M(Z)D(G),M

D(G)
2 ).



ON SOME PROPERTIES OF THE FUNCTORS FG
P 21

where we abbreviate MD(G) := D(G) ⊗D(g,P ) M for M ∈ Op
alg. Moreover the verti-

cal maps are the obvious ones, i.e. induced by base change. For the surjectivity, let

f ∈ HomD(G)(M
D(G)
1 ,M

D(G)
2 ) and consider it via the injection as an element in the

set HomD(G)(M(Z)D(G),M
D(G)
2 ). Hence there is some morphism f̌ : M(Z) → M2 with

f̌ ⊗ id = f. We need to show that f̌(d) = 0. By assumption we have f(d) = 0. But we

proved in [21, (3.7.6)] that if M ∈ Oalg,M 6= 0 then D(G) ⊗D(g,B) M 6= 0. By applying

this fact to M = f̌(d) the claim follows.

3) Let M1 = U(g)⊗U(p)W for some finite dimensional algebraic P -representation W . We

may view it as a successive extension of generalized Verma modules considered in Step

1). The proof of the statement is by dimension on dimW. Here Step 1) serves as the start

of induction. Write down an exact sequence

0→M(Z)→M1 →M ′
1 → 0

whereM ′
1 = U(g)⊗U(p)W

′ is a generalized Verma module for some algebraic P -representation

W ′ with dimW ′ < dimW. We get an induced exact sequence

0→ FGP (M ′
1)→ FGP (M1)→ FGP (M(Z))→ 0.

We consider the resulting diagram of long exact sequences

0 → HomD(g,P )(M
′
1,M2) → HomD(g,P )(M1,M2) → HomD(g,P )(M(Z),M2)

↓ f ′ ↓ f ↓ fZ

0 → HomG(FG
P (M2),FG

P (M ′1)) → HomG(FG
P (M2),FG

P (M1)) → HomG(FG
P (M2),FG

P (M(Z)))

δ→ Ext1(M ′1,M2) → Ext1(M1,M2) → Ext1(M(Z),M2)

↓ ↓ ↓
δF→ Ext1(FG

P (M2),FG
P (M ′1)) → Ext1(FG

P (M2),FG
P (M1)) → Ext1(FG

P (M2),FG
P (M(Z)))

Here we consider the Ext groups as Yoneda-Ext groups. The maps f ′ and fZ are by

induction isomorphisms of finite-dimensional vector spaces. By diagram chase, it suffices

to check that δ(g) 6= 0 if and only if δF(FGP (g)) 6= 0. Concretely we have to show that if

δ(g) 6= 0 then δF(FGP (g)) 6= 0 since the other direction follows directly by diagram chase

again. If δF(FGP (g)) = 0, then the extension

0→ FGP (M ′
1)→ EFGP (g) → FGP (M2)→ 0
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induced by FGP (g) ∈ HomG(FGP (M2),FGP (M(Z)) splits. Then we apply Remark 3.2.7 to

deduce that

H0(u, EFGP (g)) = H0(u,FGP (M ′
1))⊕H0(u,FGP (M2))

= H0(u,M ′
1)⊕H0(u,M2).

Since H0(u, Eg) ⊂ H0(u, EFGP (g)) we deduce that H0(u, Eg) = H0(u, EFGP (g)) and that the

extension

0→M2 → Eg →M ′
1 → 0

splits as well. Indeed suppose for simplicity that W ′ is induced via inflation by a LP -

representation. Then W ′ = H0(u,M ′
1) appears in Eg so that we get a section of Eg →M ′

1.

4) Let M1 be arbitrary. Then there is a surjective homomorphism M(Z) → M for some

finite dimensional algebraic P -representation Z. Then we proceed as in Step 2).

2

Next we consider the situation where also smooth admissible representations are involved.

Proposition 4.1.2. Let M1,M2 ∈ Op
alg and let V1, V2 be smooth admissible LP -represen-

tations. Assume that Z ⊂ M1 is a finite-dimensional algebraic P -representation which

generates M1 as a U(g)-module. Then the natural map

HomOp
alg

(M1,M2)⊗ HomLP (V2, V1) → HomG(FGP (M2, V2),FGP (M1, V1))

induced by the functor FGP is injective and extends to a bijection⊕
W⊂H0(ukP ,M2)

HomOp
alg

(M1,M2)W⊗HomP (SW (V2)|P , V1)→ HomG(FGP (M2, V2),FGP (M1, V1))

where W ranges over all maximal indecomposable P -modules of H0(ukP ,M2) such that there

is a non-trivial homomorphism Z → W and HomOp
alg

(M1,M2)W ⊂ HomOp
alg

(M1,M2) is

just the subspace consisting of those maps which are induced by this homomorphism.

