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Abstract. Let X ⊂ PdK be Drinfeld’s half space over a p-adic field K. The de

Rham cohomology of X was first computed by Schneider and Stuhler [SS]. Af-

terwards there were given different proofs by Alon, de Shalit, Iovita and Spiess

[AdS, dS, IS]. This paper presents yet another approach for the determination of

these invariants by analysing the de Rham complex of X from the viewpoint of

results given in [O], [OS]. Moreover, we treat as a generalization the dual BGG

complex of a given algebraic representation in the sense of Faltings [Fa] respectively

Schneider [S].

1. Introduction

Let p be a prime number and let K be a finite extension of the field of p-adic

numbers Qp. We denote by X = X (d+1)
K = PdK \

⋃
H Kd+1 P(H) (the complement of

all K-rational hyperplanes in projective space) Drinfeld’s half space [D] of dimension

d ≥ 1 over K. It is a rigid analytic variety over K which is equipped with an action

of the p-adic Lie group G = GLd+1(K). In [SS] Schneider and Stuhler determined the

cohomology of X for any “good” cohomology theory (e.g. the étale and the de Rham

cohomology) as G-representations. Here they make only use of the “good” properties

as homotopy invariance, existence of a product structure etc. It turns out that the

de Rham cohomology is given by

(1.1) H∗dR(X ) =
d⊕
i=0

HomK(vGP(d+1−i,1,...,1)
, K)[−i].

Here P(d+1−i,1,...,1) is the (lower) standard parabolic subgroup of G which corresponds

to the decomposition (d + 1 − i, 1, . . . , 1) of d + 1. Further for a parabolic subgroup

P ⊂ G, the smooth generalized Steinberg representation vGP is the unique irreducible

quotient of the smooth unnormalized induced representation iGP = indGP (K) with

respect to the trivial P -representation [BW, Ca]. A few years later there were given

different proofs of this result by Alon, de Shalit, Iovita and Spiess [AdS, dS, IS] by

relating differential forms on X with harmonic cochains on the Bruhat-Tits building

of G and considering logarithmic forms, respectively.
1
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In this short notice we explain how we can determine the de Rham cohomology of

X from its de Rham complex

(1.2) Ω•(X ) : 0→ O(X )→ Ω1(X )→ · · · → Ωd(X )→ 0

by applying some recent results given in [O, OS]. Here for i = 0, . . . , d, the expression

Ωi(X ) = H0(X ,Ωi) is the space of X -valued sections of the usual homogeneous vector

bundle Ωi on projective space PdK . Further the de Rham cohomology of X is the

ordinary homology of the above complex since X is a Stein space. In contrast to

the generalized Steinberg representations vGP the contributions Ωi(X ) in the de Rham

complex are much bigger objects. Indeed they are reflexive K-Fréchet spaces with

a continuous G-action [ST1]. Their strong duals Ωi(X )′, i = 0, . . . , d, (i.e., the K-

vector space of continuous linear forms equipped with the strong topology of bounded

convergence) are locally analytic G-representations in the sense of Schneider and

Teitelbaum [ST2]. More generally, the same holds true for arbitrary homogeneous

vector bundles on PK . In [O] there is constructed for any such homogeneous vector

bundle E , a decreasing filtration by closed G-stable subspaces

(1.3) E(X )0 ⊃ E(X )1 ⊃ · · · ⊃ E(X )d−1 ⊃ E(X )d = H0(Pd, E)

on E(X )0 = E(X ). As we will see in the next section the filtration behaves functorially

in E . Hence we get a filtered de Rham complex

(1.4)
(
0→ O(X )j → Ω1(X )j · · · → Ωd(X )j → 0

)
j=0,...,d

.

In this paper we analyse its induced spectral sequence

Ep,q
0 = grp(Ωp+q(X ))⇒ Hp+q(Ω•(X )),

cf. [EGAIII]. In the case of d = 2 this was also carried out by Schraen [Sch]. The

main theorem of this paper is the following result.

Theorem 1. The spectral sequence E0 attached to the filtered de Rham complex (1.4)

degenerates at E1 and yields the cohomology formula (1.1).