Proof. Indeed we consider Steps 1) and 3) in the modified situation. Then we argue as

in Steps 2) and 4) for the general case. As for Steps 1) and 3) we choose this time a

slightly different approach by way of variation. So, let M1 = U(g)⊗U(p)Z for some finite-

dimensional P -module Z. Let k ≥ 1 be an integer such that H0(ukP , Z) = Z. Then we
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apply Proposition 3.2.2 to deduce that

HomG(FGP (M2, V2),FGP (M1, V1)) = HomP (FGP (M2, V2), Z
′ ⊗ V1)

= HomD(P )(Z ⊗ V ′1 ,FGP (M2, V2)
′)

∼= HomD(P )(Z ⊗ V ′1 , H0(ukP ,FGP (M2, V2))
′)

∼= HomD(P )(Z ⊗ V ′1 ,
⊕

W⊂H0(ukP ,M2)

W ⊗ SW (V2)
′
|P )

=
⊕

W⊂H0(ukP ,M2)

HomOp
alg

(M1,M2)W ⊗ HomP (SZ(V2)|P , V1).

2

Remark 4.1.3. The statement above is also true (with the same proof) if we consider

additionally a parabolic subgroup Q ⊃ P such that M2 ∈ Oq
alg, V2 ∈ Rep∞(LQ) i.e. we

have a bijection⊕
W⊂H0(ukP ,M2)

HomOp
alg

(M1,M2)W⊗HomP (SZ(V2)|P , V1)→ HomG(FGQ (M2;V2),FGP (M1, V1)).

The following example shows that in the general case of objects in Ob
alg, the first map in

Proposition 4.1.2 need not to be surjective.

Example 4.1.4. Let G = SL2, B ⊂ G the Borel subgroup of upper triangular matrices

and let T = {diag(a, a−1) | a ∈ L∗} be the diagonal torus. We consider the smooth

character χ of T given by

χ(diag(a, a−1) = |a|(−1)valπ(a)

where π is our fixed uniformizer of OL and v is the normalized valuation, i.e. v(π) = 1.

Let M be the one-dimensional trivial Lie(G)-representation. Then the object FGB (M,χ)

is just the smooth representation iGB(χ). But the character χ is chosen in such a way that

iGB(χ) decomposes as a direct sum of two irreducible representations [3, Cor. 9.4.6 (b)].

Hence HomG(FGB (M),FGB (M)) is two-dimensional whereas HomOalg
(M,M)⊗HomT (χ, χ)

is one-dimensional.

Recall the definitions before Proposition 3.2.8. For w ∈ W , we denote by Pw the conju-

gated parabolic subgroup w−1Pw. If Z is a finite-dimensional locally analytic representa-

tion of L we let Mw(Z) be the corresponding generalized Verma module with respect to

Pw, i.e. Mw(Z) = U(g)⊗U(pw) Z.
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Proposition 4.1.5. Let Z be a finite-dimensional algebraic LP -representation and let

w ∈ W. Then for any finite-dimensional algebraic LwP -representation Y there is an identity

HomG

(
IndGPw(Y ′), IndGP (Z ′)

)
= HomOpw (Mw(Zw−1

),Mw(Y )).

Proof. We argue as in Step 1) in the proof of Theorem 4.1.1 and use additionally Propo-

sition 3.2.8:

HomG

(
IndGPw(Y ′), IndGP (Z ′)

)
= HomP

(
IndGPw(Y ′), Z ′

)
= HomL(H0(UP , IndGPw(Y ′)), Z ′)

∼= HomL(H0(u
w
P , (Mw(Y )′)w), Z ′)

∼= HomL(Z,H0(uwP ,Mw(Y )w)

= HomL(Zw−1

, H0(uwP ,Mw(Y )))

= HomPw(Zw−1

,Mw(Y ))

= HomOpw (Mw(Zw−1

),Mw(Y )).

2

5. Applications

In the remaining paper we discuss some applications of the material collected in the

previous sections.

5.1. The category FPalg. We begin to recall a definition of [21]. Let λ, µ : T → K∗ be

two algebraic characters with derivatives dλ, dµ, respectively. We write µ ↑B λ if and

only if dµ ↑b dλ in the sense of [11]. Then one has

(5.1.0) dimK HomOb
alg

(M(µ),M(λ)) =


1 µ ↑B λ

0 otherwise

.

For the remainder, we denote for an element w ∈ W and an algebraic character by w ·B λ
the usual “dot”-operation with respect to B. If λ is B-dominant, then w ·B λ ↑B λ for all

w ∈ W.
On the other hand, we let λw := w(λ) be the character given by the ordinary action of

W .
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Corollary 5.1.1. Let P = B and let λ, µ : T → K∗ be algebraic characters. Then

dimK HomG

(
FGB (M(λ)),FGB (M(µ))

)
=

{
1 µ ↑B λ
0 otherwise

Proof. This follows from Theorem 4.1.1 together with identity (5.1.0). 2

For a standard parabolic subgroup P ⊂ G, we let FPalg be the full subcategory of Reploc.an.
K (G)

consisting of locally analytic representations which lie in the essential image of the functor

FGP : Op
alg → Reploc.an.

K (G).

Corollary 5.1.2. i) The category FPalg is abelian and has enough injective and projec-

tive objects. For a morphism f : N → M we have FGP (coker(f)) = ker(FGP (f)) and

FGP (ker(f)) = coker(FGP (f)).

ii) Let M be a projective (resp. injective) object in Op
alg. Then FGP (M) is injective (resp.

projective) in the category FPalg.

Proof. The category Op
alg is abelian and has enough projective and injective objects. This

follows for Op from [11]. But the proof shows that for an object M ∈ Op
alg the construction

of a projective cover N of M , that N is again in the subcategory Op
alg. hence the claim

is true for the category FPalg. Since the functor FGP induces an equivalence of categories

between Op
alg and FPalg we get the first part of i) and ii). The remaining statements follow

directly be the exactness of FGP . 2

We define a dual object for objects lying in the functor. In light of Theorem 4.1.1 it is

well-defined.

Definition 5.1.3. Let M ∈ Op
alg and let M∨ ∈ Op

alg be its dual object. Set

FGP (M)∨ := FGP (M∨).

It follows from the previous corollary that for an object M ∈ Op
alg the locally analytic G-

representation FGP (M) is projective (resp. injective) object in FPalg if and only if FGP (M)∨

is injective (resp. projective) object in FPalg.

Definition 5.1.4. Let V1, V2 ∈ FPalg be two locally analytic representations. We denote

by ExtiFPalg
(V1, V2) the corresponding Ext-group in degree i.

These Ext-groups are of course different from those considered more generally in the

category of locally analytic G-representations, cf. [14]. This can be seen as an analogue
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of relating the groups Extig(M1,M2) and ExtiO(M1,M2) for two objects M1,M2 ∈ O as

the next statement confirms.

Corollary 5.1.5. Let M1,M2 ∈ Op
alg. The natural map

ExtiOp
alg

(M1,M2) → ExtiFPalg
(FGP (M2),FGP (M1))

is bijective. 2

At this point one can derive many consequences on the above defined Ext-groups. Here

we exemplary mention only the following:

Corollary 5.1.6. Let λ be a dominant algebraic character and let w,w′ ∈ W.

a) Unless w′ · λ ↑ w · λ we have for all n > 0,

ExtnFBalg
(FGB (M(w · λ)),FGB (M(w′ · λ)) = 0 = ExtnFBalg

(FGB (L(w · λ)),FGB (M(w′ · λ)).

b) If w′ · λ ≤ w · λ, then for all n > `(w′)− `(w)

ExtnFBalg
(FGB (M(w · λ)),FGB (M(w′ · λ)) = 0 = ExtnFBalg

(FGB (L(w · λ)),FGB (M(w′ · λ)).