In the final section we replace the de Rham complex by the dual BGG complex

attached to an algebraic representation in the sense of Faltings [Fa, FC] respectively

Schneider [S]. More precisely, let λ ∈ Zd+1 be a dominant weight with corresponding

irreducible algebraic representation V (λ). Then we consider the complex

0→ Eλ(X )→ Ew1·λ(X )→ · · · → Ewd·λ(X )→ 0

where the Ewi·λ are certain homogeneous vector bundles on PdK depending on the

weight wi · λ (For a precise description we refer to the final section). It is proved in
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[S] that it is quasi-isomorphic to the complex Ω•(X )⊗ V (λ). It coincides with the de

Rham complex (1.2) for λ = 0. In particular the determination of the homology of

E•·λ(X ) is not a surprising issue. Nevertheless, we get with the same proof:

Theorem. 1’. Let λ ∈ X+. Then the spectral sequence E0 attached to the attached

filtered complex degenerates at E1 and we get

H∗(E•·λ(X )) =
d⊕
i=0

HomK(vGP(d+1−i,1,...,1)
, V (λ))[−i].

2. The proof of Theorem 1

We begin by recalling some terminology used in [O]. The following lines are an

extract of [O, Section 1].

We consider the action of G on projection space PdK given by

g · [q0 : · · · : qd] := [q0 : · · · : qd]g−1 .

We fix a homogeneous vector bundle E on PdK and let g = LieG be the Lie algebra

of G. Then E is naturally a g-module, i.e., there is a homomorphism of Lie algebras

g → End(E) which extends to the universal enveloping algebra U(g). Fix an integer

0 ≤ j ≤ d− 1 and let

PjK = V (Xj+1, . . . , Xd) ⊂ PdK
be the closed K-subvariety defined by the vanishing of the coordinates Xj+1, . . . , Xd.

Let Pj+1=P(j+1,d−j) ⊂ G be the (lower) standard-parabolic subgroup attached to the

decomposition (j + 1, d − j) of d + 1. It is clearly the stabilizer of PjK under the

above action. Both the Zariski cohomology H∗(PdK \ P
j
k, E) and the algebraic local

cohomology H∗
PjK

(PdK , E) are thus equipped with an action of the semi-direct product

P(j+1,d−j) n U(g). Here the semi-direct product is as usual induced by the adjoint

action of P(j+1,d−j) on g. Further the natural long exact sequence

(2.1) · · · → H i−1(PdK \P
j
K , E)→ H i

PjK
(PdK , E)→ H i(PdK , E)→ H i(PdK \P

j
K , E)→ · · ·

is equivariant with respect to this action. By general arguments in local cohomology

theory [Ha2], one deduces that

(2.2) H i
PjK

(PdK , E) =


0 ; i < d− j

H i(PdK , E) ; i > d− j
.
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In the case i = d− j, we have thus an exact sequence

0→ Hd−j−1(PdK , E) → Hd−j−1(PdK \ P
j
K , E)→ Hd−j

PjK
(PdK , E)

→ Hd−j(PdK , E) → 0.

We set

H̃d−j
PjK

(PdK , E) := ker
(
Hd−j
PjK

(PdK , E)→ Hd−j(PdK , E)
)

(2.3)

∼= coker
(
Hd−j−1(PdK , E)→ Hd−j−1(PdK \ P

j
K , E)

)
which is consequently a P(j+1,d−j) n U(g)-module.

For an arbitrary parabolic subgroup P ⊂ G, let Op be the full subcategory of the

category O (in the sense of Bernstein, Gelfand, Gelfand [BGG]) consisting of U(g)-

modules of type p = LieP . We let Op
alg be the full subcategory of Op given by objects

M such that all p-representations appearing in M are induced by finite-dimensional

algebraic P -representations, cf. [OS].

Lemma 2. The U(g)-module H̃d−j
PjK

(PdK , E) lies in the category Op(j+1,d−j)

alg .