Proof. This is a consequence of [11, Proposition 6.11]. 2

5.2. The category ∞FPalg. Next we consider additionally smooth representations as ar-

guments in the functor FGP . So let V be a smooth G-representation. We supply V with

the finest locally convex topology. This approach is compatible with the one of Schneider

and Teitelbaum for admissible smooth representations. [23, Section 2]. Equivalently, if we

write V =
⋃
n V

Gn for a system of compact open subgroups Gn ⊂ G and supply each V Gn

with the finest locally convex topology, then the topology on V coincides with the induced

locally convex limit topology. It is Hausdorff [24, Prop. 5.5 ii)] and barreled [24, Cor.

6.16, Examples iii)] (see also the construction in [6, 7.1]). Moreover, for any v ∈ V the

orbit map G→ V is locally constant and gives rise to an element of Can(G;V ). Hence we

may and will consider V with the structure of a locally analytic G-representation. Then

FGP extends with the same definition as in (2.2.4) to a bi-functor

FGP : Op
alg × Rep∞K (LP ) −→ Reploc.an.

K (G).

where Rep∞K (LP ) is the category of smooth LP -representations.

Lemma 5.2.1. Let V be of countable dimension. Then FGP (M,V ) is of compact type.
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Proof. We have the following inclusions of closed subspaces

FGP (M,V ) ⊂ IndGP (W ′ ⊗ V ) ∼= Can(H,W ′ ⊗ V ).

Here H ⊂ G is a locally analytic section of the projection G → G/P , i.e. H
∼−→ G/P

and W is as usual a finite-dimensional algebraic P -module which generates M. Since a

closed subspace of a space of compact type is again of compact type. it suffices to show

that this property holds true for Can(G, ‘W ′ ⊗ V ). Now we may write V = lim−→n
Vn as

a locally convex limit with finite-dimensional vector spaces. Hence Can(H,W ′ ⊗ V ) =

lim−→n
Can(H,W ′ ⊗ Vn). But each subspace Can(H,W ′ ⊗ Vn) is of compact type. But the

inductive limit of compact type spaces with injective transition maps is of compact type

again. 2

Remark 5.2.2. We stress that apart possible from Proposition 3.2.10 and Corollary

3.2.11 (since the proofs do not apply) all results of the previous sections are also valid for

objects lying in the image of this enhanced functor.

We denote by Rep∞,∞K (G) the full subcategory of Rep∞K (G) whose objects are of countable

dimension. This is clearly an abelian subcategory of Rep∞K (G) which is closed under

(smooth) duals.

Lemma 5.2.3. The category Rep∞,∞K (G) has enough injective and projective objects.

Proof. Let V be an object of Rep∞,∞K (G). Since the smooth dual of an injective object is

projective and vice versa, it suffices to check that V has an embedding into an injective

object of countable dimension. For this we consider the injective object Ind∞,G{e} (V |{e})
in the larger category Rep∞K (G) together with the embedding V ↪→ Ind∞,G{e} (V |{e}), v 7→
[g 7→ gv]. As G is a second countable group and V has a countable basis, we deduce that

Ind∞,G{e} (V |{e}) is of countable dimension, hence the claim. 2

We define ∞FPalg to be the full subcategory of Reploc.an.
K (G) consisting of locally analytic

representations which lie in the essential image of the functor

FGP : Op
alg × Rep∞,∞K (LP ) −→ Reploc.an.

K (G).

The category ∞FPalg is not abelian as we saw for instance in Example 4.1.4. Concerning the

latter aspect, we consider the smallest abelian subcategory4 ∞FPalg containing all categories
∞FQalg where Q ⊃ P is a parabolic subgroup.

4which can be seen as a kind of Satake compactification of ∞FP
alg
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Lemma 5.2.4. Let M1,M2,M ∈ Op
alg and V1, V2, V ∈ Rep∞K (LP ) such that M1,M2 are

quotients of M and V1, V2 are subrepresentations of V . Then

FGP (M1, V1) ∩ FGP (M2, V2) = FGP (M1 ⊕M M2, V1 ∩ V2)

Proof. We have

FGP (M1, V1) ∩ FGP (M2, V2) = FGP (M1, V1 ∩ V2) ∩ FGP (M2, V1 ∩ V2)

= FGP (M1 ⊕M M2, V1 ∩ V2)

2

Lemma 5.2.5. Let M ∈ Op
alg be a simple object such that p is maximal for M and let V be

a smooth LP -representation. Then any subquotient of FGP (M,V ) has the shape FGP (M,W )

for some smooth subquotient W of V.

Proof. By the exactness of FGP it suffices to prove this statement for subobjects. Let

U ⊂ FGP (M,V ) be a subobject. We recall a construction of [22, Thm. 5.8] which uses

the simplicity of M . Set Usm = lim−→H
HomH(FGP (M)|H , U |H) where the limit is over

all compact open subgroups H of G. It is proved that Usm is a subrepresentation of

FGP (M,V )sm and that the latter object identifies with the smooth induction iGP (V ) =

indGP (V ) (for V irreducible, but this holds also true in this general setting). Moreover,

the natural map FGP (M) ⊗ indGP (V ) → FGP (M,V ) is surjective giving rise by the very

definition of this map to a surjection φ : FGP (M) ⊗ Usm → U . Considering Usm as a

subrepresentation of iGP (V ) as above we set W := {f(1) | f ∈ Usm}. This is a smooth

LP -representation and the map φ factorizes over FGP (M,W ). It follows that the image of

the map φ coincides with FGP (M,W ). Hence U = FGP (M,W ). 2

The next statement is clear by the Jordan-Hölder principle for representation of the shape

FGP (M,V ) where V is admissible smooth.

Proposition 5.2.6. Every object U in ∞FPalg is a successive extension of objects of the

shape FGQ (N,W ) with P ⊂ Q.

Proof. As the direct sum of two objects of the kind FGQi(Mi, Vi), i = 1, 2, is contained

in such an object we may suppose that U is some subquotient of FGP (M,V ). Indeed

FGQi(Mi, Vi) ⊂ FGP (M, (Vi)|P ) so that it suffices to treat the case Q1 = Q2 = P . But then

FGP (M1, V1)⊕FGP (M2, V2) ⊂ FGP (M1 ⊕M2, V1 ⊕ V2).
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The proof is by induction on the length on M . If M is simple (where we may assume that

P is maximal for M by the PQ-formula) then the statement follows from the above lemma.

Otherwise, let M1 ⊂M be some proper submodule and consider the exact sequence

0→ FGP (M/M1, V )→ FGP (M,V )
p→ FGP (M1, V )→ 0.

So let U = U1/U2 be some subquotient of FGP (M,V ). We consider the induced exact

sequence

0→ FGP (M/M1, V ) ∩ U1/FGP (M/M1, V ) ∩ U2 → U1/U2 → p(U1)/p(U2)→ 0.

If FGP (M/M1, V ) ∩ U1/FGP (M/M1, V ) ∩ U2 ∈ {(0), U1/U2} we may apply induction hy-

pothesis to prove the claim. But also in the other case the inductive hypothesis applies.

2

Proposition 5.2.7. Let U ∈ ∞FPalg and suppose that there exist M ∈ Op
alg and V ∈

Rep∞,∞K (LP ) such that U ⊂ FGP (M,V ). Suppose further that M is minimal, i.e. there is

no proper quotient N of M such that U ⊂ FGP (N, V ). Then we have GGP (U) =
⊕

L L⊗W ′
L

as P -representations where L goes through all simple constituents of M and WL is a

quotient of iQLP (V ) for some parabolic subgroup QL depending on L.

Proof. The proof is by induction on the length of M. If M is simple then we use Lemma

5.2.5 and the claim follows from Proposition 3.2.2. In general let M1 ⊂ M be a proper

submodule such that M/M1 is simple. We consider as above the induced exact sequence

0→ FGP (M/M1, V )→ FGP (M,V )
p→ FGP (M1, V )→ 0.

If p(U) = 0 we get a contradiction to the minimality of M. If U ∩FGP (M/M1, V ) = 0, then

U ∼= p(U) ⊂ FGP (M1, V ). By the induction hypothesis we see that M1 appears in GGP (U)

as described above. By considering the composition U ↪→ FGP (M,V ) → FGP (M1, V ) we

get by applying of GGP a splitting of the inclusion M1 ↪→M and thus a surjection M →M1

giving rise to a contradiction by the minimality of M.

Hence we obtain a non-trivial exact sequence

0→ FGP (M/M1, V ) ∩ U → U → p(U)→ 0.