Proof. This is an easy consequence of [O, Lemma 1.2.1] which states the existence

of a finite-dimensional algebraic P(j+1,d−j)-module which generates H̃d−j
PjK

(PdK , E) as

U(g)-module. �

The next statement is the main result of [O]. For its formulation we need some

more notation. Denote by Rep`aK(G) the category of locally analytic G-representations

with coefficients in K. For a parabolic subgroup P ⊂ G, let

IndGP : Rep`aK(P )→ Rep`aK(G)

be the locally analytic induction functor [F]. Let Std−j = v
GLd−j

B be the smooth

Steinberg representation of GLd−j(K), j = 0, . . . , d. We consider Std−j as a repre-

sentation of P(j+1,d−j) via the trivial action of the unipotent radical of P(j+1,d−j) and

the factor GLj+1(K) ⊂ L(j+1,d−j), respectively. We equip Std−j with the finest lo-

cally convex topology so that it becomes a locally analytic P -representation [ST2].

Thus for any algebraic representation N of P(j+1,d−j), the tensor product N ⊗ Std−j
is a locally analytic representation. In particular this applies to the G-representation

Hd−j(PdK , E)′ ⊗ vGP(j+1,1,...,1)
which we also denote by vGP(j+1,1,...,1)

(Hd−j(PdK , E)′).
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Theorem 3. For j = 0, . . . , d−1, there are extensions of locally analytic G-representa-

tions

0→ vGP(j+1,1,...,1)
(Hd−j(PdK , E)′)→ (E(X )j/E(X)j+1)′ → IndGPj+1

(U ′j)
dj → 0.

Proof. This is [O, Theorem 1]. �

Here the Pj+1-representation U ′j is a tensor product N ′j ⊗ Std−j of an algebraic Pj+1-

representationN ′j and Std−j. The symbol dj indicates a system of differential equations

depending on Nj. Here the representation Nj is characterized by the property that it

generates the kernel of the natural homomorphism Hd−j
PjK

(PdK , E)→ Hd−j(PdK , E) as a

module with respect to U(g).

This is exactly the starting point of the main construction in [OS]. In fact the lo-

cally analytic G-representation IndGPj+1
(U ′j)

dj above can be characterized as the image

of the object H̃d−j
PjK

(PdK , E)× Std−j under a functor

FGPj+1
: Opj+1

alg × Rep∞K (Lj+1) −→ Rep`aK(G),

i.e.

IndGPj+1
(U ′j)

dj = FGPj+1
(H̃d−j

PjK
(PdK , E), Std−j).

Here Rep∞K (Lj+1) is the category of smooth Lj+1-representations with coefficients over

K.

Let us briefly recall the definition of this functor for an arbitrary parabolic subgroup

P ⊂ G with Levi decomposition P = L · U. Let M be an object of Op
alg. Then there

is a surjective map

φ : U(g)⊗U(p) W →M

for some finite-dimensional algebraic P -representation W ⊂ M . Let V be a smooth

L-representation. We consider V via the trivial action of U as a P -representation. As

explained above the tensor product representation W ′⊗K V (where W ′ is the dual of

W ) is a locally analytic P -representation. Then

FGP (M,V ) = IndGP (W ′ ⊗K V )d

denotes the subset of functions f ∈ IndGP (W ′⊗KV ) which are killed by the submodule

d = ker(φ). In loc.cit. it is shown that this subset is a well-defined G-stable closed

subspace of IndGP (W ′⊗K V ) and has therefore a natural structure of a locally analytic

G-representation. The resulting functor is contravariant in the first and covariant in

the second variable. It is proved in [OS, Prop. 4.10 a)] that FGP is exact in both

arguments.
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Now we come to the functoriality aspect concerning the filtration (1.3) mentioned

in the introduction.

Lemma 4. Let f : E → F be a homomorphism of homogeneous vector bundles on

PdK. Then f is compatible with the filtrations, i.e., f induces G-equivariant homo-

morphisms E(X )i → F(X )i, i ≥ 0.