Thus the claim follows by induction once we have proved that FGP (M1, V ) satisfies again

the minimality condition with respect to p(U). But if N1 ⊂ M1 is a proper submodule

with p(U) ⊂ FGP (M1/N1, V ) then it would follow that U ⊂ FGP (M/N1, V ). This is again

a contradiction to the minimality of M. 2



30 SASCHA ORLIK

Proposition 5.2.8. Let M ∈ Op
alg be projective (resp. injective) and let V ∈ Rep∞,∞K (LP )

be an injective (resp. projective) object. Then FGP (M,V ) is injective (resp. projective) in

the category ∞FPalg.

Proof. We consider here the case of injective objects. The case of projective objects is

treated in a dual way. We consider thus a monomorphism Z1 ↪→ Z2 in our category ∞FPalg
together with a morphism Z1 → FGP (M,V ). Since any object in ∞FPalg is a subquotient of

an object lying in the image of a functor FGQ with P ⊂ Q we may suppose by enlarging Z2

that is has for simplicity the shape FGQ (N,W ). Indeed if Z2 is a submodule of FGQ (N,W )

this is clear. If on the other hand, Z2 is a quotient of FGQ (N,W ) then we consider the

preimage Z̃1 ↪→ Z̃2 of Z1 ↪→ Z2 in FGQ (N,W ). We get an induced map f : Z̃1 → FGP (M,V )

and if this extends to Z̃2 then also to Z2 since ker(Z̃1 → Z1) = ker(Z̃2 → Z2) is mapped

to zero under f. By the PQ-formula we see that FGQ (N,W ) ↪→ FGQ (N, iQP (W |LP )) =

FGP (N,W |LP ). Hence we may even suppose that P = Q. Thus we arrived at the situation

where we assume that Z2 = FGP (N2,W2) for N2 ∈ Op
alg and W2 ∈ Rep∞,∞K (G).

On the other hand, we may also suppose that Z1 has also the shape FGQ (N,W ). Indeed,

by dividing out the kernel of the morphism Z1 → FGP (M,V ) (from the very beginning)

we may assume that it is injective as well. By using Lemma 5.2.4 we see that there

are N ∈ Oq
alg and W ∈ Rep∞,∞K (LQ) such that FGQ (N,W ) ⊂ FGQ (N2,W2) is a minimal

object containing Z1. By Proposition 5.2.7 we deduce that N and W appear in GGQ(Z1).

Hence the morphism Z1 → FGP (M,V ) extends automatically to a morphism FGQ (N,W )→
FGP (M,V ).

Hence we may think that our embedding Z1 ↪→ Z2 is of the shape FGQ (N1,W1) ↪→
FGP (N2,W2). It follows by Proposition 4.1.2, the bi-exactness of FGP and the exactness of

the induction functor for smooth representations that it is induced by a surjection N2 →
N1 and a monomorphism (W1)|P ↪→ W2. For this note that FGQ (N1,W1) = FGQ (N1)⊗̂W1

and FGP (N2,W2) = FGQ (N2)⊗̂W2 .

So for proving that FGP (M,V ) is injective let FGQ (N1,W1)→ FGP (M,V ) be any morphism.

Again it corresponds to a tuple of morphisms M � N1 and (W1)|P ↪→ V. Since V is

injective we see that there is an extension W2 → V. Further as M is projective we have a

lift M → N2. The claim follows easily. 2

Corollary 5.2.9. The category ∞FPalg has enough injective and projective objects.

Proof. As above we consider here only the case of injectives. Let U ∈ ∞FPalg. Suppose first

that it has the shape FGP (M,V ). We choose a projective cover N of M and an embedding

V ↪→ W into a smooth injective LP -representation W . Then we have a topological
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embedding FGP (M,V ) ↪→ FGP (N,W ) and by the result above the object FGP (N,W ) is

injective.

In general we know by Proposition 5.2.6 that it is a successive extension of such objects.

As such it has an injective envelope, as well (Indeed, suppose that 0→ A1 → U → A2 → 0

is exact and that Ai → Ii, i = 1, 2 are monomorphism into injective objects. Then we get

an exact sequence 0 → I1 → I1 ⊕A1 U → A2 → 0 and the middle term is isomorphic to

I1⊕A2 by injectivity of I1. But I1⊕A2 embeds into the injective object I1⊕I2. Therefore

U embeds into I1 ⊕ I2, as well.). 2

5.3. Extensions of generalized locally analytic Steinberg representations. For

a parabolic subgroup P ⊂ G, we abbreviate IGP := IndGP (1) and denote by iGP the sub-

space of smooth vectors. The attached Steinberg representation is given by the quotient

V G
P = IndGP (1)/

∑
Q)P IndG

Q(1). We shall determine the Ext-groups of these objects in our

compactified categories.

We recall a result from [19]. Here we denote by ∞Ext∗ the corresponding Ext-groups in

the category of smooth representations.

Proposition 5.3.1. Let I ⊂ ∆. Then we have

∞Ext∗LI (1,1) = Λ∗(X∗(LI)).

2

The next statement is contained in [10, Thm. 9.8].

Lemma 5.3.2. For a parabolic subgroup Q of G, let M = MQ(0) = U(g)⊗U(q) K be the

generalized Verma module with respect to the trivial Q-module. Then M is projective in

Oq
alg. 2

Proposition 5.3.3. Let G be semi-simple and let I, J ⊂ ∆. Then we have

Ext∗∞FBalg

(IGPI , I
G
PJ

) =

{
Λ∗(X∗(LJ)) : if J ⊂ I

0 : otherwise

Proof. We set P = PI and Q = PJ .

1. Case. Suppose that J 6⊂ I. Let I• be an injective resolution of the trivial LQ-

representation in the category Rep∞,∞K (LQ). Then by Lemma 5.3.2 and Proposition 5.2.8,

FGQ (MQ(0), I•) is an injective resolution of IGQ . Let J• be an injective resolution of the

trivial T -representation in the category Rep∞,∞K (T ). Then iQB(J•) is an injective resolu-

tion of iQB (in the category of smooth representations) since the induction functor is exact
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and has with the Jacquet functor an exact left adjoint. Hence the embedding 1Q → iQB
extends to a morphism of complexes I• → iQB(J•). Here we may suppose by standard

arguments that the maps in each degree are injective. We consider the induced (injective)

maps FGQ (MQ(0), I•)→ FGQ (MQ(0), iQB(J•)) = FGB (MQ(0), J•). We shall see that any map

IGP → FGB (MQ(0), J i), i ≥ 0, vanishes which is enough for our claim. Indeed by Remark

4.1.3 it is induced on the Lie algebra part by a map MQ(0) → MP (0). Any such map

vanishes if Q 6⊂ P.

2. Case. Suppose that J ⊂ I. Then by applying Frobenius reciprocity any map IGP →
FGQ (MQ(0), I i) = IndGQ(I i) is given by a map (IGP )UQ = H0(UQ, I

G
P )′ → I i. The left

hand side coincides by Proposition 3.2.5 with H0(uQ,MP (0))′ which is a sum of algebraic

representations and which contains the trivial representation. Since any map between

an algebraic representation different from the trivial one and a smooth representation

vanishes we see that any map (IGP )UQ → I i corresponds to a map 1 → I i. Hence the

series of maps determines ∞Ext∗LJ (1,1) which coincides with Λ∗(X∗(LJ)) by Proposition

5.3.1. 2

Theorem 5.3.4. Let G be semi-simple. Let I, J ⊂ ∆. Then

Exti∞FB(V G
PI
, V G

PJ
) =

{
K |I ∪ J \ I ∩ J | = i

(0) otherwise
.

Proof. In [20] we proved that the following complex is an acyclic resolution of V G
PI

by

locally analytic G-representations,

(5.3.4) 0→ IGG →
⊕
I⊂K⊂∆
|∆\K|=1

IGPK →
⊕
I⊂K⊂∆
|∆\K|=2

IGPK → · · · →
⊕
I⊂K⊂∆
|K\I|=1

IGPK → IGPI → V G
PI
→ 0.

The smooth version of this complex was used in [19] together with the smooth version of

Proposition 5.3.3 to get by formal arguments the smooth version of our theorem. Hence

the rest of the proof is the same as in loc.cit. 2

If G is not necessarily semi-simple, then we have as in the smooth case a contribution of

the center Z(G). By using a Hochschild-Serre argument (cf. loc.cit.) we conclude:

Corollary 5.3.5. Let G be reductive with center Z(G) of rank d. Let I, J ⊂ ∆. Then we

have

Exti∞FB(V G
PI
, V G

PJ
) =

{
K(dj) : i = |I ∪ J | − |I ∩ J |+ j, j = 0, . . . , d

0 : otherwise
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5.4. Adjunction. As a last application we want to discuss some adjunction formulas.