Proof. The definition of the filtration involves only the geometry of X (being the

complement of a hyperplane arrangement) and not the homogeneous vector bundle

itself. In fact, the K-Fréchet space E(X ) = H0(X , E) appears in an exact sequence

0→ H0(PdK , E)→ H0(X , E)→ H1
Y(PdK , E)→ H1(PdK , E)→ 0.

We consider the K-Fréchet space H1
Y(PdK , E), where Y ⊂ PdK is the ”closed” comple-

ment of X in PdK . The filtration is induced (by taking the preimage) by a similar one

on H1
Y(PdK , E) which we briefly review. Here all geometric objects are considered as

pseudo-adic spaces in the sense of [Hu].

Let {e0, . . . , ed} be the standard basis of V = Kd+1 and let ∆ be the standard

basis of simple roots with respect to the Borel subgroup of lower triangular matrices.

For any αi ∈ ∆, put Vαi
= Vi =

⊕i
j=0K · ej and set Yαi

= Yi = P(Vi). For any subset

I ⊂ ∆ with ∆ \ I = {αi1 < . . . < αir}, let YI = Yαi1
= P(Vi1). Furthermore, let PI be

the lower parabolic subgroup of G, such that I coincides with the set of simple roots

appearing in the Levi factor of PI . Then gYI is a closed subset of Y and we denote

by Φg,I : gYI ↪→ Y the corresponding embedding. Let Z be the constant sheaf on Y
and set Zg,I := (Φg,I)∗(Φ

∗
g,I(Z)). Then∏′

g∈G/PI

Zg,I ⊂
∏

g∈G/PI

Zg,I

denotes the subsheaf of locally constant sections with respect to the topological space

G/PI . In [O, 2.1] we proved that there is an acyclic resolution

0→ Z→
⊕
I⊂∆
|∆\I|=1

∏′

g∈G/PI

Zg,I →
⊕
I⊂∆
|∆\I|=2

∏′

g∈G/PI

Zg,I → · · ·

· · · →
⊕
I⊂∆

|∆\I|=d−1

∏′

g∈G/PI

Zg,I →
∏′

g∈G/P∅

Zg,∅ → 0

of the constant sheaf Z on Y . Let i : Y ↪→ PdK be the closed immersion. By applying

the functor Hom(i∗( − ), E) to this complex, we get a spectral sequence converging to
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H1
Y(PdK , E). Finally the filtration on H1

Y(PdK , E) is just the one induced by this spectral

sequence. It follows now easily from the construction that f is compatible with the

filtrations on E(X ) and F(X ). �

The de Rham complex (1.2) together with Lemma 4 induces complexes

0→ O(X )j/O(X )j+1 → Ω1(X )j/Ω1(X )j+1 → · · · → Ωd(X )j/Ωd(X )j+1 → 0,

j = 0, . . . , d − 1, which form just the E0-term of the spectral sequence attached to

the filtered de Rham complex (1.4). Apart from the terms vGP(j+1,1,...,1)
(Hd−j(PdK ,Ωi)′),

i = 0, . . . , d, appearing in Theorem 3, this complex coincides by what we observed

above with the dual of the complex

(2.4) 0→ FGPj+1
(H̃d−j

PjK
(PdK ,Ωd), Std−j)→ · · ·

· · · → FGPj+1
(H̃d−j

PjK
(PdK ,Ω1), Std−j)→ FGPj+1

(H̃d−j
PjK

(PdK ,O), Std−j)→ 0

Proposition 5. The above complex is acyclic.

Proof. By the exactness of the functor FGP in the first entry it suffices to prove that

the complex

0→ H̃d−j
PjK

(PdK ,O)→ H̃d−j
PjK

(PdK ,Ω1)→ · · · → H̃d−j
PjK

(PdK ,Ωd)→ 0

of g-modules is acyclic. Hence we have reduced the whole issue to a computation in

coherent cohomology of projective space. Set V = PdK \P
j
K =

⋃d
k=j+1D(Tk) where we

denote as usual by T0, . . . , Td the homogeneous coordinate functions on Ad+1
K . Then

by identity (2.3) we have the description

H̃d−j
PjK

(PdK ,Ωi) ∼= coker(Hd−j−1(PdK ,Ωi)→ Hd−j−1(V,Ωi))

for all i ≥ 0. On the other hand, we have the following well-known chain of identities

(2.5) K = H0(PdK ,O) = H1(PdK ,Ω1) = · · · = Hd(PdK ,Ωd),

cf. [Ha1]. All other cohomology groups vanish. Therefore it is enough to prove that

the homology in degree d− j − 1 of the complex

0→ Hd−j−1(V,O)→ Hd−j−1(V,Ω1)→ · · · → Hd−j−1(V,Ωd)→ 0

induces Hd−j−1(PdK ,Ωd−j−1) = K and vanishes elsewhere. For this issue, we consider

the double complex
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d⊕
k=j+1

Ωd(D(Tk)) →
⊕

j+1≤k<l≤d
Ωd(D(Tk) ∩D(Tl)) → · · · → Ωd(

d⋂
k=j+1

D(Tk))

↑ ↑ ↑
...

...
...

↑ ↑ ↑
d⊕

k=j+1

Ωi(D(Tk)) →
⊕

j+1≤k<l≤d
Ωi(D(Tk) ∩D(Tl)) → · · · → Ωi(

d⋂
k=j+1

D(Tk))

↑ ↑ ↑
...

...
...

↑ ↑ ↑
d⊕

k=j+1

Ω1(D(Tk)) →
⊕

j+1≤k<l≤d
Ω1(D(Tk) ∩D(Tl)) → · · · → Ω1(

d⋂
k=j+1

D(Tk))

↑ ↑ ↑
d⊕

k=j+1

O(D(Tk)) →
⊕

j+1≤k<l≤d
O(D(Tk) ∩D(Tl)) → · · · → O(

d⋂
k=j+1

D(Tk))

whose total complex gives rise to the de Rham cohomology of V , cf. [Gr]. Since

Hk
PjK

(PdK ,Ωi) = 0 for all k < d−j by identity (2.2), we see that Hk(V,Ωi) = Hk(Pd,Ωi)

for all such indices k. Evaluating the double complex along the horizontal lines we

get thus the E1-term:

0 → 0 → · · · → 0 → Hd−j−1(V,Ωd)

↑ ↑ ↑ ↑
...

...
...

...

↑ ↑ ↑ ↑
0 → 0 → · · · → K → Hd−j−1(V,Ωd−j−2)

↑ ↑ ↑ ↑
...

... . .
. ...

...

↑ ↑ ↑ ↑
0 → K → · · · → 0 → Hd−j−1(V,Ω1)

↑ ↑ ↑ ↑
K → 0 → · · · → 0 → Hd−j−1(V,O)
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But the de Rham cohomology of V is easily computed in another way. In fact, using

the comparison isomorphism with Betti cohomology [Gr] and the long exact cohomol-

ogy sequence for constant coefficients (2.1), we see that H∗dR(V ) =
⊕d−j−1

i=0 K[−2i].

The claim follows now easily. �

For the proof of Theorem 1, we recall that Ep,q
0 = grp(Ωp+q(X )) ⇒ Hp+q(Ω•(X ))

is the induced spectral sequence of our filtered de Rham complex.

Corollary 6. The E1-term of the above spectral sequence has the shape

Ep,q
1 =

HomK(vGP(d+1−p,1,...,1)
, K) q = 0

0 q 6= 0

for p ≥ 0. Hence it degenerates at E1 and we get the formula (1.1).

This finishes the proof of Theorem 1. �

3. A generalization: The dual BGG complex

In this final section we consider a generalization of what we have done before.

We replace the de Rham complex (1.2) by the dual BGG complex attached to an

algebraic representation in the sense of Faltings [Fa, FC] respectively Schneider [S].

For introducing this complex we have to introduce some more notation.

Let G = GLd+1 considered as a linear algebraic group over K. Let T ⊂ G be

the diagonal torus and let B ⊂ G be the Borel subgroup of lower triangular matrices.