For this we need some preparations.

Lemma 5.4.1. Let x,w ∈ W and let χ : T → K∗ be an algebraic character. Then

(x ·B χ)w = Ad(w)(x) ·Bw−1 χ
w.

Proof. We compute

(x ·B χ)w = w(x(χ+ ρB)− ρB)

= Ad(w)(x)(w(χ+ ρB)− wρB)

= Ad(w)(x)((χw + ρBw−1 )− ρBw−1 )

= Ad(w)(x) ·Bw−1 χw .

2

Let M = MB(χ) ∈ Ob
alg be a Verma module with respect to the opposite Borel subgroup

B. Then FG
B

(M) = IndG
B

(χ−1) and H0(UB,FGB (M)) = (H0(uB,M)′)w0 by Lemma 3.2.8.

Hence there is a natural homomorphism (χ−1)w0 → H0(UB,FGB (M)). If further χ is B-

dominant, then we have moreover a natural homomorphism

((w0 ·B χ)−1)w0 → H0(UB,FGB (M)).

These maps lead by composing with the functor V 7→ VUB = H0(UB, V ) to the following

statements.

Theorem 5.4.2. Let χ be a B-dominant algebraic character. Then for any w ∈ W and

any highest weight module M ∈ Obw

alg one has the identity

HomG(IndG
B

(χ−1),FGBw(M)) = HomT (((w0 ·B χ)−1)w0 ,FGBw(M)UB)

Proof. i) First let M = MBw(λ) be a Verma module for some algebraic character λ of T.

We start with the observation that both sides are at most one-dimensional. Indeed as for

the LHS this follows from Proposition 4.1.5. As for the RHS we can identify it (see below)

with the anti-dominant eigenspace in H0(uBw ,M). This eigenspace is one-dimensional,

as well.

Now we check, that the LHS does not vanish iff the RHS does. Since χ is B-dominant

we see that χw
−1w0 is Bw-dominant. The LHS does not vanish by Proposition 4.1.5 if and
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only if λw0w ↑B χ. This is equivalent to λ ↑Bw χw
−1w0 by Lemma 5.4.1. Since χw

−1w0 is

Bw-dominant and w−1w0w is the longest Weyl group element in W with respect to Bw,

we see that the latter condition is equivalent to (w−1w0w) ·Bw (χw
−1w0) ↑Bw λ.

On the other hand, the Jacquet module IndGBw(λ−1)U coincides by Proposition 3.2.8 with

(H0(uBw ,M)′)w. Its weights are given by the characters (µ−1)w with µ ↑Bw λ. Moreover,

(w0 ·B χ)w0 = ww−1w0(w0 ·B χ) = w(w−1w0w ·Bw χw
−1w0) by Lemma 5.4.1. Thus the RHS

does not vanish iff the LHS does not vanish. To see that the natural map between these

one-dimensional spaces is an isomorphism follows in principal from Theorem 4.1.1 .

ii) Now let M be a quotient of MBw(λ). Then FGBw(M) ⊂ IndGBw(λ−1) so that both vector

spaces in the above stated formula are at most one-dimensional. Moreover, we have a

commutative diagram

HomG(IndG
B

(χ−1), IndGBw(λ−1)) = HomT (((w0 ·B χ)−1)w0 , IndGBw(λ−1)UB)

↑ ↑

HomG(IndG
B

(χ−1),FGBw(M)) → HomT (((w0 ·B χ)−1)w0 ,FGBw(M)UB)

The upper line is an isomorphism by the first case. The LHS is an injection. In particular

the lower line is an injection, as well. Since the spaces in question are at most one-

dimensional the statement follows easily in this case. Note that if M is a proper quotient

of MBw(λ), then the objects in the lower line vanishes and the claim is trivial.

2

Remark 5.4.3. In [2] and [1] are presented adjunction formulas which use on the RHS

Emerton Jacquet functor and which have a different style.
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