Denote by Φ ⊂ X∗(T) the corresponding set of roots of G. Let B+ ⊂ G the Borel

subgroup of upper triangular matrices and and let ∆+ ⊂ Φ be the set of simple roots

with respect to B+. We consider the set

X+ = {λ ∈ X∗(T) | (λ, α∨) ≥ 0 ∀α ∈ ∆+}

of dominant weights in X∗(T). For λ ∈ X+, we denote by V (λ) the finite-dimensional

irreducible algebraic G-representation over K of highest weight λ, cf. [Ja]. We

consider V (λ) as an G-representation in the sequel.

Let P(1,d) be the stabilizer of the base point [1 : 0 : · · · : 0] ∈ PdK(K) and let

L = L(1,d) ⊂ P(1,d) be the Levi subgroup. Further let

X+
L = {λ ∈ X∗(T) | (λ, α) ≥ 0 ∀α ∈ ∆+

L}
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be the set of L-dominant weights where ∆+
L ⊂ ∆ consist of those simple roots which

appear in L. Every λ ∈ X+
L gives rise to a finite-dimensional irreducible algebraic

L-representation VL(λ). We consider it as a P-module by letting act the unipotent

radical trivially on it. Let

π : G→ G/P(1,d)

be the projection map and identify G/P(1,d) with PdK . Let V be a finite-dimensional

algebraic representation of P(1,d). For a Zariski open subset U ⊂ PdK , put

EV (U) :=
{

algebraic morphisms f : π−1(U)→ V | f(gp) = p−1f(g) for all

g ∈ G(K), p ∈ P(1,d)(K)
}
.

Then EV defines a homogeneous vector bundle on PdK and every homogeneous vector

bundle is of this shape. We consider it at the same time as such an object over the

rigid-analytic space (PdK)rig. If λ ∈ X+
L then we set Eλ := EVL(λ).

Let W be the Weyl group of G and consider the dot action · of W on X∗(T) given

by

w · χ = w(χ+ ρ)− ρ,

where ρ = 1
2

∑
α∈Φ+ α. Let WL ⊂ W be the Weyl group of L. Consider the set

LW = WL\W of left cosets and the cycles

wi := (1, 2, 3, . . . , i+ 1) ∈ Sd+1
∼= W,

i = 0, . . . , d, which are just the representatives of shortest length in their cosets. If

λ ∈ X+ and w ∈ LW then w · λ ∈ X+
L . The dual BGG-complex of λ ∈ X+ is given

by the complex

(3.1) 0→ V (λ)→ Eλ → Ew1·λ → · · · → Ewd·λ → 0.

Here V (λ) is the constant sheaf on PdK with values in V (λ). By considering sections

in X we get a complex

(3.2) 0→ V (λ)→ Eλ(X )→ Ew1·λ(X )→ · · · → Ewd·λ(X )→ 0.

It is proved in [S] that the complex E•·λ(X ) is quasi-isomorphic to the complex Ω•(X )⊗
V (λ). The classical case is [Fa, FC]. For λ = 0, we get the usual de Rham complex.

Proof. (of Theorem 1’) The proof is the same as above. Instead of the series of

identities (2.5) we use this time the Borel-Weil-Bott theorem, cf. [Ja]. Indeed by

considering the spectral sequence (RmindGP )(RnindPB)(M) ⇒ RnindGB(M), cf. [Ja,

Prop. 4.5 c)] we deduce that H i(PdK , Ew·λ) = H i(G/B,Lw·λ) since w · λ ∈ X+
L is
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L-dominant. Here Lw·λ is the line bundle on G/B attached to the weight λ. Hence

we get

H i(PdK , Ewj ·λ) =

{
H0(PdK , Eλ) i = j

0 i 6= j.

Moreover, the latter object has the description H0(PdK , Eλ) = V (λ). As for the inter-

pretation of the de Rham cohomology of V we use the fact [Fa, FC] that the complex

E•·λ(V ) is quasi-isomorphic to V (λ)⊗ Ω•(V ) instead. The claim follows. �

Acknowledgments: I wish to thank Ehud de Shalit and Matthias Strauch for their

remarks on this paper.
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